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Abstract: This paper aims to develop an innovative sensorless control approach for a five-phase
induction motor (IM) drive. The operation principle of the sensorless scheme is based on the sliding
mode theory, within which a sliding mode observer (SMO) estimates the speed and rotor resistance
simultaneously. The operation methodology of the proposed control technique is formulated using
the mathematical model of the machine and the two-time-scale approach. The observation technique
offers a simple and robust solution of speed and rotor resistance estimation for the sensorless control
approach of the multiphase drive. The paper considers the five-phase induction motor (IM) as a case
study; however, the proposed control algorithm can be employed by different types of multiphase
machines. To test the applicability of the proposed sensorless control approach, the drive performance
is firstly validated using MATLAB/Simulink-based simulation. Then, the simulation results are
verified using real-time simulation and experimentally using TMS320C32 DSP-based control board.
The obtained results confirm and validate the ability of the proposed control procedure in achieving a
robust dynamic performance of the drive against the system uncertainties such as parameter variation.

Keywords: multiphase machine; five-phase IM; sliding mode observer; sensorless operation;
experimental validation

1. Introduction

The segmentation of the power in the multiphase system tends to limit the voltages and currents
amplitudes that are applied to the individual phases. It is recommended to size the current of power
inverters’ legs because this helps in reducing the size of components while eliminating the problems
caused by their association in parallel [1-4]. For a given power rate, when increasing the number of
phases, the phase current decreases without increasing the voltage per phase (or vice versa). The total
power is then distributed over a greater number of phases; and consequently, the power required by
each of them is reduced. Thus, the machine can be supplied by a power inverter that can be constructed
by a lower-class of power components that are capable of operating at higher switching frequencies.
This allows the minimization of current and torque ripples. The power segmentation is the advantage
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of the multiphase machine that is considered the most desired requirement nowadays, especially for
high power applications.

High-performance control of induction motors requires precise knowledge of the rotor position.
This information can be provided by mechanical sensors, i.e., dynamo tachometer, digital incremental
encoder, etc. However, using mechanical sensors introduces several drawbacks. These drawbacks
include the increase of the volume, the overall cost of the system, and also the reduction of the system
reliability. In addition, mechanical sensors require a stub shaft to be used with it [5-10]. For all
these reasons, it is interesting to eliminate the sensors. Recently, the operation without a mechanical
speed sensor (sensorless) of induction motors has become one of the main attractions of interest for
researchers and industrialists. They can be subdivided into two different families of strategies: the first
is concerned with estimating the speed without using the machine model. These strategies have been
articulated in the extraction and analysis of harmonics in the rotor slots and injecting a high frequency
signal. The second method is based on observing the speed using the machine model. In this type,
the design of observers is mainly articulated on the IM model and thus the observer is considered as a
mirror to the machine model. In literature, many speed sensorless techniques have been proposed.
The essential ones are the Extended Kalman filter [11-21], the adaptive reference model (MRAS) [22-24],
the Luenberger observer [25-28], the high gain observer [29], the sliding mode observer [30-33], and
the backstepping observer [34-37]. The dominance of a particular method articulates mainly on the
accuracy of speed estimation. For example, the model dependent estimation techniques are defined by
its simplicity. However, the sensitivity to the system uncertainties is considered the dominant problem
of these observers. The resistances of stator and rotor windings are playing a vital role during the
estimation and for this reason; their values must be identified accurately to achieve precise speed
estimation [38]. Indeed, estimation of speed without model requires an analysis of the spectrum to
increase the speed control band. Therefore, the program becomes complex and requires more time
for execution. The simplicity and effectiveness of the observers based on the model becomes an open
subject for several researchers.

Currently, flux-oriented control of IM drives is extensively used in the applications which required
high performance. Nonetheless, the drive performance is negatively affected when the parameters
are varied. The performances of the controller and observer are immediately downgraded in the
existence of these uncertainties. Notably, the behavior of the control system is highly attentive to the
state estimator. In order to manage these uncertainties, the online parameter identification has to be
considered. An adaptive or robust conception strategy can be used for designing either the estimator
and/or the controller schemes. To this consideration, in [39-41], both the rotor and stator resistances
are estimated online involving neural networks, two extended Kalman filters, and modified extended
Kalman filter, respectively. Although in [42], only stator resistance is estimated using an extended
Kalman filter. The majority of these studies have guaranteed that the resistances of the rotor and
stator coils and also the mutual inductances are obtainable. In [39], the rotor and stator resistances
are observed by using several designs based on two different neural networks which are established
starting from the IM model, where the authors revealed that the speed estimation is very sensitive to
the system disturbance, which must be filtered. In [43], the stator currents and rotor flux are estimated
using a sliding mode observer (SMO) observer, operated by the mismatch between the observed
and measured stator currents. Through analyzing the performance of these observers, the SMO has
revealed the most appropriate performance in achieving a robust estimation versus different types
of disturbances; however, the obtained estimations have suffered from the chattering phenomenon.
Another category of observers has been dependent on the adaptive mechanism, and known by the
name of reference adaptive model control strategies [44—46]. These observers have depended on
extracting the rotor position and speed information from the error between two estimated values of rotor
flux. The problems associated with these observers are mainly the high sensitivity to the parameters
variation, which deteriorates the estimation accuracy especially at very low speed range. Attempts



Appl. Sci. 2020, 10, 2776 30f24

have been made to compensate the effect of parameters variation through developing a mechanism for
estimating the varied parameters as in [45,46], but this led to increasing the system complexity.

Up to this review, and in order to avoid the previous deficiencies, the singular perturbation theory
is employed and combined with the traditional indirect rotor-field oriented control (IRFOC) technique
in order to achieve better system dynamics with parametric uncertainties. This has been achieved
through formulating the state observation process in two different stages. First, a simultaneous
observation of both rotor flux and rotor speed is adopted and secondly the rotor resistance observation
is integrated to enhance the robustness of the sensorless scheme.

The contributions of the intended sensorless observation mechanism can be summarized as follows.

(i) A novel singularly perturbed sliding mode observer is proposed for a five-phase induction motor
drive for estimating the speed and rotor resistance.

(ii) The design procedure of the proposed SMO observer is presented and explained in a detailed
way which contributes in clarifying the base principles upon which the observer depends.

(iii) Load torque estimation is not required, which simplifies the observer construction.

(iv) State estimation procedure does not involve mechanical equations. Therefore, the proposed
scheme does not use nonlinear estimation equations.

(v) The rotor resistance and speed are estimated simultaneously, so that the effect of parametric
variation can be minimized.

(vi) The singular perturbation theory used in this paper essentially works on two-time-scale system
with slow and fast subsystems which simplifies the control system design and the structural
analysis as well. Accordingly, the two lower order control and observer subsystems can be
designed and finally merged to yield a combined observer system. This contributed effectively in
enhancing the robustness of the controller against system uncertainties.

(vii) In order to validate the feasibility of the proposed SMO observer, extensive simulation and
experimental tests are carried out for a wide range of speed variation considering the parameters
mismatch. The robustness of the observer is present for the all considered operating regimes.

(viii) The proposed SMO observer can be easily extended to be used by different types of multi-phase
machine drives after considering the construction and base operation of each type.

The structure of the paper is given as follows. The generality of the proposed method and theory
of singularly perturbed systems is discussed in Section 2. In Section 3, the design of two-time-scale
sliding mode observer is developed. Section 4 presents two parts: modeling the five-phase IM and
developing the SMO for estimating the rotor resistance and speed. Section 5 presents the tests that are
carried out to validate the applicability of the proposed sensorless control approach. Section 6 presents
a summary for the results discussion, and Section 7 summarizes the outcomes of the study.

2. Technique of Two-Time-Scale

The two-time-scale technique divide the system dynamic into two different sub-dynamics: fast
and slow ones [40,42]. To distinguish between the two sub-dynamics, a scalar ¢ needs to be calculated.
This scalar refers to the slow speed to fast speed ratio and which is supposed to be with a small value.
Generally, the slow and fast states are inherently associated with two time scales t, respectively [47,48].

Then, the relationship between the time scale T and the time scale  can be expressed by

T=—— (€))]

where { is the initial time.
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2.1. Nonlinear SP Systems

The class of SP nonlinear systems can be represented as follows,

{ x = f(t,x,z,Cu), x(ty) = xo )

Gz=g(txzCu), z(t) =29

where the slow and fast states are designed by z € R™ and x € R", respectively. The control input is
given by u € RP with C € [0, 1]. Moreover, the variable y = z with y € R represents the measurement
vector which is linearly associated with the fast state vector.

2.2. Slow Subsystem Dynamics

The nonlinear system described by Equation (2) combines the fast and slow subsystems, where
z is the fast vector component and x is the slow vector component. Then, to reduce the system’s
complexity, the Tikhonov’s theorem is utilized [49]. By putting C — 0 in Equation (2), then the reduced
order model in the ¢ time-scale described by the quasi-steady-states zg(t) and x4 (t) can be expressed by

dxs
{ % - f(t’ xSl’ZS[/ usl, 0) (3)
0= g(t/ Xs1,Zs1, Us], 0)

Moreover, by putting zg = h(t, x4, ) and by replacing the root of the second equality of (3) into
the first equality of (3), the reduced order model can be then expressed by

dx,
{ % = f(t’xSl/h(t/xsl/ MS[), usl/O) (4)
xs(to) = xo

where the subscript (sl) reveals that the quantity is related to the system without a scalar C.

2.3. Fast Subsystem Dynamics

The variable z, refers to the fast dynamics, which is obtained through deriving zy from z. This can
be accomplished through the transition between the slow t and the fast © = (t —tp)/C time scales.
Then, the system described by (2) can be reformulated by

{ & — Cf(Ct+to,x,z,u) 5)
dz _
= (Ct+to,x,z,u)

Inserting the term z¢; = z — zy which represents the derivation of z; from z, and identifying the
limit as ¢ — 0 results in

des
- = f(x0,2:1(0) + 255(1), ups (7). fo) ©)

where z£,(0) = zo —2,(0), and u g, = u — ug is the fast subsystem of the control input.

2.4. Approximation of Two-Time-Scale States

Approximating the initial states of Equation (2) can be performed through combining Equations
(4) and (6) of the fast and slow variables in one structure which can be easily handled, and this results
in the following expressions
[ =m0+ 00 ”
Z(t> = zg(t) + Zfs<T> +0(C)
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3. SMO Synthesis

The continuous nonlinear singularly perturbed system of (2) can be expressed by

{ x = f(t,x,z,u,Q) (8)

(z=g(t,x,z,u,C)

Furthermore, the above-described system is assumed to be observable. Thus, the state observation
of slow variables can be achieved through measuring the fast variables.

3.1. SMO Conception

The method is based on substituting the linear correction terms with a discontinuous function as
in the case of standard full order observer [50]. Then, by adding additional terms to the nonlinear
auxiliary inputs of the system (8), this results in the following relationships,

{ 2= f(%,2,Cu) + Gelsmo )

C2 = g(f, z,C, u) + GzLsmo

where the switching function I, is given by I, = sign (S(y, 7)) and Gy and G represent the observer
gains to be calculated with dimensions of (n X m) and (m X m), correspondingly. In addition, the error
y — 7 is selected as a linear function which outlines the dynamics of the sliding surface S by

(v, 9) = Aly-9) (10)

where A is an invariant matrix of dimension (m X m) to be determined, and

-9"=( -5 -9 ... (Yo = ) ) (11)

Subtracting Equation (9) from (8), the error dynamics are given by

(12)

éx = f(x/ z, G, u) - f()?, z, G, u) = Gxlsmo
Céz — g(x/ z, CI T/l) - G(.f, z, Cr 1/{) - GZISWIO

The expressions (12) can be also rewritten as

{ éx = Af_ GxIsmo

. 13
Ce; = Ag = Gzlsmo (13)

where

(14)

Now, by applying the singular perturbation methodology and through utilizing the resulted
subsystems of (14) and applying them sequentially, the observer’s gains can be computed precisely.
This computation procedure starts with studying the tracking of fast variables using what is called hit
condition (which depends on the measured state variables). Then, the asymptotic-convergent slow
variables (for the unmeasured state variables) are analyzed.
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3.2. Fast Time-Scale Stability Analysis

The time scale associated with the fast dynamic subsystem is expressed by 7 = (t—1t9)/C, then
Equation (14) can be reformulated by

% = C(Af_ GxIsmo)
te, (15)
rribe Ag = Gzlsmo
By setting C = 0 in (15), it yields
de
dex _
de, dv (16)
rribe Ag — Gzlgmo

In order to determine the observer gain G; in (16), the stability analysis in the time scale (7) is
required. Actually, setting the surface value to zero (5(t) = 0) is preferred in this time scale. Moreover,
when the surface 5(7) witnesses a sliding mode action, then by solving (16) for G;I;,, ensuring a zero
value of de, /dr, the auxiliary input value of the discontinuous observer can be evaluated by

Gzlsmo = Ag
Then, the equivalent switching vector can be calculated by
Iono = G2 1Ag (17)

3.3. Slow Time-Scale Stability Analysis

Slow dynamic error can be computed by putting C = 0 in (13), thus

de
d—;‘ = Af = Gilsmo (18)
0= Ag— Glomo (19)

Moreover, the switching vector can be calculated using (19) as follows,
Ismo = Gz_lAg (20)
Thus, via the suitable selection of Gy, the appropriate rate of convergence e, — 0 can be achieved.

4. Design of Two-Time-Scale SMO for Five-Phase IM

The technique of observer synthesis in two-time-scales sliding-mode, whose measured vector is
directly related to the fast variables, is discussed in [49]. The current paper’s aim is to determine the
slow states from the measured fast states and this can be performed as follows.

This observation method provides a desired system’s behavior in a closed loop manner. However,
for the ideal case, there is an infinite switching state at the actuators. Yet, there is no aspect of control
which can perform this operation. As a result, the high-frequency dynamics are not considered in the
system modeling, which led to the appearance of what is called “reluctance” or “chatter” known in
Anglo-Saxon under the name of “chattering” and which is characterized by strong oscillations around
the sliding surface. To prevent this issue, an area is specified around the sliding surface, in which a
slip condition less stringent than the “sign” condition is adopted. In fact, the sign function “(s)” is
substituted by a smoother function with variations associated with the saturation function “sat(s)” that
can be defined by
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1ifS>x
Sat (S) =1{ 2if|S|<x (21)
-1ifS <y

The boundary layer adjacent to the switching surface has a thickness which is given by the positive
constant y, whereas the rotor speed is treated as a time-changing variable.

4.1. Mathematical Model of Five-Phase IM

The mathematical models of the five-phase IM are presented and discussed in several research
studies [51]. The dynamic model of the motor can be described using the following differential equations.

”;;—ltﬁ =-LRia+ gf—’”LA Ara + Uf—'”LwArﬁ - JLLSUS[X
ar GdL/\:jﬁ + aL L oA A”ﬁ O‘L L WAra + ULS Usp
p )ﬂ\lfﬁ = LinArisa — ArAra — wAsg 22)
= LnArisg + w)\m —Ardrp
jé:tj —Aslsx + 1 st

= ~Astsy + 1 Vsy

Based on the dynamic model of the motor and singular perturbation theory, the slow variables
are represented by the rotor-flux a-f components (A,q, A15), whereas the fast variables are presented by
the stator current a-f components (isq, is5). Consequently, the singularly perturbed model of (22), with

C=o0LsL,/Ly, x = ( Ara Arg )t, z = ( s Isp dsx sy )t, can be formulated by

(z1 = =LyArzy + Arxy + wxo + (vsa Rsz1)
(zp = =LnArzo + Arxy — wxq + - (Usﬂ RSZ2)
X1 = LmArzl A,zl - a)xz
Xp = LyArzo + wxq — Arxp
73 = —Asisy + Lll Usx
z4 = —Asisy + 1 vsy

(23)

where A, = R, /L, and A; = Rg/Ls.

4.2. Sliding Mode Observer (SMO)

Using the general approach of singular perturbation of five-phase IM model without incorporating
the mechanical part, the mathematical expression of the SMO can be expressed by

C = _LmArzl + Arxl + ok + = (Usa Rsz1) + zig
2 = —LmArzz + Aty — %y + = (vsﬁ Rsz2) +zip
x1 = LAz — A% — cAuxz + Zxa (24)
xz = LmArzz + a)x1 Apxy + Zxp
=-Aszz + 1 vsx + zx

:—A sZa+ T vsy—i-zy
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where the accent “"” denotes to the estimated variables, and A,, 1, £, @, 21, and 2, are the estimated
values of A,, x1,X» w, z1, and zp, whereas z;,, Zig, Zxas Zxfs Zxs and zy are the correction terms which are
used for acheiving the desired performance, these terms can be expressed as follows.

Zia = Gzllsmo
Ziﬁ = GZZIsmo
Zm = leIsmo

25
Zxﬁ = GxalLsmo @)
Zy = Gz3Tsmo
Zy = Gz4Tsmo

The switching vectors Is;, and Ty, are chosen as

o sign(Sl) o 21 —Z1 | _ [ éa
{Ismo _( sign(s2) ) _( f-2 )_( €22 ) 20

sign( S’ 23—z e
Tsmo = .g ( }) = ( A3 X )_ ( = ) (27)
szgn(Sz) 24— 24 €z4
Now, for estimating the speed and flux, the following hypotheses are considered.

Hypothesis 1. Stator voltages and currents are measurable.

Hypothesis 2. Rotor resistance is the only unknown parameter and the rest of motor parameters are known and
constant.

Hypothesis 3. The rotor resistance R, is assumed to be unknown quantity and its nominal value is Ry,.
Hypothesis 4. Motor speed is considered as a time varying unknown bounded variable.
Hypothesis 5. The variation of rotor resistance R, is assumed to be very slow, so that R, ~ 0.

By setting e,; = 2; —z; as the estimation current errors for j € [1 2 3 4], e,; = %; — x; as the estimation
flux errors for i € [12], Aw = & — w as the estimation speed error, and AA, = A, — A, as the rotor time

constant estimation error, the estimation error dynamics can be evaluated by subtracting (23) from (24),
which results in

Ces1 = Arex + wexy + Awky + AAy (%1 — Linz1)
+Gzllsmo
Cexp = Arexp — weyy — AwRy + AA (22 — Linza)
+G2215m0
ey] = —Arey) — weyy — Awy — AA (%1 — Linz1) (29)
+lelsmo
éxz = —Are + wey + Awiq — AAr(J?Z - LmZZ)
+Gx215m0
3 = zx = G3Tsmo
ey = Zy = Gz4Tsmo

Using the matrix form, Equation (28) can be expressed as follows,

Cez1p = Aex — AwB% + AAr(f - LmZ12) + Ga2lsmo
éz34 = Gz34Tsmo (29)
ev12 = —Aex + AwB% — AAL (£ — Lnz1z) + GrioIsmo
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where

A w
A= =Al-
( o A, ) ] —wB (30)

I'is the (2 x 2) identity matrix and the matrix B is represented by

0 -1
B_(l 0) (31)

Moreover, G;12, Gz23, and Gy are the observer matrix gains which are determined using the
stability analysis of Lyapunov.

4.3. Stability Analysis

Via utilizing the two-time-scale technique [52], checking the stability of the system under study
and which is described by the matrix gains Gg1, Gz, Gz3, and G4 of the measured state variables can
be effectively accomplished.

Subsequently, G, and G, of the slow subsystem or unmeasured states are evaluated so that the
reduced-order model when S = S = 0 is internally stable.

Using the value of T = (t — tp) /C and after setting the value of C = 0in (29), the observation errors
can be represented in the form of fast reduced order system as follows,

%10 — Ay — AwBR + AAy (2 ~ Lz12) + Garolsmo

éz34 = G234Tsmo (32)
dexia _
dt

Remark 1. To obtain S = S’ = e,;15 = ez34 = 0, a precise selection of the matrix gains G,1, Gz, Gz3, and G4
must be performed.

Assuming that the flux errors e,; and e,, are boundaried in this time-scale and x changes slowly,
then by considering the first part of (32), the observer gains matrices can be defined by

[ 0
Gz = ( 0 -y ) (33)
-0 0
Gas = ( 01 5, ) (34)

The convergence condition of the sliding surface S = 0, which is verified by the inequality in (36),
can be then expressed by the following formulations.

ST < (35)
dt
71> |Aren + wews + Awy + AAL (21 — Lz1)|
Y2 > |A76x2 —wey — Awxq + AAr(Jez - Lm22)|
01 > max |ey|
0y > max |eyyl

(36)

Proof. Using the definite positive Lyapunov function expressed in (37) and its derivate in the time
scale given by (38),
_STs+5Ty

v 2

(37)
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rdS | rdS

V= ’
S It +5 It (38)
O
Then, via replacing (30) into (38), V becomes
V = ST(Aey — AwB% + AA (£ = Lnz1n) + Gaialomo) + ST Gaaa Tomo (39)

Using the values of G;17 and G.34, which are given, respectively, in Equations (33) and (34), the
relationship (39) becomes

V= -5 (y15ign(Sy) — Arey1 — wexp — Awiy — AA, (%1 — Linz1))
-5, ()/25181’1(52) —Aren + weyq + Awxq — AA,(JACZ - LmZQ)) (40)
St - ionsion )

Taking into account the constraints of all parameters and states of five-phase IM, the derivative of
Lyapunov function can be written by

1S s’

V:SdT dt

<0 (41)

Remark 2. Once the stator currents access the sliding surface S = S’ = e, = 0, the system errors can be
evaluated by (29).

Using the system equation of (29) and setting C = 0 for slow error dynamics, one can write

0 = Aey — AwBx + AA,(.’)? - LmZ12) + Gy1215m0
éz34 = G234 Tsmo (42)
éx12 = —Aex + AwB% — AA, (% — Linz12) + Gxizlsmo

Choosing matrices H = G;12l5m0, D = G234 Tsmo, and M = Gy12G127L represented in the real time
scale, the relationship (42) becomes

0 = Aey — AwB# + AAy (% = Lmz1a) + H
e34 =D (43)
bxia = —Aey + AwBE — AA (R — Lz1) + MH

Now, by considering the speed as a varying parameter, the Lyapunov function can be then

chosen as
Vi = 5 (elect - (Aw) + - (AA)?) (44)
81 82

where g1 and g; are two positive constants.

According to the singular perturbation hypothesis, the speed w is assumed to be with a fixed
value and it varies with a very slow rate respecting to the change of the rotor flux and stator current.
Thus, the derivative of the Lyapunov function V; is obtained from (44) by

1da§1d_A,

o .T 1 do 1
Vi _exex“‘glAa) at + gZAAr at (45)

It is clear that the Lyapunov function V) expressed by (44) is positive definite. Then, by using the
first part of (42), the error ey is expressed by

ex = —AT'H 4+ AwA™'B2 — AA, A7V (% = Liyzin) (46)
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Using (43), the error dynamics e, can be derived by
éx = (I+M)H =RH (47)
with R = (I + M) By substituting from (46) into (45), the following is obtained,
Vi=-H'RTA7'H+ Q1 + O, (48)
where

g1 df

Q2 = AL Gt — HTRTAT! (%~ Lyz12))

Q1 = Aw(L+42 + HTRTA1B%)
(49)
To satisfy the stability condition of Lyapunov approach, the values Q1 and Q, in (48) must be
expressed by
Q = Aa)(%@—f +HTRTA™1B%) = 0.0
Q = AAr(g%% _HTRTA (% - Lmzlz)) — 00 (50)
-H'RTA"'H <0

The condition of the third part of (50) is satisfied by choosing
RTA™! = goI (51)

with gg is positive constant.
A simple adaptive law for the rotor time constant A, and motor speed @ is given by substituting
(51) into the first and second parts of (50), and this yields o

A d;l?‘r = gogZ(Gzlﬂsmo)TB?? 52)
% = ~&80&1 (G212Ismo)T(32 - Lmzu)
After further simplification of (52), the rotor time constant and speed observer’s expressions can
be finally defined as the following,
dA, _ o o N
7 = 8082(y1%2sign (S1) — y2f1sign(S2))
42 = g0g1(y1(21 — Luz1)sign (S1) (53)
+y2(%2 — Liuzz)sign (S2))

The estimated signal @ is considered as a switching function which includes high and low
frequency components. The speed can be extracted from the low frequency component [53]. Thus,
a low-pass filter can be used to estimate the value of @ as follows,

. 1
Dipf = 1+ K.Sa) (54)

where « is the filter’s time constant.

5. RT Real-Time Simulation and Experimental Validation

The proposed control mechanism is constructed by using six PI controllers; the speed controller is
configured with an anti-wind-up to provide a smooth dynamic change for the whole range of speed
operation, especially when the speed has a sluggish variation compared with the other electrical
variables. Simulations using Matlab/Simulink software and hardware RT simulation tests are performed
for the system, which involves the state observation as a feedback variable in order to compute the
parameters of the PI controllers. Moreover, the singular perturbation (SP) technique affords a manner
to disintegrate the two-time-scale arrangement into slow and fast dynamics in different time scales,
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which remarkably facilitate their architectural reasoning. Correspondingly, the original system is
divided into lower-order subsystems with each subsystem has its own control-observer unit, and then
the responses of all subsystems are combined to formulate the response of the complete main system.
Thus, the concept of combining SP method and SM strategy forms an excellent choice to realize the
standard control objectives of the systems, which are characterized by an imprecise model, parametric
uncertainties, or parasitic dynamics. For this purpose, the following tests are performed considering
the variation of rotor resistance.

The general layout of the proposed control system is illustrated in Figure 1. The indirect rotor
field oriented control (IRFOC) is considered as the base principle upon which the proposed control
strategy is formulated. Under IRFOC, the rated rotor flux is totally aligned with the direct-axis of
the rotating reference frame (A; = A,,). In this topology, the load torque is constrained within a
definite value and considered as unknown quantity. The designed SMO observer is implemented
using the expression (24). The block of adaptive SMO estimates the rotor speed and rotor resistance
simultaneously using the adaptive control laws described by Equations (52) and (53), respectively.
A low-pass filter described by Equation (54) is utilized to smooth the signal of the estimated speed as
the speed signal is containing high frequency components as mentioned earlier. The block of park
angle estimation is used to estimate the synchronous frequency &s, which is then used to calculate
the synchronous angle 6; needed for the transformation between the coordinate systems. Moreover,
all motor parameters are assumed to be constant and known except the speed and rotor resistance.
The control parameters and the motor data are listed in Table 1, whereas the parameters of the sliding
observer are shown in Table 2.
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Figure 1. Complete system configuration.
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Table 1. Motor data.

Symbols Quantity Value
R, Rotor resistance 2.4 0)
Rs Stator resistance 280
L, Rotor inductance 0.2388 H
Lg Stator inductance 0.2388 H
Ly Stator leakage inductance 0.0088 H
Ly, Rotor leakage inductance 0.0088 H
L Mutual inductance 0.23H
P Pair of Pole 2
N Rated speed 1000 RPM
Tn Rated torque 4 N'm

T Inertia moment 0.008 kg-m2
Pn Rated Power 1kW

Table 2. Sliding mode adaptive observer parameters.

Symbols Value
71 100
V2 100
81 50
F ¢ 50
01 150
02 150

The selected observer parameters must ensure the overall stability of the nonlinear closed-loop
system. One must use a high gain for the observer (fast dynamics to be neglected) and a constrained
state feedback control (predominate slow dynamics), then the separation between the observer
design and state feedback can be achieved [54-57]. To validate the effectiveness of the proposed
SMO, the control system shown Figure 1 has been tested using Matlab/Simulink, within which the
static Runge—Kutta fourth-order method is utilized to solve the equations which describe the system
operation. The estimations of stator currents and rotor fluxes are obtained by solving the relationship
(24). To attenuate the chattering, the sampling time is selected as 50 us. A PWM technique is used to
provide the switching signals to 10 IGBT VSI, with a switching frequency of 10 kHz. Under assumptions
of availability of all parameters and all states including rotor flux, the estimated values of rotor speed,
rotor flux, and rotor resistance are compared with their actual ones. The proposed sensorless control
system, including the adaptive laws and SMO, has been testified in hard operating circumstances:
speed reversion, rotor resistance mismatch (up to 150%), high and low speed operation, and load
torque change.

5.1. RT Real-Time Simulation Results

The RT lab as a real-time simulation tool for prototyping the control system is utilized for verifying
the effectiveness of the proposed sensorless control approach. Hardware in the loop RT is referring to
the simulations which are executed in real-time and the time needed by the whole procedure (sending
the output signals, computation time and reading the input signals,) is in parts of microseconds.

The Opal real-time (RT) simulator is made of software and hardware components. The hardware
is made of a command station and a target node which represents the CPU cluster with multi-core
quick processors running on real-time environments like QNX or Red Hawk [49]. Meanwhile, the
command unit is either a Red hawk PC or a Windows-based interface between the target node and
the user. It is utilized to build the concerned model for real time implementation and to monitor the
execution and compilation of simulations. The target node used to simulate the specified scheme in
real time uses the modular IO module OP5142, which uses the FPGA (Xilinx Spartan-3) processor. It is
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mounted to the rear side of the Wanda 4U chassis IO module. The OP5142 provides access to four
(4) 4U optical and/or analog I/O modules for conditioning. The processing speed of this module is
100MHez. Figure 2 provides a view of real-time Opal-RT simulator. The proposed control topology is
tested using real-time Opal-RT simulator for a 4-pole, 1 kW five-phase IM with a rated torque of 4 Nm.

Workstation PC (Hosf)

ANALOG and DIGITAL VO, CAN, FIREWARE

Figure 2. Block diagram of real time implementation.

The simulation is performed to test the feasibility of the proposed observer while implementing
the indirect rotor-field orientation (IRFO) control and investigating the speed tracking performance.
The results are illustrated in Figure 3a—g. The motor started running with its nominal speed and then
the speed is reversed, keeping the rotor resistance value R, = 2.4. Then, the value of R, is increased and
set to R, = 1.5+ Ry, (This is to investigate the robustness of the proposed SMO against the parameters
change.). Figure 3a,b presents the speed response (observed and reference) and electromagnetic torque.
The estimated speed signal is tracking effectively its reference value with minimum error. Figure 3c—e
presents the actual and observed stator currents, and through these figures, the validity of the proposed
SMO in achieving a precise estimation is confirmed. Figure 3d illustrates the reference and observed
rotor flux. It is obvious that the observed flux tracks its reference very well even under the variation of
the rotor resistance value. The estimated and the actual rotor resistance are also presented in Figure 3f,g.
It is noticed that the estimated value is very close to the actual value, and thus one can say that the
proposed observer is giving proper results. From these results, it can be concluded that the controller
is exhibiting a robust dynamic performance. Moreover, the convergence is obtained for the estimated
signals of rotor resistance, rotor speed, and rotor flux, which reveals that the estimation process is
well managed with minimum error; meanwhile, the flux orientation is achieved accurately. Table 3
summarized the results obtained using two criteria: the tracking error in the steady state and the
convergence time.

Table 3. Convergence time and tracking error of the proposed method.

Tracking Error Convergence Time

Speed estimation 0% 200 ms

Rotor resistance estimation 0% 20 ms
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R {(:2)
Rms(GA

Figure 3. Real time results of sensorless control of five-phase IM drive. (a) Speed, (b) torque, (c) Stator
currents (complete view), (d) Rotor flux (Reference and estimated signals), (e) Zoomed view of stator
currents (actual and estimated), (f) Rotor flux and rotor resistance variation, (g) Rotor flux dynamics

under rotor resistance variation.
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In order to further investigate the effect of rotor resistance variation on the estimated values of
rotor flux with and without using the proposed SMO observer, the Matlab/Simulink tool is used for
this purpose, and the results are shown in Figure 4. In Figure 4a, a variation in the rotor resistance
value is made to 1.5 = R,,;, then the SMO observer is used to track and estimate the resistance. From this
figure, it can be realized that the SMO is effectively succeeded in estimating the resistance change
with high precision. In Figure 4b,c, the estimated values of the rotor flux with and without using the
proposed SMO are shown respectively. From these figures, it can be concluded that the proposed SMO
plays a vital role in estimating the rotor flux under the system uncertainties.
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Figure 4. Dynamics of estimated rotor flux with (b) and without (c) sliding mode observer (SMO)
under varying rotor resistance (a).
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5.2. Experimental Validation

Experimental tests have been carried out for a 1 kW five-phase IM using TMS320C32 DSP based
control board. Figure 5 shows the experimental results of IRFOC of the five-phase IM using only the
fundamental components of the currents. The (a-f) and (x-y) components of stator currents when
the motor runs at 250 RPM without load (17, = 0) are shown in Figure 5a. The same waveforms are
presented in Figure 5b when a 50% of the rated load is applied to the motor at time t = 1.3 s. Figure 5¢,d
illustrates the waveforms of the stator currents in the (d-q) and (x-y) planes and the motor speed when
the motor runs at 250 RPM in both cases (without load and 50% of the rated load). The waveforms are
consistent with the theoretical analysis; the stator current is a sinusoidal waveform as desired, sharing
the similarity with the air—gap flux profile. From the actual speed profile, it can be realized that the
IRFOC system is very stable during the steady state operation. It is observed that the speed regulation
and the steady-state operation is realized very fast. However, the speed is attributed with the chattering
phenomena, but it is improved by replacing the signum function with a saturation function.
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Figure 5. Experimental validation at operating speed of 250RPM.

The experimental tests are also carried out when operating the motor at very low speed (20 RPM),
this is to investigate the validity of the SMO for a wide range of speed operation while exposing the
system to uncertainties (i.e., rotor resistance variation). From Figure 6a, it can be observed that the
estimated speed tracks the actual speed with high precision. Figure 6b also confirms this fact, as it
shows the speed error profiles which is almost zero. Figure 6¢c shows the torque profile, whereas
Figure 6d illustrates the estimated rotor flux, and from this figure, it can be realized that the proposed
SMO observer has managed in achieving an accurate estimation of the rotor flux.
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Appl. Sci. 2020, 10, 2776 20 of 24

r s
Y

1N.mI 0.5s _

.

“start time O(N.m

Hectramagretic toargue(N.m)
Q
/"

0 1 2 3 4
Time(s)
(c) Electromagnetic torque.
1.2
104z 4 04wb 058
o — = = =
% L
- /
» 06 ~
o] 2 .
5 A—festimated)
2 ! LN J
0.4
0.2
0.0
0 1 2 3 4
Time(s)
(d) Rotor flux.

Figure 6. Dynamic performance of five-phase IM drive at low speed operation.

6. Results Discussion

The validation of the proposed SMO observer, which is used by the IRFOC control system shown
in Figure 1, has been accomplished by using three tools: the first is through using the Hardware in the
loop RT simulator shown in Figure 2, the second simulation test is carried out using the Matlab/Simulink
environment, and finally the third test which is performed experimentally using TMS320C32 DSP
based control board. The parameters of the used five-phase IM used in the three tests are given in
Table 2, and the parameters of the proposed SMO observer are given in Table 3.

For the first test shown in Figure 3, the performance of the observer is investigated at operating
speed of 1000 RPM, with a sudden change in the estimated rotor resistance. This is to investigate the
sensitivity of the proposed adaptive SMO observer. It is found that a sudden variation in the resistance
value has a null impact on the estimated flux signal, the slight deviation demolishes and the estimated
signal matches again the reference in a very short period (almost 0.2 s). At last, the observer’s dynamic
is tested when changing the motor load at time t = 25s. The obtained results in Figure 3 report that the
behavior of the drive is normal i.e. smooth stator currents are obtained while maintain their ratings,
both rotor speed and rotor flux track effectively their reference values with minimum error and high
matching precision. The obtained results in this test also confirm the high dynamic performance of the
controller when changing the load torque from 0 to 70% of its rated value.

In the second test, which is carried out using the Matlab/Simulink software, the dynamic behavior
of the proposed SMO observer is tested through investigating the estimated values of rotor flux, which
under parameter variation, plays an important role in estimating the rotor speed. The test is performed
when changing the rotor resistance value to 1.5 = R, at time t = 0.5 s while observing the rotor flux
with and without using the SMO observer. The obtained results in Figure 4 approved the vital role that
the SMO observer plays in maintaining the estimated flux values within the reference limits.
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The third test is carried out experimentally using the TMS320C32 DSP based control board. In this
test the dynamic performance of the SMO observer is tested for different operating speeds (medium
and low). In Figure 5, the drive is operated at 250 RPM, with two values of load torque: 0 and 50% of
rated load torque. The obtained results illustrate the feasibility of the proposed sensorless controller
via obtaining sinusoidal signals of rotor flux and stator currents, while tracking precisely the reference
speed and following the torque change as well.

The drive performance is also tested experimentally at very low speed operation (20 RPM), which
is considered as a challenge to the SMO observer. The results shown in Figure 6 confirm and validate
the effectiveness of the proposed SMO in achieving the control targets and estimating the rotor speed
and rotor flux values with minimum deviations.

7. Conclusions

A novel two-time-scale procedure has been proposed in this paper to design an adaptive sliding
mode observer (SMO) to estimate the rotor speed and rotor resistance simultaneously so that the
sensorless speed control of a five-phase IM can be realized. The observing system is designed
considering the stator voltages and stator currents as measured quantities. The feasibility of the
proposed SMO observer with rotor resistance and speed estimations is proved using three different
tools: the RT-lab real-time simulation, the Matlab/Simulnink software and experimentally using the
TMS320C32 DSP based control board. High dynamic performance of the proposed SMO observer is
demonstrated in terms of speed regulation and parameter sensitivity. It is further shown that the use
of singular perturbation simplifies the construction of the robust observer for the five-phase IM drive
while achieving the desired dynamic performance.
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