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Abstract: In this paper, an experimental study was carried out to determine the influence of 

imbalanced datasets preprocessing in the performance of associative classifiers, in order to find the 

better computational solutions to the problem of credit scoring. To do this, six undersampling 

algorithms, six oversampling algorithms and four hybrid algorithms were evaluated in 13 

imbalanced datasets referring to credit scoring. Then, the performance of four associative classifiers 

was analyzed. The experiments carried out allowed us to determine which sampling algorithms had 

the best results, as well as their impact on the associative classifiers evaluated. Accordingly, we 

determine that the Hybrid Associative Classifier with Translation, the Extended Gamma 

Associative Classifier and the Naïve Associative Classifier do not improve their performance by 

using sampling algorithms for credit data balancing. On the other hand, the Smallest Normalized 

Difference Associative Memory classifier was beneficiated by using oversampling and hybrid 

algorithms. 
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1. Introduction 

Credit scoring is a two-class classification problem (to grant or not the credit to the applicant). 

This problem is imbalanced by nature because, in practice, more credits are granted than those that 

are rejected. However, the classification costs are not the same for both classes, due to the inner nature 

of the credit assignment [1,2]. For example, if a potential good applicant is denied credit, the financial 

institution loses a potential client. On the other hand, if a bad applicant is granted credit, the financial 

institution has losses of a monetary nature, and possibly expenses associated with legal actions that 

it has to take to recover the money invested. 

That is why the class of greatest interest in this phenomenon is the detection of potential bad 

applicants, who should not be granted credit [3]. Paradoxically, this class of greatest interest is the 

minority class in this phenomenon, which adds complexity for those involved in finding solutions to 

the problem of credit scoring in the context of Computational Intelligence [4]. 

In the recent scientific literature, there is a wide variety of pattern classifier algorithms in a wide 

range of applications, including Deep Neural Networks [5,6], models that show good performance. 

Regarding the topic of our research, it is possible to find research papers where attempts to solve the 

problem of credit scoring are reported. Various supervised classification models have been used in 

these investigations; the use of Support Vector Machines [7–9], Artificial Neural Networks [10–12] 

and Classifier Ensembles [13–16], among others [17–19], stands out. Some of the experimental 
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comparisons made to determine the performance of the classifiers in terms of credit assignment [20–

23] exhibit, in our opinion, certain problems that prevent generalizing the published results. 

The main task to be solved in this paper is to successfully address these two problems [24]: on 

the one hand, research studies incorporate few datasets, and those datasets are not public, nor are 

they available for use. In addition, there are almost no common datasets in the different 

investigations. Additionally, in the documentary study of the state of the art carried out by the 

authors, it was observed that, if a research group has used a certain supervised classifier, in other 

investigations it is not taken into account, but used other supervised classifiers. 

The No Free Lunch Theorems [25] state that there is no superiority of one classifier over others, 

over all datasets and all performance measures. However, recent studies point to the existence of 

good performance of associative classifiers in solving problems of supervised classification of the 

financial field [26]. 

It is a fact known by the scientific community that, on numerous occasions, the preprocessing of 

the data contributes to the improvement of the performance of certain supervised classifiers; in 

particular, when the datasets present imbalance between classes [27]. Several investigations have 

been reported in the literature that have been carried out in order to determine the impact of data 

preprocessing in improving solutions to the problem of granting credit [28]. In particular, the 

computational problem related to the selection of instances (applicants) [2] has aroused great interest 

in the scientific community, so that in recent years the emphasis has been placed on the study of 

instance selection techniques for imbalanced data [1]. 

In this paper, we address two challenges: the evidence that in the comparative studies reviewed 

[20–23], there is no consensus as to what are the best preprocessing techniques for the different 

classifiers in the assignment of credit; and, in addition, and as a relevant point, it is a fact that, to the 

best of our knowledge, there is no scientific research to assess the impact of instance sampling in the 

performance of associative classifiers. Addressing such justifies the conduct of this research. 

The aim of this paper is to successfully attack the two problems raised in the previous paragraph. 

Therefore, the aim of this research consists in carrying out an extensive experimental study to assess 

the impact of instance selection by sampling, in the performance of associative classifiers for credit 

scoring. 

2. Previous Works 

2.1. Credit Scoring  

Credit scoring is one of the main income sources of financial institutions. Therefore, not having 

the necessary tools for customer segmentation, can cause them to be broken, due to the high delay 

rate of their customers. That is why, more frequently, intelligent credit granting systems (customer 

segmentation) are required to ensure with high probability that the future borrower will be able to 

meet their credit obligations, using intelligent models that facilitate and improve their approval 

process.  

Credit scoring [29] is called any credit evaluation system for customers that allows the risk 

inherent in each credit application to be automatically assessed or parameterized. This risk will 

depend on the solvency of the client, the type of credit, the terms, and other characteristics of each 

client. These characteristics will define whether each credit application is approved or rejected.  

Credit scoring is, therefore, a classification problem. Given a set of observations belonging to a 

certain class known a priori, a set of rules is search for that allow the classification of new observations 

into two groups: those that with high probability they will be able to face their credit obligations, and 

those that, on the contrary, will fail in their credit obligations.  

For this, an analysis of the applicant’s personal characteristics (profession, age, heritage, gender, 

place of residence, and others) and the characteristics of the operation (destination of credit, 

percentage financed, rate, term, to mention a few) will have to be carried out, which will allow the 

system to induce the rules that will subsequently be applied to new applications, thus determining 

their classification. In any case, the credit scoring models mainly use the client information evaluated 
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and contained in the credit applications or in internal or external sources of information. In general, 

Credit scoring models assign the future borrower a score (individuals and SMEs) or a rating 

(Business) [29]. 

When credit scoring techniques are used in origination (or placement), that is, to resolve credit 

applications, they are known as reactive or Application Scoring models. Instead, when they are used 

to manage the loan portfolio they are known as proactive models or Behavioral Scoring. In the case 

of the models used in the placement of credit, financial institutions generally determine a cutoff point 

to determine which applications are accepted (for obtaining a rating higher than the cutoff) and which 

are not. The cut off setting does not respond to risk considerations exclusively, but depends on the 

percentage of benefits desired by the entity and its ability to manage the risk. 

2.2. Computational Intelligence Models for Financial Applications 

The Computational Intelligence algorithms have been successfully applied in various branches 

of science and engineering [30]. Regarding the topic of our research, as of 1968 and as a result of 

Beaver’s studies (one of the pioneers in the investigation of bankruptcy prediction models in 

companies) [31], several researchers began working with multivariable models with the objective of 

being able to determine more precisely which companies were heading for bankruptcy and which 

others were not. In this context, the development of the Z-Score was proposed in the year 1968 by 

Altman [32] that has been applied in many companies in the financial sector. For the application of 

credit scoring, in recent years, several new techniques have appeared, namely: Decision Trees [33], 

Artificial Neural Networks [12], Support Vector Machines [9], Rough Sets [19], Deep Learning [15], 

and Metaheuristic algorithms [34], among others. 

There are several comparative studies to assess the performance of supervised classifiers for 

credit scoring. Maybe the first was carried out by Srinivasan and Kim [35], comparing various 

methodologies and find that the Decision Trees outperform the Logistic Regression, while these yield 

better results than the Discriminant Analysis. In addition, they suggested that the superiority of trees 

is directly related to the complexity of the data under study. 

Ohter interesting comparatives studies are [7,21,22,29,36,37]. In addition, recent studies point to 

the existence of good performance of associative classifiers in solving problems of supervised 

classification of the financial field [26]. 

2.3. Data Preprocessing for Financial Applications 

One of the first analyses on instance sampling on credit scoring was the one by Greene [38]. In 

his research paper he addressed the issue of selecting instances for predicting credit card default, and 

analyzed the most common technique used in credit rating: Linear Discriminant Analysis (LDA) and 

provided us with alternatives to this technique. 

García et al. [2] conducted an investigation to analyze the impact on the presence of noise and 

outliers on credit risk data and establish how to improve information through data preprocessing by 

filtering. In the research work of López et al. [27] a comparative study was conducted to address class 

imbalance through instance preprocessing techniques, cost-sensitive learning and classifier ensemble 

methods. In addition, they analyze the impact of the intrinsic characteristics of the data on the 

classification task, such as small disjoints, lack of density, overlapping and separability of classes, 

noise and boundaries.  

Crone and Finlay [39] conducted an empirical study where they analyzed the sample size and 

class balance. They propose that the size sufficient to build and validate a credit scoring model is 1500 

to 2000 samples for each class. Bischl et al. [1], studied different strategies for the correction of class 

imbalance through instance sampling, and they noted that in some cases the correction worsened the 

performance of the classifiers, perhaps due to the over-adjustment of the training sets.  

Marqués et al. [3], in the experimental results of their experiments, showed that the use of 

sampling methods consistently improved the performance given by the original (imbalanced) data. 

In addition, they mentioned that oversampling techniques worked better than any undersampling 

approach. Dal Pozzolo et al. [40] analyzed when undersampling was effective for imbalanced data, 
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and they proposed that undersampling depended on the degree of imbalance and the non-

separability of classes. 

García et al. [20] explored the effects of sample types on the predictive performance of classifier 

ensembles for credit risk and corporate bankruptcy prediction problems. They focused on 

characterizing positive (risky) instances, and showed that there is a correlation between the classifier 

ensembles performance and the dominant type of positive instances. 

In conclusion, we can affirm that, although several studies have been carried out regarding the 

influence of the preprocessing of financial data, none of them addressed its impact on associative 

classifiers. In the subsequent sections, we will address this important theme. 

3. Materials and Methods 

This section describes the datasets and associative classifiers used in this investigation. Special 

emphasis is      placed on datasets related to the financial environment, as they constitute a central 

part of this paper (Section 3.1). Additionally, the operation of the associative classifiers addressed in 

this research is described in detail in Section 3.2. 

3.1. Datasets  

This section describes the datasets that will be used to assess the impact of preprocessing of 

financial data in the performance of associative classifiers. Some of these datasets are well known in 

the literature, in addition to being a reference, because they are widely used in many of the research 

work carried out so far.  

The used datasets are: Australian Credit Approval (Australian) 

(https://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval)), German Credit data 

(German) (https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)), Japanese Credit 

Approval (Japanese) (https://archive.ics.uci.edu/ml/datasets/Credit+Approval), Default of credit card 

clients (Default credit) (https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients), Iranian 

(Shared personally by Hassan Sabzevari), Polish bankruptcy (Polish_1 to Polish_5) 

(https://archive.ics.uci.edu/ml/datasets/Polish+companies+bankruptcy+data), The PAKDD 2009 

dataset (The PAKDD) (https://www.cs.purdue.edu/commugrate/data/credit_card/), Give me some 

credit (Give me credit) (https://www.kaggle.com/c/GiveMeSomeCredit/data) and Qualitative 

bankruptcy data (Qualitative) (https://archive.ics.uci.edu/ml/datasets/qualitative_bankruptcy). These 

datasets are very interesting, due to the fact that they include both numeric and categorical attributes, 

and missing data. 

As a summary, Table 1 shows a description of the datasets used in this investigation. The 

abbreviations (Num.) and (Cat.) refer to the number of numerical and categorical attributes, 

respectively. IR represents the imbalance ratio of the datasets.  

Table 1. Description of the datasets. 

Dataset Instances 
Attributes 

Missing IR 
Num. Cat. 

Australian 690 8 6 No 1.25 

Default credit 30,000 13 10 No 3.52 

German 1000 7 13 No 2.33 

Give me credit 150,000 10 0 No 13.96 

Iranian 1002 28 0 Yes 19.04 

Japanese 690 6 9 Yes 1.21 

Polish_1 7027 64 0 Yes 24.93 

Polish_2 10,173 64 0 Yes 24.43 

Polish_3 10,503 64 0 Yes 20.22 

Polish_4 9792 64 0 Yes 18.01 

Polish_5 5910 64 0 Yes 13.41 
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Qualitative 250 0 6 No 1.34 

The PAKDD 20,000 10 9 Yes 4.12 

As can be seen, 10 of the 13 datasets are imbalanced (with IR > 1.5), six of them have mixed 

descriptions (numerical and categorical attributes), and eight contain absences of information 

(missing values). It should be noted that in all cases there are only two classes.  

3.2. Associative Classifiers  

In this section, the associative classifiers that will be evaluated in this paper are analyzed. In each 

case, its operation is detailed and a brief reference is made to its main characteristics, as well as its 

application or not to the financial field. 

3.2.1. Hybrid Associative Classifier with Translation  

The Hybrid Associative Classifier with Translation (HACT or CHAT by its Spanish acronym) 

was proposed by Santiago-Montero as a classification model [41], and has been used successfully in 

the financial field [42]. 

The HACT has two phases: association (training), and recovery (classification). This classifier 

assumes that the dataset is complete (that is, there are no absences of information in the data), and 

that it is described only by numerical attributes. In addition, it assumes that classes are represented 

by consecutive integers. 

Let us have a dataset, having association pairs � of the form (��, ��), where � = 1, 2, … , �, �� ∈

ℝ� and �� ∈ ℝ� . Each instance ��  is composed by � components, where ��
�  represents the j-th 

component of such instance. The classes �� take the form of binary vectors of size �, where ��
�

 

represents the i-th component of the vector.  

Before starting the training or association, the HACT classifier performs an axis translation 

process. To do this, the average of all training instances, component by component, is calculated, and 

then, all instances are translated considering that average. Le �� be the average of all instances. Each 

instance �� is translated as ��� ← �� − ��.  

After translation, class vectors are formed. To do this, the binary �� vectors corresponding to 

each instance are formed, and the corresponding component of each vector is set to 1. For example, 

if you have three classes (1, 2, 3) the vectors corresponding to each of the classes would be [1, 0, 0], 

[0, 1, 0] and [0, 0, 1], respectively. After the instances have been moved and the classes configured, 

the training phase of the HACT model constructs a matrix � so that when an input pattern ��� is 

presented, the stored pattern ��  associated with the input pattern is recovered. This process 

comprises two basic steps: 

1. For each association (���, ��) in the training set, the external product ��(����) is completed, 

where ���� is the transposed of the input vector ���. 

2. Sum the � externals products to obtain the matrix � = � ∑ ��(����)
�
��� , where �  is a 

normalization parameter (usually � = 1 �⁄ ). Each component of the matrix �  is defined as 

��,� = ∑ ��
�

���
��

��� . 

On the other hand, the classification phase of HACT consists of two phases: 

1. Translate the pattern to classify �, according to the average of the training patterns, as �� ← � −

��. 

2. Determine the components of the output vector (class) for the pattern to classify ��. To do so, it 

is considered that ��
� = �

1 if ∑ ��,���� = max
���..�

�∑ ��,����
�
��� ��

���

0 otherwise
. Thus, the class � wil be returned 

if and only if the obtained vector has value 1 in its k-th component, and 0 in the remaining 

components. 

Although the HACT algorithm is unable of handling qualitative data, or absence of information 

in the data, it has obtained good results in the financial field [42]. 
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3.2.2. Extended Gamma Classifier  

The Gamma Associative Classifier was proposed by López-Yáñez as a prediction model [43], 

and has been used successfully in supervised classification tasks [44]. In its original version, this 

algorithm was unable to handle qualitative data, or absence of information in the data. 

That is why an extension of this classifier was made, to overcome these limitations [45]. This 

extension modifies the way in which the similarity between instances is calculated, and allows the 

direct application of this classification model to databases with mixed and incomplete attributes, very 

common in the financial field. 

Let � and P be the training and testing sets, respectively, from a universe U, where each instance 

� ∈ �, � ∈ � is described by a set of attributes A = {��, ��, ⋯ , ��}; each attribute �� has a definition 

domain ���(��), which can be numeric or categorical.  

As a particular case, if the value of the attribute �� in an instance � is unknown, it is considered 

to be a missing data, and denoted as �� =�? ′. It is assumed that there is a set of classes � = {��, … , ��} 

associated with the training instances. 

The Extended Gamma Associative Classifier (EG) consists of two phases: training and 

classification. The training phase of this classifier begins with the storage of the training set, and 

includes the subsequent calculation of various parameters (Table 2). 

Table 2. Empirical values for the parameters of the Gamma classifier. 

Parameter Meaning Recommendation 

� 
It is the vector of weights of the attributes, which 

indicates the importance of each attribute. 

Computed by Differential 

Evolution [40] 

� 

It is the value that will initially take � and indicates 

how different two numerical values can be and that 

the extended generalized similarity operator 

considers them similar. 

� = 0  (inicial value) 

� 

It is the stop parameter and refers to the maximum 

value allowed to θ, which allows to continue looking 

for the disambiguation of patterns near the border; 

when θ = ρ, the CAG will stop iterating and 

disambiguate the class. 

⋁ �⋁ ��
��

��� ��
���  if there is at 

least a numeric attribute. 

Otherwise use � = 1  

�� 

It is the pause parameter. In this pause an evaluation 

of the pattern to be classified is carried out, in order to 

determine whether or not it belongs to the unknown 

class: it depends on whether the normal operation of 

the algorithm is continued. 

⋀ �⋁ ��
��

��� ��
���   if there is at 

least a numeric attribute. 

Otherwise use �� = 1 

� 

It is the threshold to decide if the pattern to be 

classified belongs to the unknown class or to any of 

the known classes. 

� = −1 

In the classification phase, EG uses an iterative process, based on the calculation of the average 

similarity to each class of the instance to be classified. To analyze the similarity between the test 

instances and training instances, the extended generalized similarity ���� is used. After obtaining the 

similarities, the average of the generalized similarity of said test pattern for each class �� ∈ � 

(Equation (1)) is calculated. Let � ∈ � be an instance to classify and let �� be the value corresponding 

to the j-th attribute. 

The number of instances belonging to the class ��  in the training set is given by �, and ��
�  

represents the value of the j-th attribute of the i-th instance of the class ��, and �� represents the 

weight of the j-th attribute. 

���
=

∑ ∑ �� ∗ ����
�
���

�
��� (��

�, ��)

�
 (1) 
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�������, ��, �� = �

�������, ��, �� if the jth attribute is numeric

�������, ��� if the jth attribute is categoric

��������, ��� if x� or y�are missing

 

where 

�������, ��, �� = �
1 if ��� − ��� ≤ �

0 otherwise
, �������, ��� = �

1 if �� = ��

0 otherwise
 and  

��������, ��� = �
1 if �� = �� = “? ”

0 otherwise
 

If a single maximum is found among all the values of ���
, the process ends. If not, the values of 

the stop and pause parameters, as well as the value of the � parameter, are taken into account in an 

iterative process. Further details of the functioning of this classifier can be found in the original paper 

[45]. 

The Extended Gamma Associative Classifier has been successfully applied in solving social 

problems with mixed and incomplete data (particularly in estimating the voting intentions of 

Mexican citizens [45]). However, in the knowledge of the authors, this classifier has not been applied 

to the financial field. 

3.2.3. Naïve Associative Classifier  

The Naïve Associative Classifier (NAC) was recently proposed to solve classification problems 

in the financial field [26]. This classifier surpassed several of the state of the art in this type of 

problems; and, in addition, it has its own methodology to estimate the weight of its attributes [46]. 

The NAC directly handles mixed and incomplete data, and is also transportable and transparent 

[26]. In its training phase, the NAC stores the training set and calculates, for each numerical attribute, 

the standard deviation. 

Let � ∈ � be an instance to classify and let �� be the value corresponding to the j-th attribute. 

To analyze the similarity between the test instance and the training instances, two operators are used: 

the Mixed and Incomplete Data Similarity Operator (MIDSO) and the total similarity operator �� 

(Equation (2)). After obtaining the similarities, the average of the generalized similarity of the test 

instance for each class ��, denoted as ��(�) (Equation (6)) is calculated. 

Again, the number of instances belonging to the class �� in the training set is given by �, and 

��
� represents the value of the j-th attribute of the i-th instance of the class ��, and ��  represents the 

weight of the j-th attribute.  

��(�, �) = � �� ∗ �����(�, �, ��)

�

���

 (2) 

����� (�, �, ��) = �
��(�, �, ��)  �� �� �� ����������� 

��(�, �, ��)  �� �� �� �������
 (3) 

��(�, �, ��) = �
0 �� ((�� ≠ ��) ⋁ (�� =�? ′) ⋁ (�� =�? ′))

1     ��ℎ������
 (4) 

��(�, �, ��) = �
0 �� ((|�� − ��| > ��) ⋁ (�� =�? ′) ⋁ (�� =�? ′))

1     ��ℎ������
 (5) 

��(�) =
1

�
� ��(�, �)

����

 (6) 

If a single maximum is found among all the values of ��(�), the process ends. If not, any of the 

classes with maximum similarity is assigned. 

Although the NAC has been successfully applied to the solution of problems in the financial 

field, the impact of the data imbalance and its preprocessing in its performance has not been explored. 

3.2.4. Smallest Normalized Difference Associative Memory  

The Smallest Normalized Difference Associative Memory classifier (SNDAM) is also a newly 

created classification algorithm within the associative approach. It was proposed by Ramírez-Rubio 
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and collaborators [47], and aims to reduce the limitations of the classic Alpha-Beta associative 

memories. 

This classification model assumes a set of training and test data described by numerical 

attributes, and not having absences of information. The SNDAM model is based on two operators: 

the generalized alpha operator ��  and the generalized beta operator �� , in its variants MAX (���) 

and MIN (��� ). Let � and � be two real numbers, the generalized alpha and beta operators are: 

��(�, �) = � − � + 1 (7) 

��� (�, �) =  �
� − |�| − 1 if � ≠ �

� if � = �
 (8) 

��� (�, �) =  �
� − |�| − 1 if � ≠ �

� if � = �
 (9) 

For the training of this classifier, there are two aspects: the behavior as an associative memory 

type MAX, or as an associative memory type MIN. Depending on this, the SNDAM training phase 

begins as follows: 

For each instance � ∈ � in the training set, an auto-associative matrix �� is created using the 

generalized alpha operator. Each component ���,�, with �, � ∈ [1, �] of such matrix is given by: 

���,� =  �����, ��� (10) 

Subsequently, if it is a memory type MAX, an array of associations �  is created whose 

components �_����,� are calculated according to Equation (11). In the MIN case, the components of 

the association matrix are created according to Equation (12). In other words, the matrices obtained 

for each object of the training set are generalized in a single matrix, through the maximum and 

minimum operators, component by component. 

�_����,� =  � ���,�

�∈�

 (11) 

�_����,� =  � ���,�

�∈�

 (12) 

After the matrix � is constructed, the maximum values of each of the attributes are calculated, 

considering the objects in the training set. For each attribute �� a value ���� will then be associated. 

Let � be a test instance that it is wanted to be recovered from the associative memory. The 

recovery phase in this model will return an artificial object z, described by real attributes. In the 

recovery phase, there are also two types: the MAX and MIN. In the first case, to obtain the 

components �_����  of the artificial object z Equation (13) is used for the recovery, while in the 

second Equation (14) is used. 

�_���� =  � ���(�_����,�, ��)

���..�

 (13) 

�_���� =  � ���(�_����,�, ��)

���..�

 (14) 

Then, the normalized difference δ between the recovered instance z and each of the instances of 

the training set � ∈ �  is calculated. Again, there are two possibilities, Max and MIN. These 

differences are calculated as: 

�_���(�, �) =  �
|�_���� − ��|

����

�

���

 (15) 

�_���(�, �) =  �
|�_���� − ��|

����

�

���

 (16) 

Finally, the class of the instance whose normalized difference with the instance to be classified 

was smaller was assigned. 
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This classifier has been successfully applied in solving medical problems [47]. However, in the 

knowledge of the authors, the SNDAM classifier has not been applied to the financial field. 

3.3. Sampling Algorithms for Imbalanced Data  

In a large number of papers, novel methods have been proposed to address the problem of 

imbalance between classes, which are classified into three groups [27]; algorithm-level approaches 

(in which a new algorithm is created or an existing one is modified), data-level approaches (in which 

data is modified in order to lessen the performance impact of the algorithms of classification when 

there is an imbalance in the distribution of classes), and cost-sensitive classification (which consider 

different costs with respect to the class distribution). 

This section deals with the class balancing algorithms that will be evaluated in the present 

investigation. All of them belong to the data-level approach for imbalanced classification. First, we 

address oversampling algorithms and then, undersampling algorithms. At last, we address hybrid 

approaches. 

It is possible to find several state-of-the-art articles [48–52] in which the preprocessing of datasets 

is employed to reduce the impact caused by the distribution of classes. In such research, it has been 

empirically demonstrated that the application of a preprocessing stage to balance the distribution of 

classes is usually a useful solution to improve the quality of the identification of new instances. Data 

preprocessing techniques for imbalanced data can be divided into three groups: 

1. Oversampling algorithms. These techniques are based on the creation of synthetic instances of 

the minority class through replication, or creating new instances based on the existing ones. 

2. Undersampling algorithms. These methods are based on the elimination of instances of the 

majority class. 

3. Hybrid Algorithms These methods are a combination of oversampling and undersampling 

techniques. 

Oversampling algorithms seek to match the quantities of instances in each class by oversampling 

minority classes. In this way, the quantity of instances in these classes will be artificially increased, 

making all classes have approximately the same number of objects. The techniques for selecting 

instances for oversampling that will be used for the comparative analysis carried out in this work are 

listed below (Table 3). 

Table 3. Oversampling algorithms used. 

Name Acronym Reference 

Synthetic Minority Over-sampling TEchnique SMOTE [53] 

ADAptive SYNthetic Sampling ADASYN [54] 

Borderline-Synthetic Minority Over-sampling TEchnique SMOTE-BL [55] 

Safe Level Synthetic Minority Over-sampling TEchnique SMOTE-SL [56] 

Random Oversampling ROS [57] 

Adjusting the Direction Of the synthetic Minority clasS examples ADOMS [58] 

As mentioned earlier, undersampling algorithms seek to match the amounts of instances in each 

class, by sampling the majority classes [25]. Thus, objects that are considered less relevant are 

eliminated, so that all classes have approximately the same number of instances. Next, the 

undersampling algorithms evaluated in the present investigation are listed (Table 4). 
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Table 4. Undersampling algorithms used. 

Name Acronym Reference 

Tomek’s modification of Condensed Nearest Neighbor TL [59] 

Condensed Nearest Neighbor CNN [60] 

Condensed Nearest Neighbor + Tomek’s modification of Condensed 

Nearest Neighbor 
CNNTL [57] 

One Side Selection OSS [61] 

Random Undersampling RUS [57] 

Neighborhood Cleaning Rule NCL [62] 

Under-Sampling Based on Clustering SBC [63] 

Hybrid algorithms use oversampling and undersampling techniques. The hybrid algorithms 

evaluated in the present investigation are (Table 5): 

Table 5. Hybrid algorithms used. 

Name Acronym Reference 

Synthetic Minority Over-sampling Technique + Edited Nearest 

Neighbor 

SMOTE-

ENN 
[57] 

Synthetic Minority Over-sampling Technique + Tomek’s modification 

of Condensed Nearest Neighbor 
SMOTE-TL [57] 

Selective Preprocessing of Imbalanced Data SPIDER [64] 

Selective Preprocessing of Imbalanced Data 2 SPIDER2 [65] 

In this section, we analyzed the datasets to be used, as well as some of the most representative 

associative classifiers. In addition, we mentioned the sampling algorithms for class balancing we will 

use. Next section explains the proposed experimental methodology in order to assess the impact of 

the preprocessing techniques for imbalanced financial data sampling in the performance of classifiers 

of the associative approach. 

4. Experimental Methodology 

This section describes the proposed methodology to assess the impact of imbalanced data 

preprocessing on associative classifiers. For this, the phases of this methodology are described, as 

well as its adaptation to the financial environment.  

The proposed methodology is organized in eight steps or stages. These stages were defined by 

taking into account the particularities of the financial environment, the data preprocessing 

algorithms, and the associative classifiers. 

A general description of the first six stages is given below, which will be explained in detail in 

the following subsections of this paper. Figure 1 shows a graphic representation of the stages of this 

methodology. Stages seven (execution of the experiments) and eight (analysis of the results) will be 

addressed in Section 5, as they correspond to the results obtained, as well as their analysis and 

discussion. 
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Figure 1. Stages of the proposed methodology. 

4.1. Dataset Selection 

As mentioned earlier, 13 datasets were considered in this investigation, all of them referring to 

the problem of credit scoring. The number of attributes of these datasets varies between six and 64 

attributes, while the number of instances is between 250 and 150,000. On the other hand, 10 of the 13 

databases are imbalanced (with IR > 1.5), six of them have mixed descriptions (numerical and 

categorical attributes), and eight contain absences of information. It should be noted that in all cases 

there are only two classes. These classes correspond to clients that do not represent a risk to banking 

institutions, and clients that do represent such risk. 

4.2. Validation Methods Selection 

There are various methods or techniques to compare the results obtained from classification 

algorithms. One of these techniques is cross validation. The pioneer in using cross-validation was 

Larson [66] in 1931. In his research work, he divided the data into two parts, a sample was used for 

regression and a second sample was used for prediction. In the 70′s, Stone [67] and Geisser [68] 

formally developed the concept of cross-validation, which is a statistical method to divide a set of 

data into different subsets. Its application is very useful when the number of data is relatively small 

due to the complexity or even impossibility of obtaining it. There are different variants of validation, 

among which are: 

Hold-Out: the complete set of data is taken and divided into two subsets, the first one dedicated 

to the training phase and the second to the test phase. The partition of the data is done by taking 

random elements.  

K-fold cross validation: the data set is divided into K partitions that give K mutually exclusive 

subsets. That is, one of the K subsets is used as a test set and the remaining sets are grouped to form 

the training set. The procedure is repeated K times by exchanging the test set to ensure that the K 

subsets have been used in the test phase. 

5 × 2 cross validation: It is important to highlight the work of Dietterich [69], who compares 

various evaluation methods. He proposed to apply 5 × 2 cross validation, which consists of repeating 

a cross validation five times with K = 2. In each of the five executions, the data is randomly divided 

into two subsets of data, one for training and the other for testing. Each of the training partitions are 

taken as input of the classification algorithm and the test partitions are used to make a test of the final 

solution.  

Considering the high imbalance of some of the datasets used (for example, Polish_1, with an IR 

= 24.9), it was decided to use the 5 × 2 cross validation method, to compare the results obtained in the 

investigation. 
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For this, the datasets were divided using the KEEL software [70], which allows to store, in each 

case, the partitions obtained. This is a clear advantage, since the different classification algorithms 

are compared on the same test sets, in each case. 

4.3. Performance Measure Selection 

The evaluation of the performance of supervised classifiers has been the subject of study since 

the very emergence of the classification algorithms. One of the measures first used is to consider the 

number of instances of the test set correctly classified, with respect to the total instances of that set. 

This measure is known as accuracy or correct classification rate [71]. 

However, this is not the only way to evaluate the performance of the classifiers. Let us consider 

a two-class scenario (Positive and Negative), as shown in Figure 2. In this case, a classification 

algorithm has four possibilities: 

1 Correctly classify a positive instance (True Positive, TP) 

2 Correctly classify a negative instance (True Negative, TN) 

3 Incorrectly classifying a positive instance (False Negative, FN) 

4 Incorrectly classifying a negative instance (False Positive, FP) 

 

Figure 2. Two class confusion matrix. 

It should be noted that the costs of each of the two possibilities of incorrect classification (False 

Positives and False Negatives) are not always the same. In the particular case of the credit scoring, if 

clients that represent a risk to the financial institution are considered as a positive class, and those 

that do not represent a risk as a negative class, it is easy to deduce that the cost of classifying a risky 

client (positive) as negative, it is greater than classifying a good customer (negative) as a risk 

customer. In these scenarios, it is sought, above all, to reduce the amount of False Negatives. 

This type of situation is aggravated by considering imbalanced datasets, since standard 

performance measures such as accuracy are not considered adequate [27]. This is due to the bias of 

these measures towards the majority class, since they do not distinguish between the number of 

correct classifications of the different classes, which can lead to erroneous conclusions. In this 

investigation, we will consider the Area under the ROC curve to evaluate the performance of the 

classifiers, after applying data balancing algorithms. 

Below, we list some of the most commonly used performance measures [71] for imbalanced 

dataset scenarios, considering a two-class confusion matrix, as shown in Figure 3. 

 

Figure 3. Some performance measures for two class imbalanced classification. 
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4.4. Sampling Algorithms Selection 

As mentioned early, there are numerous algorithms for data balancing. These algorithms are 

divided into three large groups: undersampling algorithms, oversampling algorithms and hybrid 

algorithms. In this investigation, the KEEL tool [72] was used to apply these algorithms to the 

different datasets. 

KEEL version 3.0 contains 20 sampling algorithms. Of them, 17 were selected for the 

experiments. The reason for the selection is its computational efficiency. The Aglomerative 

Hierarchical Clustering (AHC), Hybrid Preprocessing using SMOTE and Rough Sets Theory 

(SMOTE-RSB) and Class Purity Maximization (CPM) algorithms were not considered, due to the 

impossibility of obtaining results in 24 h for some datasets. 

We used a personal computer with 2GB of RAM, Windows 7 operating system, and an Intel 

Core i3 processor of 5th generation. Such computer was not exclusively dedicated to the experiments 

execution, and therefore, we cannot analyze the execution time of the algorithms under study.  

As some of these algorithms do not handle mixed or incomplete data, in the cases corresponding 

to datasets that do contain them, it is proposed thin this research the lost values were imputed, and 

the categorical attributes were converted to numerical. For this, it is possible to use the KEEL software 

[66] in its functionalities “Concept Most Common Attribute Value” and “Min Max ranging”. 

4.5. Classifiers Selection 

From the associative classifiers mentioned, the following algorithms were chosen for conducting 

the experiments: HACT, NAC, EG and SNDAM. HACT [54] and NAC [23] have been applied 

previously, successfully, to the financial field [26,42]. 

For the execution of the associative classification algorithms, we use the EPIC tool [73,74], 

currently under development. This tool contains the above-mentioned associative classifiers, and it 

is compatible with the datasets files after applying the sampling algorithms offered by KEEL, and has 

a visual environment that facilitates the performance of experiments. On the other hand, the EPIC 

tool provides a summary of the results obtained according to numerous performance measures, and 

also stores the classes assigned to each test instance, in each case.  

4.6. Statistical Test Selection 

In the proposed methodology, it is necessary to evaluate the performance of several supervised 

classifiers on different datasets. To establish the existence or not of differences between performances, 

it is necessary to carry out statistical tests. Among the statistical tests recommended for this task [75] 

is the Friedman test [76]. 

In this case, a null hypothesis H0 is defined, which states that there are no differences in the 

performance of the compared algorithms, and an alternative hypothesis H1, which states that there 

are differences in the performance of the compared algorithms. 

Friedman’s test consists in ordering the performances of the algorithms (from best to worst 

performance), replacing them with their respective rank. The best result corresponds to rank 1, the 

second best to rank 2, and so on. When ordering them, the existence of identical data is considered, 

in which case an average range is assigned. Then, the test computes the z-statistic. It is used to find 

the corresponding probability value p in the statistical tables, and then compare it with a significance 

value α. In the tests of statistical hypotheses, the p-value represents the probability of obtaining a 

result as extreme as one already observed, assuming that the null hypothesis is true. The lower the 

p-value, the more evidence exists against the truthfulness of the null hypothesis. If the p-value is less 

than the level of significance α, the null hypothesis is rejected and significant differences are 

considered to exist. 

If the null hypothesis of equal performance is rejected by the Friedman test, it is necessary to 

apply post-hoc tests, to determine among which algorithms are the differences. Among the 

recommended post-hoc tests for the analysis of algorithm performance in multiple datasets, is the 

Holm test [77]. This test, to adjust the significance value α, uses a descending procedure. There are 
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automated tools for the calculation of the Friedman test, as well as for the calculation of post-hoc 

tests. In this paper, we use the KEEL tool [72]. As mentioned at the beginning of this section, the first 

six stages of the proposed methodology were detailed. Considering the above, next section will 

describe stages seven and eight of the proposal, corresponding to the execution of the experiments, 

and their analysis. 

5. Experimental Results 

This section describes the experiments performed. First, an analysis is carried out on the results 

obtained by the sampling algorithms (Section 5.1). Then, the impact of the results obtained by these 

algorithms in the performance of associative classifiers is evaluated (Section 5.2). Finally, the 

statistical analysis is made (Section 5.3).  

5.1. Results of the Sampling Algorithms 

As expected, the oversampling algorithms were able to perfectly balance the datasets, obtaining 

and imbalance ratio of one in all cases (Table 6).  

Table 6. Imbalance ratio for oversampling algorithms. 

Datasets Original ADASYN ADOMS SMOTE-BL ROS SMOTE-SL SMOTE 

Australian 1.25 1.00 1.00 1.00 1.00 1.00 1.00 

Default credit 3.52 1.00 1.00 1.00 1.00 1.00 1.00 

German 2.33 1.00 1.00 1.00 1.00 1.00 1.00 

Give me credit 13.96 1.00 1.00 1.00 1.00 1.00 1.00 

Iranian 19.00 1.00 1.00 1.00 1.00 1.00 1.00 

Japanese 1.26 1.00 1.00 1.00 1.00 1.00 1.00 

Polish_1 24.93 1.00 1.00 1.00 1.00 1.00 1.00 

Polish_2 24.43 1.00 1.00 1.00 1.00 1.00 1.00 

Polish_3 20.22 1.00 1.00 1.00 1.00 1.00 1.00 

Polish_4 18.01 1.00 1.00 1.00 1.00 1.00 1.00 

Polish_5 13.41 1.00 1.00 1.00 1.00 1.00 1.00 

Qualitative 1.34 1.00 1.00 1.00 1.00 1.00 1.00 

The PAKDD 4.12 1.00 1.00 1.00 1.00 1.00 1.00 

Considering the experiments performed, we can conclude that oversampling methods tend to 

obtain perfect balances. However, these results are at the cost of artificially increasing the cardinality 

of the data sets. The next section will analyze how these results impact the performance of classifiers 

of the associative approach, and if this computational cost is justified in results of better performance. 

Below, the results of the undersampling algorithms are offered in Table 7, for each of the datasets 

analyzed. The cases in which the classes were inverted are shown in italics (the minority class became 

the majority), and in bold the good results (those with an imbalance closer to 1).  

Table 7. Imbalance ratio for undersampling algorithms. 

Datasets Original CNN CNNTL NCL OSS RUS SBC TL 

Australian 1.25 3.37 8.59 1.35 5.50 1.00 2.22 1.04 

Default credit 3.52 1.13 2.24 1.78 1.21 1.00 - 2.69 

German 2.33 1.12 2.96 1.08 1.75 1.00 1.96 1.68 

Give me credit 13.96 1.59 1.36 10.84 1.39 1.00 2.00 12.95 

Iranian 19.00 2.37 1.47 14.53 2.18 1.00 - 17.91 

Japanese 1.26 3.45 9.07 1.33 5.30 1.00 1.96 1.01 

Polish_1 24.93 2.53 1.40 21.14 2.50 1.00 - 23.70 

Polish_2 24.43 2.62 1.41 20.31 2.56 1.00 - 22.97 

Polish_3 20.22 2.58 1.33 16.33 2.45 1.00 - 18.86 
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Polish_4 18.01 2.38 1.25 14.42 2.22 1.00 - 16.72 

Polish_5 13.41 1.84 1.15 10.23 1.62 1.00 - 12.28 

Qualitative 1.34 6.36 5.85 1.28 6.27 1.00 - 1.32 

The PAKDD 4.12 1.51 1.15 2.41 1.41 1.00 2.00 3.84 

The RUS method obtained a perfectly balanced dataset, in all cases. CNN obtained good results 

for five datasets, but inverting the classes in two of them. It also has an interesting behavior for the 

Australian, Japanese and Qualitative datasets (original IR of 1.25, 1.26 and 1.34, respectively). In these 

datasets, the CNN method inverted the classes, and increase the imbalance ratio (to 3.37, 3.45 and 

6.36, respectively). In the remaining datasets, CNN obtained IR from 1.12 to 2.62.  

The CNNTL algorithm maintain the behavior of CNN in the Australian, Japanese and 

Qualitative datasets (returning IRs of 8.59, 9.07 and 5.85, respectively). In the remaining datasets, is 

had good performances (from 1.15 to 2.96), but inverting the classes in the Default credit, German 

and Give me credit datasets.  

NCL algorithm obtained good results for the datasets having an original imbalance ratio lover 

than four, and it did not obtain a balanced dataset in the remaining ones. It also inverted the classes 

in the Australian, Japanese and Qualitative datasets.  

The OSS algorithm had the same behavior of CNN and CNNTL in the Australian, Japanese and 

Qualitative datasets (with IRs of 5.50, 5.30 and 6.27, respectively). In the remaining datasets, it 

obtained good results (IRs from 1.21 to 2.56). Same as CNNTL, it inverted the classes in the Default 

credit, German and Give me credit datasets.  

SBC algorithm had a disastrous behavior for the financial data. It inverted the classes in all 

datasets, and in nine cases it deleted the entire majority class (results marked with -). TL had good 

results for the almost balanced datasets (IR < 2), and did not obtained balanced results in the 

remaining data.  

In general, the balancing methods evaluated but RUS had a poor performance. CNN, CNNTL 

and OSS obtained highly imbalanced results for almost balanced data (IR < 2). We consider that those 

methods should not be applied to balanced or near balanced data. For the remaining datasets, their 

results range from 1.12 to 2.62 (CNN), 1.15 to 2.96 (CNNTL) and 1.21 to 2.56 (OSS). On the other hand, 

the NCL algorithm showed good results for datasets having IR<4, and bad results for the remaining 

datasets.  

In addition, all the compared algorithms but RUS inverted the classes in several datasets 

(converting the majority class into the minority one). 

In the following, the results of the hybrid algorithms are offered in Table 8, for each of the 

datasets analyzed in the present investigation. The cases in which the classes were invested are shown 

in italics (the minority class became the majority), and in bold the good results (those with an 

imbalance closer to 1).  

Table 8. Imbalance ratio for hybrid algorithms. 

Datasets SMOTE-ENN SMOTE-TL SPIDER SPIDER2 Original 

Australian 1.03 1.31 1.17 1.49 1.25 

Default credit 1.39 1.50 1.45 1.02 3.52 

German 1.19 1.66 1.06 1.30 2.33 

Give me credit 1.13 1.17 4.22 2.62 13.96 

Iranian 1.18 1.14 6.18 3.89 19.00 

Japanese 1.02 1.28 1.15 1.46 1.26 

Polish_1 1.24 1.19 6.87 4.14 24.93 

Polish_2 1.28 1.21 6.49 3.84 24.43 

Polish_3 1.32 1.26 5.50 3.31 20.22 

Polish_4 1.30 1.24 5.08 3.13 18.01 

Polish_5 1.29 1.25 3.98 2.51 13.41 

Qualitative 1.01 1.01 1.29 1.31 1.34 
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The PAKDD 1.33 1.16 1.64 1.05 4.12 

SMOTE-ENN and SMOTE-TL algorithms obtained very good balances in all cases (IRs from 1.01 

to 1.66). SPIDER and SPIDER2 algorithms obtained good results for the datasets having an imbalance 

ratio lower than four, and bad results in the remaining datasets.  

However, SPIDER2 algorithm obtained better results than SPIDER for the datasets having high 

imbalance (IR > 4). The IRs for SPIDER2 range from 2.51 to 4.14, while the ones of SPIDER range from 

3.98 to 6.87.  

In addition, we made a diagram summarizing some of the main characteristics of the compared 

methods (Figure 4). We include some of the positive and negative characteristics, according to the 

results obtained for instance sampling. 

 

Figure 4. Characteristics of the compared methods. 

Considering the experiments performed, we can conclude that some hybrid methods tend to 

obtain good balances; however, these results are at the expense in many cases, of inverting the 

majority class making it a minority. The next section will analyze how these results impact the 

performance of classifiers of the associative approach, and if this computational cost is justified in 

results of better performance.  

5.2. Impact of the Sampling Algorithms in the Performance of Associative Classifiers 

This section evaluates the impact of the results obtained by the different data balancing 

algorithms, in the performance of associative classifiers. For each of the datasets, after applying the 

balancing algorithms, the performance (Area under the ROC Curve) of four associative classifiers 

HACT, ED, NAC and SNDAM was calculated. 

5.2.1. Impact of the Sampling Algorithms on the Performance of Associative Classifiers 

The AUC results for the HACT classifier are presented in Tables 9–11 below. The good results 

(AUC improvements) are highlighted in bold, while the results that present less AUC than the 

original set (imbalanced) are underlined. 
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Table 9. AUC for HACT classifier after oversampling algorithms. 

Datasets Original ADASYN ADOMS SMOTE-BL ROS SMOTE-SL SMOTE 

Australian 0.59 0.59 0.59 0.59 0.61 0.59 0.60 

Default credit 0.95 0.96 0.96 0.96 0.96 0.96 0.97 

German 0.64 0.63 0.64 0.64 0.64 0.64 0.64 

Give me credit 0.63 0.63 0.60 0.63 0.64 0.63 0.62 

Iranian 0.61 0.60 0.61 0.60 0.61 0.60 0.60 

Japanese 0.64 0.65 0.64 0.66 0.64 0.62 0.63 

Polish_1 0.70 0.65 0.66 0.62 0.65 0.64 0.66 

Polish_2 0.58 0.58 0.58 0.58 0.58 0.58 0.58 

Polish_3 0.52 0.53 0.52 0.51 0.52 0.53 0.52 

Polish_4 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

Polish_5 0.53 0.52 0.52 0.53 0.52 0.52 0.52 

Qualitative 0.55 0.55 0.55 0.55 0.55 0.56 0.55 

The PAKDD 0.62 0.62 0.62 0.62 0.62 0.62 0.62 

Table 10. AUC for HACT classifier after undersampling algorithms. 

Datasets Original CNNTL NCL OSS RUS SBC TL 

Australian 0.59 0.58 0.59 0.57 0.59 0.64 0.59 

Default credit 0.95 0.89 0.95 0.88 0.96 - 0.95 

German 0.64 0.64 0.63 0.64 0.64 0.50 0.64 

Give me credit 0.64 0.62 0.63 0.61 0.63 0.64 0.63 

Iranian 0.61 0.61 0.61 0.61 0.61 - 0.61 

Japanese 0.64 0.64 0.65 0.67 0.65 0.50 0.64 

Polish_1 0.66 0.62 0.61 0.61 0.66 - 0.62 

Polish_2 0.58 0.58 0.58 0.58 0.58 - 0.58 

Polish_3 0.52 0.50 0.52 0.51 0.51 - 0.52 

Polish_4 0.50 0.49 0.50 0.50 0.50 - 0.50 

Polish_5 0.53 0.52 0.53 0.52 0.53 - 0.53 

Qualitative 0.55 0.55 0.56 0.55 0.56 - 0.55 

The PAKDD 0.62 0.63 0.62 0.63 0.62 0.53 0.63 

Table 11. AUC for HACT classifier after hybrid algorithms. 

Datasets Original SMOTE-ENN SMOTE-TL SPIDER2 SPIDER 

Australian 0.59 0.60 0.57 0.59 0.59 

Default credit 0.95 0.96 0.96 0.95 0.95 

German 0.64 0.63 0.63 0.62 0.63 

Give me credit 0.63 0.63 0.63 0.63 0.63 

Iranian 0.61 0.61 0.61 0.61 0.61 

Japanese 0.64 0.64 0.65 0.65 0.65 

Polish_1 0.70 0.65 0.62 0.60 0.62 

Polish_2 0.58 0.58 0.58 0.58 0.58 

Polish_3 0.52 0.52 0.52 0.53 0.52 

Polish_4 0.50 0.50 0.50 0.50 0.50 

Polish_5 0.53 0.52 0.52 0.52 0.53 

Qualitative 0.55 0.56 0.56 0.55 0.55 

The PAKDD 0.62 0.62 0.62 0.62 0.63 

The oversampling algorithms had slight drops and increases in the classifier performance, but 

no clear advantage was shown in the results. However, to determine if these differences in 

performance are significant or not, statistical tests were applied (Section 5.3).  
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A similar behavior was observed for undersampling algorithms, having slight drops and 

increases in the classifier performance, but with no clear advantages. Due to the SBC algorithm 

deleted the majority class in several datasets, its results in such data were not computed. Again, to 

determine if these differences in performance are significant or not, statistical tests were applied 

(Section 5.3).  

As can be seen, the differences in performance for the HACT classifier were obtained in a few 

datasets, and never exceeded the original AUC by more than 2%. These results point to the 

inefficiency of the sampling algorithms for the improvement of this classifier. 

Similarly, for the oversampling and hybrid algorithms, the slight improvements in performance 

in some datasets do not justify, in the opinion of the authors, the increase in the cardinality of the 

datasets. 

5.2.2. Impact on the performance of the Extended Gamma Classifier 

The AUC results for the Extended Gamma classifier are presented in Tables 12–14 below. The 

good results (AUC improvements) are highlighted in bold, while the results that present less AUC 

than the original set (imbalanced) are underlined. 

Table 12. AUC for the Extended Gamma classifier after oversampling algorithms. 

Datasets Original ADASYN ADOMS SMOTE-BL ROS SMOTE-SL SMOTE 

Australian 0.84 0.85 0.83 0.85 0.83 0.83 0.83 

Default credit 0.99 0.98 0.99 0.97 0.99 0.99 0.99 

German 0.67 0.63 0.61 0.64 0.67 0.67 0.64 

Give me credit 0.68 0.67 0.54 0.67 0.69 0.69 0.65 

Iranian 0.59 0.51 0.50 0.52 0.59 0.59 0.51 

Japanese 0.68 0.63 0.57 0.58 0.67 0.64 0.63 

Polish_1 0.82 0.85 0.83 0.85 0.82 0.82 0.82 

Polish_2 0.57 0.55 0.50 0.60 0.61 0.58 0.61 

Polish_3 0.76 0.50 0.50 0.50 0.76 0.58 0.50 

Polish_4 0.71 0.50 0.50 0.50 0.71 0.55 0.50 

Polish_5 0.71 0.50 0.50 0.50 0.72 0.62 0.50 

Qualitative 0.75 0.50 0.50 0.50 0.75 0.67 0.50 

The PAKDD 0.79 0.50 0.50 0.51 0.78 0.71 0.50 
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Table 13. AUC for the Extended Gamma classifier after undersampling algorithms. 

Datasets Original CNNTL NCL OSS RUS SBC TL 

Australian 0.84 0.84 0.87 0.84 0.83 0.84 0.85 

Default credit 0.99 0.94 0.99 0.94 0.99 - 0.99 

German 0.67 0.69 0.66 0.68 0.67 0.53 0.66 

Give me credit 0.68 0.68 0.68 0.69 0.68 0.67 0.70 

Iranian 0.59 0.60 0.59 0.60 0.59 - 0.59 

Japanese 0.68 0.70 0.68 0.69 0.67 0.50 0.68 

Polish_1 0.82 0.85 0.86 0.83 0.82 - 0.85 

Polish_2 0.61 0.60 0.60 0.61 0.61 - 0.61 

Polish_3 0.76 0.76 0.75 0.74 0.75 - 0.76 

Polish_4 0.71 0.68 0.71 0.69 0.70 - 0.71 

Polish_5 0.71 0.72 0.71 0.72 0.71 - 0.71 

Qualitative 0.75 0.73 0.75 0.73 0.74 - 0.75 

The PAKDD 0.79 0.78 0.79 0.79 0.79 0.55 0.78 

Table 14. AUC for Extended Gamma classifier after hybrid algorithms. 

Datasets Original SMOTE-ENN SMOTE-TL SPIDER2 SPIDER 

Australian 0.84 0.83 0.85 0.86 0.85 

Default credit 0.99 1.00 1.00 0.98 0.98 

German 0.67 0.65 0.65 0.65 0.65 

Give me credit 0.68 0.69 0.69 0.68 0.68 

Iranian 0.59 0.51 0.51 0.59 0.59 

Japanese 0.68 0.63 0.63 0.67 0.67 

Polish_1 0.82 0.82 0.85 0.87 0.86 

Polish_2 0.57 0.56 0.57 0.60 0.61 

Polish_3 0.76 0.50 0.50 0.76 0.76 

Polish_4 0.71 0.50 0.50 0.71 0.71 

Polish_5 0.71 0.50 0.50 0.71 0.72 

Qualitative 0.75 0.50 0.50 0.75 0.74 

The PAKDD 0.79 0.50 0.50 0.80 0.80 

For the Extended Gamma classifier, the results of oversampling algorithms were similar to those 

obtained by the HACT classifier. There is no clear advantage of applying the oversampling 

algorithms, in the performance of the classifier. 

For the undersampling algorithms, there is an improvement of classifier performance after 

applying OSS and CNNTL in six and five of the compared datasets, respectively. To determine if 

these differences in performance are significant or not, statistical tests were applied (Section 5.3). 

For the Extended Gamma classifier, the hybrid algorithms showed a subtle improvement in 

performance in some datasets (ex. Australian, Default credit, Give me credit, Polish_1 and Polish_2). 

In the remaining of the datasets, differences can be seen in favor of the AUC are less than 1%. 

However, the SMOTE-ENN and SMOTE-TL algorithms had very unfavorable results in bankruptcy 

detection, evidencing a loss of more than 20% of AUC, with respect to the original. 

Same as for the HACT classifier, in the case of the Extended Gamma classifier, for the over-

sampling algorithms, the slight improvements in performance obtained do not justify, in the authors’ 

criteria, the increase in the cardinality of datasets. 

5.2.3. Impact on the performance of the NAC Classifier 

The AUC results for the NAC classifier are presented below, in Tables 15–17. The good results 

(AUC improvements) are highlighted in bold, while the results that present less AUC than the 
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original set (imbalanced) are underlined. The oversampling algorithms outperformed the results of 

using the original data in just five datasets. In all of them, the AUC improvements were of 1% only. 

Considering that oversampling algorithms increase the computational complexity by augmented the 

number of instances, we consider that its potential benefits for AUC do not justify its added 

complexity.  

Table 15. AUC for NAC classifier after oversampling algorithms. 

Datasets Original ADASYN ADOMS SMOTE-BL ROS SMOTE-SL SMOTE 

Australian 0.83 0.83 0.84 0.84 0.84 0.84 0.83 

Default credit 0.99 0.98 1.00 0.98 0.99 0.99 0.99 

German 0.67 0.65 0.67 0.67 0.67 0.66 0.67 

Give me credit 0.69 0.69 0.68 0.68 0.70 0.68 0.69 

Iranian 0.61 0.59 0.60 0.61 0.61 0.60 0.59 

Japanese 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

Polish_1 0.84 0.84 0.84 0.84 0.83 0.84 0.83 

Polish_2 0.60 0.61 0.61 0.61 0.61 0.61 0.61 

Polish_3 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

Polish_4 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

Polish_5 0.50 0.50 0.50 0.50 0.51 0.50 0.50 

Qualitative 0.53 0.51 0.52 0.50 0.53 0.50 0.51 

The PAKDD 0.62 0.59 0.62 0.60 0.62 0.59 0.60 

Table 16. AUC for NAC classifier after undersampling algorithms. 

Datasets Original CNNTL NCL OSS RUS SBC TL 

Australian 0.83 0.84 0.83 0.83 0.84 0.82 0.83 

Default credit 0.99 0.94 0.99 0.94 0.99 - 0.99 

German 0.67 0.65 0.58 0.67 0.67 0.52 0.57 

Give me credit 0.69 0.64 0.68 0.68 0.69 0.68 0.69 

Iranian 0.61 0.53 0.68 0.54 0.61 - 0.62 

Japanese 0.50 0.50 0.50 0.49 0.54 0.50 0.50 

Polish_1 0.83 0.83 0.83 0.81 0.85 - 0.83 

Polish_2 0.61 0.55 0.61 0.59 0.59 - 0.61 

Polish_3 0.50 0.50 0.50 0.50 0.52 - 0.50 

Polish_4 0.50 0.50 0.52 0.51 0.50 - 0.50 

Polish_5 0.50 0.49 0.55 0.50 0.50 - 0.53 

Qualitative 0.53 0.54 0.53 0.53 0.52 - 0.54 

The PAKDD 0.62 0.50 0.65 0.52 0.50 0.50 0.57 

Table 17. AUC for NAC classifier after hybrid algorithms. 

Datasets Original SMOTE-ENN SMOTE-TL SPIDER2 SPIDER 

Australian 0.83 0.84 0.82 0.82 0.83 

Default credit 0.99 0.98 1.00 0.98 0.98 

German 0.67 0.60 0.58 0.51 0.51 

Give me credit 0.69 0.70 0.70 0.68 0.69 

Iranian 0.61 0.73 0.65 0.61 0.62 

Japanese 0.50 0.50 0.50 0.50 0.50 

Polish_1 0.84 0.83 0.84 0.82 0.83 

Polish_2 0.60 0.61 0.61 0.61 0.61 

Polish_3 0.50 0.50 0.50 0.51 0.50 

Polish_4 0.50 0.50 0.50 0.50 0.50 

Polish_5 0.50 0.53 0.52 0.51 0.50 
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Qualitative 0.53 0.53 0.52 0.53 0.52 

The PAKDD 0.62 0.53 0.56 0.61 0.61 

According to undersampling algorithms, the best results were obtained by NCL and RUS, 

improving the AUC in four datasets. However, as it can be seen, on numerous occasions, using 

undersampling techniques negatively impacts the performance of the NAC classifier.  

As can be seen in Table 17, the hybrid algorithms showed a slight improvement in the 

performance of the classifier in seven of the analyzed databases. The greatest improvement was 

obtained in the Iranian dataset, where the Area under the ROC Curve increased from 0.61 to 0.73, 

with the SMOTE-ENN algorithm. In the rest of the datasets analyzed, at least, strong falls were not 

observed in terms of classification performance.  

For the NAC classifier, the data balancing algorithms did not show an obvious improvement 

over the original performance. It should be noted that the algorithms, in addition to involving a 

computational cost, in hybrid cases and oversampling, also increase the cardinality of the datasets.  

5.2.4. Impact on the performance of the SNDAM Classifier 

The AUC results for the SNDAM classifier are presented below, in Tables 18–20. The good 

results (AUC improvements) are highlighted in bold, while the results that present less AUC than 

the original set (imbalanced) are underlined. 

Table 18. AUC for SNDAM classifier after oversampling algorithms. 

Datasets Original ADASYN ADOMS SMOTE-BL ROS SMOTE-SL SMOTE 

Australian 0.80 0.79 0.79 0.81 0.80 0.80 0.80 

Default credit 1.00 1.00 0.99 1.00 1.00 1.00 1.00 

German 0.61 0.62 0.61 0.62 0.61 0.61 0.62 

Give me credit 0.58 0.60 0.59 0.62 0.58 0.59 0.58 

Iranian 0.57 0.58 0.59 0.59 0.57 0.58 0.59 

Japanese 0.65 0.67 0.66 0.66 0.65 0.65 0.68 

Polish_1 0.82 0.82 0.83 0.83 0.82 0.82 0.82 

Polish_2 0.91 0.91 0.91 0.90 0.91 0.78 0.91 

Polish_3 0.54 0.58 0.55 0.56 0.54 0.54 0.57 

Polish_4 0.52 0.52 0.53 0.52 0.52 0.52 0.53 

Polish_5 0.52 0.55 0.54 0.54 0.52 0.53 0.55 

Qualitative 0.54 0.59 0.56 0.56 0.54 0.54 0.57 

The PAKDD 0.58 0.62 0.60 0.61 0.58 0.58 0.61 

Table 19. AUC for SNDAM classifier after undersampling algorithms. 

Datasets Original CNNTL NCL OSS RUS SBC TL 

Australian 0.80 0.71 0.81 0.77 0.80 0.81 0.82 

Default credit 1.00 0.97 1.00 0.96 0.99 - 1.00 

German 0.61 0.59 0.65 0.62 0.62 0.52 0.64 

Give me credit 0.58 0.58 0.63 0.59 0.59 0.62 0.61 

Iranian 0.57 0.57 0.62 0.58 0.63 - 0.60 

Japanese 0.65 0.72 0.68 0.68 0.70 0.50 0.67 

Polish_1 0.82 0.70 0.81 0.79 0.82 - 0.84 

Polish_2 0.91 0.78 0.81 0.81 0.80 - 0.85 

Polish_3 0.54 0.56 0.56 0.58 0.65 - 0.54 

Polish_4 0.52 0.55 0.53 0.55 0.60 - 0.53 

Polish_5 0.52 0.58 0.54 0.56 0.60 - 0.53 

Qualitative 0.54 0.57 0.58 0.57 0.62 - 0.56 

The PAKDD 0.58 0.62 0.65 0.61 0.68 0.53 0.61 
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Table 20. AUC for SNDAM classifier after hybrid algorithms. 

Datasets Original SMOTE-ENN SMOTE-TL SPIDER2 SPIDER 

Australian 0.80 0.85 0.81 0.84 0.84 

Default credit 1.00 1.00 1.00 1.00 1.00 

German 0.61 0.64 0.64 0.64 0.64 

Give me credit 0.58 0.64 0.64 0.61 0.60 

Iranian 0.57 0.65 0.64 0.59 0.58 

Japanese 0.65 0.66 0.68 0.65 0.65 

Polish_1 0.82 0.87 0.84 0.85 0.85 

Polish_2 0.91 0.91 0.77 0.84 0.86 

Polish_3 0.54 0.59 0.60 0.54 0.54 

Polish_4 0.52 0.54 0.54 0.52 0.52 

Polish_5 0.52 0.55 0.55 0.53 0.53 

Qualitative 0.54 0.62 0.61 0.54 0.54 

The PAKDD 0.58 0.67 0.67 0.59 0.59 

Unlike the previously analyzed classifiers, the SNDAM showed an increase in AUC in 11 of the 

13 compared datasets, after applying oversampling algorithms. These results point to the benefits of 

using such sampling techniques to increase SNDAM performance. However, to establish whether 

such AUC differences are significant or not, Section 5.3 uses statistical test.  

In addition, undersampling algorithms also seem to increase the AUC of SNDAM, again for 11 

of the 13 datasets. NCL, OSS, RUS and TL showed good results, although the increases in AUC were 

small (1%–4%) except for the Japanese dataset (7%).  

The hybrid sampling algorithms obtained the best results, being able to increase SNDAM 

performance in 12 of the 13 datasets (SMOTE-ENN and SMOTE-TL) and in 8 datasets (SPIDER and 

SPIDER2). For the SNDAM classifier, the data balancing algorithms showed an evident improvement 

with respect to the original performance, unlike the other associative classifiers analyzed. Again, next 

section will address the statistical tests to determine if the differences in performance founded are 

significant or not. 

5.3. Statistical Analysis 

To establish whether the differences in the AUC founded in the previous section are significant 

or not, statistical tests were carried out. 

The Friedman tests applied did not reject the hypothesis of equal performance when comparing 

the AUC of the balancing methods for the HACT, with p-values of 0.9799 for oversampling, 0.2116 

for undersampling, and 0.9212 for hybrid algorithms. In this case, it is possible to conclude, with 95% 

certainty, that using class balancing methods DOES NOT improve the performance of HACT 

classifier, in imbalanced datasets, belonging to the financial field. 

The test also did not reject the null hypothesis for oversampling and hybrid algorithms for NAC 

classifier (p-values of 0.2853 and 0.4980, respectively). For undersampling algorithms, the test did 

reject the null hypothesis, with a p-value of 0.0207. In the Friedman test, the best ranked algorithm 

was the original classifier, without instance sampling. For the undersampling algorithms, we applied 

the Holm’s test (Table 21). Holm’s procedure rejects those hypotheses that have an unadjusted p-

value ≤ 0.01.  
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Table 21. Results of the Holm test comparing the performance of the NAC classifier after 

undersampling algorithms. 

i Algorithm z p Holm 

6 SBC 2.768916 0.005624 0.008333 

5 CNNTL 1.861075 0.062734 0.010000 

4 OSS 1.770291 0.076679 0.012500 

3 TL 0.408529 0.682886 0.016667 

2 NCL 0.136176 0.891682 0.025000 

1 RUS 0.045392 0.963795 0.050000 

As shown by the test, we can conclude with a 95% of certainty, that the sampling algorithms but 

SBC, DID NOT improve the performance of the NAC classifier, in financial imbalanced data. In 

addition, SBC algorithm decreases the NAC performance.  

Regarding the Extended Gamma classifier, the Friedman’s tests did reject the null hypothesis of 

equal performance for oversampling, undersampling and hybrid algorithms. The corresponding p-

values were 0.000048, 0.015356 and 0.013584, respectively. The best ranked algorithms were ROS, TL 

and SPIDER2. In these cases, post-hoc tests were performed to determine among which algorithms 

the differences were. Tables 22–24 show the results of the tests applied for oversampling, 

undersampling and hybrid methods, respectively. 

Table 22. Results of the Holm test comparing the performance of the Extended Gamma classifier after 

oversampling algorithms. The test rejects the hypothesis having an unadjusted p-value ≤ 0.025. 

i Algorithm z p Holm 

6 ADOMS 3.994502 0.000065 0.008333 

5 SMOTE 3.041268 0.002356 0.010000 

4 ADASYN 2.995876 0.002737 0.012500 

3 SMOTE-BL 2.496564 0.01254 0.016667 

2 SMOTE-SL 0.998625 0.317976 0.025000 

1 Original 0.136176 0.891682 0.050000 

Table 23. Results of the Holm test comparing the performance of the Extended Gamma classifier after 

undersampling algorithms. The test rejects the hypothesis having an unadjusted p-value ≤ 0.01. 

i Algorithm z p Holm 

6 SBC 3.404405 0.000663 0.008333 

5 RUS 1.361762 0.173273 0.010000 

4 CNNTL 0.817057 0.413896 0.012500 

3 OSS 0.635489 0.52511 0.016667 

2 Original 0.499313 0.617559 0.025000 

1 NCL 0.272352 0.785351 0.05 

Table 24. Results of the Holm test comparing the performance of the Extended Gamma classifier after 

hybrid algorithms. The test rejects the hypothesis having an unadjusted p-value ≤ 0.016667. 

i Algorithm z p Holm 

4 SMOTE-ENN 2.790782 0.005258 0.012500 

3 SMOTE-TL 2.10859 0.034980 0.016667 

2 Original 0.496139 0.619796 0.025000 

1 SPIDER 0.186052 0.852404 0.050000 

The ROS algorithm had no significant differences with respect to the original classifier, nor with 

the SMOTE-SL algorithm. Then, we can conclude within a 95% confidence, that using oversampling 
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algorithms DID NOT increase the performance of the Extended Gamma classifier, using imbalanced 

financial data.  

The best ranked undersampling algorithm, TL, had no significant difference in performance 

with none of the remaining undersampling algorithms but SBC, nor with respect using the original 

imbalanced dataset. The SBC algorithm was indeed significantly worse than TL, for the Extended 

Gamma Classifier performance. Again, we can conclude within a 95% confidence, that using 

undersampling algorithms DID NOT increase the performance of the Extended Gamma classifier, 

using imbalanced financial data. 

The best ranked hybrid algorithm SPIDER2, had no significant difference in performance with 

SPIDER and SMOTE-TL nor with respect using the original imbalanced dataset. The SMOTE-ENN 

algorithm was significantly worse than SPIDER2, for the Extended Gamma classifier performance. 

Again, we can conclude within a 95% confidence, that using hybrid algorithms DID NOT increase 

the performance of the Extended Gamma classifier, using imbalanced financial data. 

With respect the SNDAM classifier, the best ranked algorithms according to the Friedman tests 

were SMOTE, RUS and SMOTE-ENN. The results of the corresponding Holm’s test for oversampling, 

undersampling and hybrid algorithms are showed in Tables 25–27. 

Table 25. Results of the Holm test comparing the performance of the SNDAM classifier after 

oversampling algorithms. The test rejects the hypothesis having an unadjusted p-value ≤ 0.016667. 

i Algorithm z p Holm 

6 Original 2.995876 0.002737 0.008333 

5 ROS 2.995876 0.002737 0.010000 

4 SMOTE-SL 2.814308 0.004888 0.012500 

3 ADOMS 1.225586 0.220355 0.016667 

2 ADASYN 0.22696 0.820455 0.025000 

1 SMOTE-BL 0.22696 0.820455 0.050000 

Table 26. Results of the Holm test comparing the performance of the SNDAM classifier after 

undersampling algorithms. The test rejects the hypothesis having an unadjusted p-value ≤ 0.01. 

i Algorithm z p Holm 

6 SBC 2.950484 0.003173 0.008333 

5 CNNTL 2.314995 0.020613 0.010000 

4 Original 2.088035 0.036795 0.012500 

3 OSS 1.679506 0.093053 0.016667 

2 TL 0.726273 0.467671 0.025000 

1 NCL 0.090784 0.927664 0.050000 

Table 27. Results of the Holm test comparing the performance of the SNDAM classifier after hybrid 

algorithms. The test rejects the hypothesis having an unadjusted p-value≤0.05. 

i Algorithm z p Holm 

4 Original 4.279198 0.000019 0.012500 

3 SPIDER 2.914816 0.003559 0.016667 

2 SPIDER2 2.790782 0.005258 0.025000 

1 SMOTE-TL 1.17833 0.238665 0.050000 

The SMOTE algorithm did not have significant differences with respect the SMOTE-BL, 

ADASYN and ADOMS algorithms, due to the null hypothesis were not rejected for such cases. 

However, SMOTE showed a significantly better performance than SMOTE-SL, ROS and the original 

classifier without instance selection. The statistical tests allow us to state that using oversampling 

techniques such as SMOTE, DID increase the Area under the ROC curve of the SNDAM classifier, 
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over imbalanced financial data. Such improvement came with the additional computational cost of 

creating artificial instances and therefore increasing the cardinality of the datasets. 

The best ranked undersampling algorithm, RUS, had no significant difference in performance 

with none of the remaining undersampling algorithms but SBC, nor with respect using the original 

imbalanced dataset. Again, we can conclude within a 95% confidence, that using undersampling 

algorithms DID NOT increase the performance of the SNDAM classifier, using imbalanced financial 

data. 

The Holm’s test did not found significant differences in performance between the SMOTE-ENN 

and SMOTE-TL algorithms. However, the test did found SMOTE-ENN being significantly better than 

SPIDER2, SPIDER and the original classifier without instance sampling. Then, can conclude within a 

95% confidence, that using oversampling algorithms such as SMOTE-ENN DID increase the 

performance of the SNDAM classifier, using imbalanced financial data. 

From the experiments performed, it is possible to establish that the HACT, Extended Gamma 

and NAC classifiers DO NOT benefit from data balancing. On the other hand, the SNDAM classifier 

DOES obtain improvements in its performance by balancing the datasets using oversampling (as 

SMOTE) and hybrid (as SMOTE-ENN) algorithms. Undersampling algorithms DO NOT improve the 

performance of the SNDAM classifier over imbalanced financial data.  

6. Conclusions and Future Works 

In this paper, an in-depth study was carried out on data balancing techniques, as well as their 

application in financial data, and their impact in the performance of associative classifiers. This study 

allowed us to reach the following conclusions: 

1. About sampling methods: 

a. All of the oversampling methods tested obtained balanced datasets, although at the 

cost of increasing the cardinality of the data. 

b. The undersampling methods analyzed (CNN, CNNTL, NCL, OSS, SBC and TL), but 

RUS, fail to find balanced data sets, when the imbalance ratio of the original set was 

greater than 4.0. However, for moderate imbalance ratios (less than 4.0), the NCL and 

TL algorithms got good results. 

c. Systematically, the CNN, CNNTL, OSS and SBC algorithms reversed the amounts of 

instances in the classes in the datasets, making the majority class a minority. 

d. The SBC algorithm had a very bad behavior in the face of financial data, since it 

systematically eliminated all the instances of the majority class. 

e. Both SMOTE-ENN and SMOTE-TL obtained good results according to data balancing. 

f. SPIDER2 obtained better balanced datasets than SPIDER. 

2. About the impact of the sampling in the associative classifiers: 

a. The HACT, Extended Gamma and NAC classifiers do not benefit from financial data 

balancing. 

b. Undersampling algorithms do not benefit the SNDAM classifier. However, 

oversampling and hybrid methods do increase the performance of SNDAM over 

imbalanced financial data. 

c. There is a significant improvement, within a 95% of confidence, in the Area under the 

ROC curve of SNDAM while sampling imbalanced financial data by SMOTE and 

SMOTE-ENN. 

Considering the above, it is proposed as future work of the research: 

1. To design undersampling algorithms that are robust to high imbalance ratios, in order to solve 

the limitations founded in the evaluated algorithms. 

2. To apply the proposed methodology to other supervised classifiers, for instance Deep Neural 

Networks and other algorithms related with Deep Learning. 
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3. To choose other datasets, related to areas of interest other than financial, in order to perform 

experiments similar to those presented in this paper. 
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