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Abstract: With the advent of pile-less shared bicycles, the techniques initially used for public bicycle
dispatching were unable to fulfill the routine dispatch tasks, resulting in constant bicycle crowding.
In this paper, to alleviate the mess of shared bicycles, we propose a hybrid dispatching algorithm
based on bicycle demand data. We take the bicycle stations’ imbalance as an optimization index and
use greedy ideas to ensure that after each dispatch all stations get the smallest imbalance. In addition,
it is suggested that two assessment metrics evaluate the efficiency of the dispatching technique from
the users and operators’ perspectives. It is shown that the proposed dispatching algorithm performs
better in terms of user satisfaction and operator revenue, and is less affected by bicycle distribution
compared with the traditional manual scheduling algorithm.

Keywords: IoSB; demand forecast; ARMA; bicycle dispatching; greedy strategy

1. Introduction

With the development and application of advanced technologies such as communication and
microelectronics, the concept of smart city arises at the right moment. Smart city has a much broader
definition, which includes almost every aspect in human beings’ life, e.g., smart medical, smart energy,
smart traffic, and smart home. As a form of intelligent transport, the shared bicycle, also known in
some references as bicycle-sharing [1–4], is about 55 years old and has four generations. The shared
bicycle is thriving in smart cities especially in recent years and most of them have been successful.
There are three clear benefits on the shared bicycle [5], as follows:

• It is an utter green path that can reduce environmental effects, regulate air pollution, and
effectively save money. There are no exhaust emissions that are dangerous for the atmosphere
without fossil fuel consumption. Since cycling is a form of physical practice, both the community
and users benefit from the shared bicycle.

• For the last mile journey, it provides the perfect solution. Actually, on long-distance journeys,
many citizens do not prefer cycling today. However, given that, in most instances, the range of
metro or bus stations and commercial or residential communities is not that long, shared bicycles
are most cost-efficient and suitable for people for short distances.

• The urban market is a typical example of public resource-shared operation, capable of improving
the cycling usage rate. Today, increasing numbers of people favor shared bicycles than their
conventional private bicycles. The traffic pressure will, therefore, be helpful.
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Referring to [5], Shen et al. first divided the development process of the shared bicycle into four
phases, and suggested the Internet of Shared Bicycle (IoSB) concept. With the advent of many new
technologies such as QR Code or LTE, the fourth-generation connected bicycle [6,7], called one form of
intelligent hardware, has evolved so rapidly over the past few years. Most significantly, the change
from the pile-parking mode to the pile-less parking mode of shared bicycles is a new attempt and
also a double-edged sword. Great convenience comes at the expense of unnecessary supply of shared
bicycles which usually manifests as too many bicycles being left unused or too few bicycles to meet
demands. Insufficient timely and reasonable bicycle scheduling trigger two extreme situations above
and may affect the social order.

To address and resolve the above-mentioned problems, this paper proposed a hybrid dispatch
scheme based on demand forecasting data. This hybrid dispatch system combines manual dispatch
and user reward dispatch. Firstly, according to the travel records of Mobike, we divided the city into
many travel zones. Afterward, we pick one of the travel areas for study in this paper and choose a
certain number of bicycle travel points in the research area using the clustering technique. Instead,
at the next time of the mutual bicycle travel point, we use Autoregressive Moving Average (ARMA) to
predict bicycle demand. Subsequently, referring to the travel point forecast data, we established the
manual and user incentive hybrid dispatch strategy based on the greedy strategy to ensure the lowest
degree of equilibrium of all bicycle travel points in the study area after each dispatch. Finally, we take
user satisfaction and total revenues of shared bicycle operators as evaluation indicators and carry out
a simulation analysis of the hybrid dispatching strategy proposed in this paper.

The key contents of this paper are structured as follows: Section 2 presents some study directions
concerning the shared bicycle at home and abroad; Section 3 illustrates the entire shared bicycle
dispatching scenario and framework; Section 4 introduces the concept of manual dispatch and
user incentive dispatching suggested in this paper respectively. Section 5 describes the setting of
experimental parameters, input data, and experimental methods, and analyzes the results of the
experiment. Lastly, Section 6 provides conclusions and future work.

2. Related Work

Since the advent of the shared bicycle, many scholars around the world have been studying
relevant questions. The authors in [5] suggested the IoSB concept, which includes the perception,
communication, application and safety layers, and showed five-layer model IoSB architecture. In IoSB,
the transition from the original pile-shared bicycle to the current pile-less sharing bicycle has many
problems to overcome, such as environmental information collection, node location, low power
communication technology, bicycle dispatching scheme, path management, etc.

IoSB is essentially a type of Wireless Sensor Networks (WSNs), and its information collection has
long been related to research. In [8], Sha et al. proposed a type of low-latency data gathering method
with multi-sink in WSNs. Network division, multi-sink, efficient sleep scheduling and the sensing
radius adjustment strategies are utilized to reduce the redundancy in network coverage and further
improve the energy efficient.

With its advantages of low energy consumption, node positioning technology in the WSN network
also has certain reference significance for IoSB. In [9], a type of energy-efficient target tracking approach
based on grids in WSNs was proposed. The concept of virtual grids and its three kinds of states
including tracking state, prepared-tracking state, and preparing-tracking state were defined to reduce
energy consumption and enhance the accuracy of node localization.

Reliable data transmission is an important guarantee for data-based applications, especially
real-time ones such as a shared bicycle. Communication efficiency is determined by the technical
norm, network topology, base station antenna sensitivity, etc. Here, are some of the communications
technologies that are commonly used in mobile networks, like the shared bicycle. LTE is the technical
standard that all existing smartphones adopt, enabling data terminals to have a faster speed of network
transmission which is ubiquitous and suitable for wide-range, high-bandwidth applications like
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IoSB [10]. However, its modules’ cost and energy consumption are too high to be applied in IoSB.
The Low-Power Wide-Area Network (LPWA) has strong penetration and is designed for applications
in complex urban environments with long communication distances [11]. Compared to existing LTE
networks, NB-IoT, as a kind of LPWA technique, has the advantages of wide coverage, low power
consumption, low module costs, and a large connection [12], and has been used in applications such
as water quality monitoring [13], smart parking [14], smart hospital [15], and shared bicycles.

Shared bicycle dispatching is crucial to rebalancing bicycles and can be separated into static
dispatch and dynamic dispatching. Static dispatching is to research the cumulative mutual bicycle
dispatch distance as a measure of optimization. In comparison, dynamic dispatching is based on
operator revenue or user riding satisfaction optimization. The dispatching route problem between static
leasing sites, which belongs to static dispatching, is studied in [16]. In conclusion, the problem of shared
bicycles’ static dispatching can be considered as a problem of path optimization, which can generally
be modeled using linear integer programming [17–19] and found using heuristic algorithms such
as Genetic Algorithm (GA) [20], Particle Swarm Optimization (PSO) [21], Ant Colony Optimization
(ACO) [22], Simulated Annealing Algorithm (SAA) [23], and so on. Dynamic dispatching pays more
attention to the current state or possible future state of the dispatching area and the surrounding region
compared with static dispatching and then makes better, more effective and far-sighted scheduling
decisions based on the current time and future state data on the map. There are a lot of cases on the
demand forecasting of the shared bicycle. For example, in [24], the author proposed a moment-based
hybrid prediction method. In that work, a fuzzy mean genetic algorithm and backpropagation network
was used to predict the future demand of a certain region of the shared bicycle. Finally, the proposed
model was verified by using the actual trip data of well-known foreign public bicycle operators. Bicycle
demand in a certain area is related to many factors, such as the distribution of infrastructure in the
region to be forecasted [25,26], ambient temperature, and sunny/rainy conditions [27], unexpected
large events like holidays or strikes [28,29], time period [30], etc.

On the other hand, the mining of data on the bicycle track supports urban design and planning.
In [31], MSRA suggested an estimated greedy-based solution to suggest the bike lane planning system,
based on Mobike’s monitor big data. In [32], the All-Pair Network Trajectory Similarity (APNTS) is
studied to identify major routes of the bicycle for public transport. Additionally, a shared bicycle can
be used to complement and connect with other public transport tools. In [33], the author used the
mutual bicycle journey track data to refine the city’s metro operating strategy.

3. Models and Preliminaries

3.1. System Models

Unlike other public transport carriers, there are no fixed stations for shared bicycles and their
location is influenced by the tidal movement of users. Because of the complexity and mass of cycling,
the distribution of shared bicycles is unbalanced and is difficult to rebalance, particularly for the shared
bicycle with no piles. The importance of a high-efficiency strategy for bicycle dispatching is as follows:

• Reduce scheduling work and time;
• Alleviate cycling mess;
• Boost users’ satisfaction with using shared bicycles.

Consider a scenario of shared bicycle system, as shown in Figure 1. With no fixed pile for parking,
we conducted a cluster analysis on all cycling travel points, and extracted the central point of the
cluster as the travel station that was illustrated by dots in Figure 1.
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Figure 1. The dispatching model.

The travel stations in Figure 1 are modeled as the vertexes in an undirected graph G = (V, E),
where V and E represent all vertex sets and edge sets in undirected Graph G, respectively (|E| ≥ 1).
The E in graph G represents the paths between the shared bicycle stations, and the weight of E
represents the relationship between the two shared bicycle points connected with them.

In addition, a two-tuple Si(t) = (numi(t), predi(t)) is used to describe the status of station i at
time t(i ∈ [0, |V| − 1]). The station status S includes two parts:

• The number of bicycles initially in station i at time t is defined as numi(t);
• The Demand of station i in next period predicted at time t is defined as predi(t).

To further describe the imbalance of station i at time t, we introduce a new parameter imbi(t) =
predi(t)− numi(t). The unbalanced station in G are divided into two types: overflow station
(imbi(t) < 0) and underflow station (imbi(t) > 0). Next, in order to alleviate unbalanced stations, we
assign the dispatching task to operator and users via hybrid dispatching scheme proposed in Section 4
to allocate the excess bicycles in overflow station to other stations that are underflow.

Firstly, we delegated some overcrowded dispatching tasks that needed to be dispatched to the
operator immediately, which are called manual dispatching. Manual dispatching is direct and fast,
which belongs to a macro level of dispatching scheme. Here, we introduce a parameter Max to
describe the overflow threshold of the station, which means when numi(t) ≥ Max, the station i needs
to be dispatched immediately by the operator. More details about manual dispatching are shown in
Section 4.

Secondly, we give users a small number of less urgent dispatching tasks and pay them back
rewards recognizing user flexibility and confusion, which are called user incentive dispatching and
is a microscopic dispatch. Whether the user recognizes the tasks of dispatching is linked to the
circumstance, time, environment, and other conditions of the user. After accepting the dispatch task,
the user can choose a midpoint near his destination to park the bicycle, whose midpoint is here
called detour_node. Taking into account the distance of the user walks, we select detour_node from the
adjacent node set of the user’s final destination. The adjacent node set of station i is defined as adj(i).
Node set adj_low(i)(t) represents the node set in the adjacent nodes of station i where imbi(t) > 0,
and is defined as adj_low(i)(t) = {n|numn(t) ≤ predn(t), n ∈ adj(i)}.

Finally, we create a discrete-time simulation system to analyze the above hybrid dispatching
strategy. In our simulation system, trip record data work as the input data and are formed as a quad
Items = {t, depart, arrive, i f _detour}, where t is the moment when the trip record occurred, depart
and arrive respectively represent the beginning and end of the trip record (depart 6= arrive). i f _detour
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refers to whether user in the trip record is willing to detour to station a around the end station i for a
constant reward costu, where a ∈ adj_low(i)(t).

3.2. Main Idea

We then work out our strategy for dispatching task allocation after model definition and develop
the corresponding performance evaluation method. First, some assumptions are given as follows
regarding the dispatching model:

• It ignores the time gap between arrival and departure of a bicycle at time t, and assumes that the
departure time of a bicycle at a travel station is unified at the beginning of time t, and then reach
the destination at the end of time t, during which the bicycle is independent of all the stations.

• It assumes that, during manual dispatching, the bicycle leaves the travel point at the beginning of
time t, and then arrives at the destination at the next moment.

• It assumes that the revenue and cost of the operator only come from three parts: the charge for
bicycle riding, the cost for manual dispatching, and the cost for user incentive dispatching.

• It assumes that the dispatching of shared bicycles is only carried out within the research region,
and will not involve places outside the research region.

The main idea of this paper is to use a reasonable dispatching task allocation strategy to rebalance
as many stations as possible. In order to achieve the above goal, we introduce the concept of overall
station imbalance IMB, which indicates the gap of bicycle’s supply and demand within all stations
and the smaller value represents the more balanced bicycle distribution in IoSB. The specific definition
is as Formula (2):

IMB(t) =
1
N

N

∑
i=1
|imbi(t)| (1)

For optimizing the IMB, the most important one is the prediction of the demand at the next
moment. Trip record is a piece of data that records the starting point, ending point, time and other
information of a trip. In our model, a quad Items is utilized to represent each trip record. The truth is
that the trip record is a type of time series, which is an important branch of statistics. In this paper,
we decided to use the ARMA model to predict the demand at the station for its prediction efficiency
and the stability of time series. In the ARMA model, time series Yt is a linear function of random error
term of its current and early period and its early period value, which can be expressed as:

Yt = φ1Yt−1 + φ2Yt−2 + ... + φpYt−p + ut − θ1ut−1 − ...− θqut−q (2)

Finally, in order to evaluate the performance of the final dispatching model, two indicators are
defined, which are total revenue for operators B and Users’ satisfaction α. The indicator B is defined
as Formula (3), which represents the operator’s net income:

B = c1 · costt − c2 · costm − c3 · costu (3)

where c1 is total number of cycling orders within the observation period [0, T− 1]; c2 is the total number
of manual dispatching; c3 is the total number of user incentive dispatching. costt is the revenue of
operator for single trip; costm is the total cost of manual dispatching; costu is the total cost of user
incentive dispatching.

Users’ satisfaction α is used to describe the extent which cycling needs are met in IoSB. In our
work, we calculate the users’ satisfaction α via the value of the percent of successful rental in all trip
records. When there is no bicycle at the station where the lease order occurs, the trip order is deemed
to be failed.
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4. Hybrid Dispatching Scheme

4.1. Manual Dispatching Scheme

In this work, manual dispatching is a macro dispatching method and can be applied primarily to
the situation where the number of bicycles in a travel station numi(t) ≥ Max. The number of bicycles
in manual dispatching can be defined as k =

⌈
numi(t)−Max

k0

⌉
, where k0 refers to the most bicycles

each manual dispatching can handle. When k > k0,
⌈

k
k0

⌉
times dispatching is needed. There are two

difficulties in manual dispatching:

• The first is to select a better dispatching endpoint in the dispatching region;
• The second is to choose the optimal route between the start and end of dispatching.

We transform the manual dispatching scenario into the following mathematical problem as shown
in Figure 2. The weight wij between station i and j which represented by edges in Figure 2 is defined
as Formula (4):

wij =
lij

imbi + imbj
+ β (4)

where lij is the distance between station i and j(i 6= j); imbi or imbj is respectively the imbalance of
station i or j, which has been defined in the previous Section 3. The parameter β is set to a constant
value to ensure that the weight wij is always greater than 0. In Figure 2, when the manual dispatching
starts to work, the system will firstly scan the global trip station and select the optimal dispatching
destination according to the strategy proposed in this paper. Then, the path with the minimum cost is
selected based on the weight wij between the start and end of dispatching. In the dispatching process,
according to the disequilibrium and other parameters of the station, the allocation of bicycles to each
station in the route is carried out.

Figure 2. Manual dispatching scheme.

(1) The selection of dispatching endpoint: As mentioned earlier in our work, we use greedy idea
to ensure that the total imbalance of station at the next moment in the future within IoSB is
minimized. Therefore, when selecting the endpoint in each manual dispatching, we can select
the station with the most imbalance in IoSB, in order to achieve a rebalancing of the station.
However, there is still a problem that needs to be considered in which bicycles in a single station
will randomly move in the R field of the station, which makes it difficult to select the endpoint for
manual dispatching. In the paper, we choose the sum of the imbalances of all stations in the range
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of R at time t from a station as the basis for selecting the endpoint of manual dispatching, which
is imbR

i (t) and its definition is shown in Formula (5):

imbR
i (t) = ∑R imbi(t) (5)

(2) The determination of dispatching path: After solving the problem of dispatching endpoints,
we need to figure out the route within manual dispatching. The truth is that the cost of manual
dispatching is mainly related to the dispatching distance and the farther dispatching distance
bring higher dispatching cost. Therefore, when seeking the optimal path, we give priority to the
imbalance and distance of the stations. The weight wij in the undirected graph that is related to
distance and imbalance of station is defined as the basis for route optimization. Finally, the Dijkstra
algorithm is used to figure out the optimal path of manual dispatching. The details of manual
dispatching are shown in Algorithm 1.

Algorithm 1 Man_dispatch(start_station, S(tn))

Input: The state information of all nodes in STG right moment S(t), the station number to be

dispatched start_station, the number of bicycles to be dispatched k.
Output: Dispatching path Path, bicycles assignment Alloca.

Initialize Path = {start_station}, t = tn, start_node = start_station, Alloca = {};
for each vertex i in G do

imbR
i (tn) = ∑R imbi(tn);

end for
end_node = i′, where imbR

i′ (tn) = max
i∈[0,N)

imbR
i (tn);

for each vertex i in G do
for each vertex j do

if i 6= j then
weightij = − imbi

lij
;

end if
end for

end for
Path = Dijkstra(start_node, end_node), sum = ∑i∈Path imbi(imbi > 0);
for each node i in Path do

if imbi ≤ 0 then
Alloca

⋃{0};
else

Alloca
⋃{d imbi

sum ∗ ke};
end if

end for
Return Path, Alloca.

4.2. User Incentive Scheme

The user incentive dispatching algorithm proposed in this paper is based on the idea of
Crowdsourcing, which assigns the task of bicycle dispatching to various users of the shared bicycle, so
as to achieve the goal of bicycle dispatching. The user incentive dispatching is a kind of micro-cycle
dispatching with low cost and wide range, which is suitable for situation with a few bicycles and small
dispatching scale. There are two difficulties in user incentive dispatching:

• The first is how to devise effective incentive strategy to encourage users to accept the
Crowdsourcing dispatching task;

• The second is how to choose the target station of the detour to make the distribution of bicycle
more balanced and reasonable.
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For the first question, we do not consider it in the paper due to some complicated inducements
like the personal condition, rental moment of bicycle, and the weather. The user incentive dispatching
proposed in the paper is to make appropriate strategies to enable users to pay back their bicycles for a
better choice and maximize the operator’s revenue.

As shown in Section 4.2, we transformed user incentive dispatching into the following
mathematical problems: A trip record shows the user going from start_station to end_station. In path1,
the user travels directly from start_station to end_station. In path2, the user selects the detour station
d1 and then goes to end_station. In path3, the user selects the detour station d2 and then goes to
end_station. When the user chooses to detour, he will get a incentive costu (costu is assumed to be
fixed here for the sake of system simplification). In Figure 3, we select all bicycle stations in the r
field of the end_station in STG as the candidate detour station set d = {i |‖ i− end_station ‖≤ r},
where r is the maximum distance a user can walk when detouring. Then, we select the station which
has maximum predi(t) in the detour station set d as the detour node. The details of user incentive
dispatching are shown in Algorithm 2.

Figure 3. User incentive dispatching scheme.

Algorithm 2 Man_dispatch(end_station, S(tn))

Input: The state information of all nodes in STG right moment S(t), the destination of the current

user end_station.
Output: Recommended detour node for user.

Initialize t = tn, end_node = end_station, detour_node = {end_station}, r
for each vertex i in G do

if ‖ i− end_station ‖≤ r && i 6= end_station then
detour_node

⋃{i};
end if

end for
candidate = end_station;
if maxi∈detour_node imbi > 0 then

candidate = maxi∈detour_node imbi;
end if
Return candidate.
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5. Experiment

5.1. Experiment Preparation

In this section, we will evaluate our model in simulation to analyze the hybrid dispatching scheme.
We first choose the trip data generated by Mobike’s operation as source data which is given in an
algorithm contest held by Mobike in 2017 [34]. In this paper, we only study and analyze the trip record
data in the working day.

It is the procedure of discrete simulation system in Figure 4, where the function Man_dispatch()
and User_incented() are respectively the manual dispatching algorithm and user incentive dispatching
algorithm proposed in Section 4, and the function Update_mapInfo() is used to update the map status
information after dispatching. Before the simulation, we need to filter the source data and preprocess
its result. At the same time, we also need to initialize the station state S. When the simulation begins,
the system first uses the ARMA model to predict the station demand to update the station status S; then,
the system implement dispatching strategy proposed in Section 4. More details are explained below.

Some preparations need to be done before the simulation as follows. The source data are formed
as the Table 1 below. Firstly, we utilize the k-means algorithm to cluster all travel data according to
its geographical location. Before that, some necessary work needs to be done, such as the conversion
of coordinate coded via Geohash, data normalization, and data de-duplication. Then, we perform
regional clustering via k-means, whose result is shown in Figure 5.

Figure 4. The procedure of hybrid dispatching scheme.
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Table 1. Source data.

Orderid Userid Bikeid Biketype Start_time Geohashed_start_loc Geohashed_end_loc

163020 378959 22541 1 2017/5/10 0:00 wx4f5pf wx4f5pe
3428602 140756 354271 1 2017/5/10 0:00 wx4g20b wx4erbf
4580017 693933 459074 1 2017/5/10 0:00 wx4ersk wx4ersf
4117589 482046 420604 1 2017/5/10 0:00 wx4dnv2 wx4dphv
2780838 1018307 293542 2 2017/5/10 0:00 wx4g2p1 wx4exbf

(a) The number of clusters (b) The result of clustering

(c) The trip frequency within each cluster (d) The selected stations in Zone 5

Figure 5. The division of regional clusters.

We calculate the Sum of Squared Error (SSE) of the cluster operation for a better number of clusters.
As shown in Figure 5a, we set the number of clusters in the k-means algorithm to 10. The results of
the clustering operation on the initial data are shown in Figure 5b. Then, we count the number of trip
records in each region which are shown in Figure 5c. From the result, we can see that Zone 5 has the
most trip records, which can be seen as a hot spot of trips and selected as the research area. In addition,
we select 100 stations in Zone 5 and construct the undirected graph G, which is shown in Figure 5d.

Based on the filtered data in Zone 5, we remove some useless labels and resample it as the format
like Table 2, where t is the current moment of simulation, s_type and e_type are the start and end of the
trip record, and if_detour describes whether the user in trip record accepts detour for dispatching.

Table 2. Input data.

t s_Type e_Type if_Detour

0 7 66 0
0 39 16 1
0 67 89 1
0 4 4 0
0 66 38 0

In addition to the trip record data, we also need to determine the status S of the station at the
initial time, including the number of bicycles in all stations at the initial moment and the demand
data at the next moment of all the stations, which can defined as Si(0) = (numi(0), predi(0)). Several
data sets of bicycle distribution conforming to Gaussian distribution are generated by Python to initial
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the numi(0). The initial distribution of bicycles has a great impact on the performance of system
dispatching, which usually acts like bicycles are concentrated in a few stations. In the paper, for a
more comprehensive analysis of dispatching strategy, we generate multiple initial distribution data
sets and utilize the standard deviation of 100 stations’ initial distribution of bicycles σ to describe the
concentration of bicycle distribution, which defined as Formula (6):

σ =

√√√√ 1
N

N−1

∑
i=0

(numi(0)− num(0))2 (6)

Next, we need to predict the bicycle demand at each station in each time period. Based on the trip
record shown in Table 2, we should first build the ARMA model for demand forecasting, which can be
divided into three steps and illustrated as follows:

(1) Stationary correction of the trip data: The premise of ARMA is that the series are stationary,
which means that the statistical characteristics (mean, variance, correlation, etc.) will not change
with different time Windows, and the mathematical expression is the same joint distribution.
As shown in Figure 6a, we can determine that the trip record is a stationary sequence.

(2) Test of white noise: Next, we will judge whether the original sequence is white noise or not. If it
is white noise, then the sequence is random disturbance, which cannot be predicted and used.
The sequence {e0, e1, e2, ..., et, ...} is white noise in three conditions as follows:

E(et) = 0;
Var(et) = σ2;

Cov(et, et+h) = 0, h 6= 0.
(7)

We utilize the Ljung–Box test to judge the white noise. By calculation, we get that p =1.47620 ×
10−17 when values are up to the lag of h. As a result, we can reject the original hypothesis and
assume that the sequence is not a white noise sequence.

(3) Determination of time series lag: Auto-Correlation Factor (ACF) and Partial Auto-Correlation
Factor (PACF) are utilized to determine the order of the model. As shown in Figure 6b,c,
the appropriate lags of p and q in ARMA model both are 2.

Finally, we build a discrete time dispatching simulation system via Python. As shown in Figure 4,
dispatching system enters a state of cycle monitoring after the initializing of simulation. Next,
the system perform manual dispatching and user incentive dispatching based on the status S and
i f _detour. After the timing is over, the system will collect the number of successful rental orders and
the total revenue within the dispatching time. The following Table 3 provides specific simulation
parameter settings.

Table 3. Simulation parameters’ settings.

Parameter Value

Duration T(0.5 h) 48
Threshold number of station Max 30

Remuneration of single trip costt(RMB) 2
Cost on single manual dispatching costm(RMB) 10

Cost on single user incentive dispatching costu(RMB) 1
Average trip distance of the shared bicycle R(km) 0.05

Maximum working distance of users r(km) 0.01
Maximum number of bicycles in manual dispatching k0 50

The initial distribution of bicycles σ 7.45302, 8.56492
The percent of users receiving dispatching tasks 0, 0.2, 0.4, 0.6, 0.8, 1

The number of trip records 48365
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(a) The frequency of cycling in three days

(b) ACF (c) PACF

Figure 6. The determination of parameters in the ARMA model.

5.2. Results and Discussion

The results of the experiment will be analyzed in this section. Before simulation, we need to build
a better ARMA model as described above. Below, we first analyze the results of the ARMA model.

We use the previously established ARMA model to perform curve fitting on the original data.
As shown in Figure 7a, Residual Sum of Squares (RSS) is used to describe the performance of
curve fitting, and our model has achieved good results. As an example, we select any period in
the experimental data to predict the demand. After prediction and comparison with the original data,
we got the results as shown in Figure 7b. We can see from the prediction results that the overall trends
of the forecast curve and the true curve are similar, but the forecast is not accurate sometimes due to
the small fluctuation of the bicycle rental, which can be ignored in subsequent dispatching schemes.

Next, we will perform an error analysis on the experimental results. In summary, the final results
of the experiment will be affected by two factors which are the initial distribution of bicycles and the
trip record. The following is a brief introduction.

Firstly, the initial distribution of bicycles on the map has a greater impact on experimental results.
As shown in Formula (6), we generate two maps with different bicycle distributions, which can be
indicated by parameter σ. In the traditional public bicycle system, a common dispatching mode is to
dispatch excess bicycles at overflow stations directly to an underflow station, where the dispatching
distance is taken as the optimization goal. We can call this type of dispatching scheme Commonly Used
Manual Dispatching (CUMD). In addition, we refer to the manual dispatching strategy and the hybrid
dispatching scheme including manual dispatching and user incentive dispatching proposed in this
paper respectively as Manual Dispatching Proposed (MDP) and Hybrid Dispatching Proposed (HDP).



Appl. Sci. 2020, 10, 2778 13 of 16

(a) Curve fitting

(b) Demand forecasting

Figure 7. The result of predicting.

Secondly, the HDP proposed in this paper is also influenced by the proportion of riders in the
travel record who are willing to accept user incentive dispatching. We set the step to 0.2 to constantly
change the proportion of users in the trip record who are willing to accept dispatching tasks from 0 to
1, so as to conduct multiple sets of experiments.

Finally, the simulation results are as follows, which are listed to five significant digits. In Table 4,
we can see the experimental results of user satisfaction for three dispatching methods. From the
experimental results, we can see that CUMD is relatively behind HDP and MDP in terms of user
satisfaction for almost 0.02. Since our experiment has more than 40,000 trip records, the improvement
of user satisfaction exceeding 0.02 is a considerable improvement for the bicycle dispatching system.
Furthermore, the MDP and HDP proposed in this paper are roughly the same in terms of user
satisfaction. However, the value of HDP is going to change a little bit more due to the integration of
user incentive dispatching and experimental results also prove it. As shown in Figure 8, the curves of
the operator’s total revenue B over time are shown. Firstly, the HDP and MDP schemes have almost
the same performance in terms of operator revenue. Then, HDP is consistent with the other two
strategies in the early stage of scheduling, but, after a period of scheduling, its performance in terms of
operator revenue is better than the other two strategies.

Table 4. The satisfaction of user.

Dispatching Method User’s Satisfaction α

CUMD 0.767± 0.010
MDP 0.787± 0.002
HDP 0.788± 0.012
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From the above simulation results, it shows that the dispatching scheme which combines
professional dispatchers and ordinary users proposed in this paper is better than traditional manual
dispatching to a certain extent. The manual dispatching strategy proposed in this article can accurately
dispatch bicycles to some stations with greater demand according to the prediction results, so that
more users can find a bicycle to rent. However, due to the higher cost of manual dispatching, we need
to supplement it with a certain amount of user incentive dispatching, which combines the idea of
crowdsourcing and assigns dispatching characters to ordinary users at a relatively small cost.

(a) Simulation results in map1 (b) Simulation results in map2

Figure 8. The revenue of operators.

6. Conclusions

In this paper, we suggest the idea of station imbalance imbi(t) to explain the difference at a time
in the future between station demand and the actual number of bicycles at the station. Next, based on
greedy ideas, using the sum of the imbalances of all stations as the objective function, we propose a
hybrid scheduling strategy that includes manual scheduling and a user incentive schedule.

This paper proposed a hybrid dispatching strategy based on bicycle demand data to improve
user riding satisfaction while reducing dispatching costs and improving overall revenue for bicycle
operators. From the analysis of real-world traffic data in Shanghai from Mobike, it has been shown
that the overall trend of daily bicycle trips during the week is cyclical, with a few peaks. Therefore,
we clustered the bicycle records according to their starting point to extract bicycle trip stations, and then
based on the historical data of bicycle trips, we built an ARMA model to predict the demand at potential
stations in the short term. Then, we propose the concept of station imbalance imbi(t) to describe the
gap between the demand for the station and the actual number of bicycles at the station at a moment
in the future. Next, based on greedy ideas, using the sum of the imbalances of all stations as the
objective function, we propose a hybrid dispatching strategy that includes manual dispatching and
user incentive dispatching. Finally, we propose two indicators for evaluating dispatching strategies:
user satisfaction and the total revenue of bicycle operators, and construct a discrete-time simulation
model to simulate and analyze the hybrid scheduling strategy. The simulation experiment results
show that the performance of the hybrid dispatching strategy proposed in this paper is better than
the traditional bicycle dispatching strategy on both indicators, and it is less affected by the bicycle
distribution in map, and can be adjusted to most dispatching scenarios.

For our future research, the forecast of bicycle demand is to be explored in depth with a balance
of prediction speed and accuracy. The real-time dispatching strategy requires higher forecasting speed
of the station demand forecasting method. Due to the irregular fluctuation of cycling trips caused by
the emergency, the real-time scheduling strategy requires higher forecasting speed of the site demand
forecasting method, and then improves the accuracy of the forecasting. Second, the incentive strategy
in user incentive scheduling needs to be studied in depth, including the reasons that influence whether
users accept crowdsourcing tasks, the formulation of appropriate incentive schemes, and the feasibility
of user incentive strategies based on starting points. Last but not least, a better combination between
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manual dispatching and user incentive dispatching should be studied, which can further reduce
dispatching costs and improve users’ satisfaction.
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