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Abstract: In recent years, taking advantage of renewable energy sources (RESs) has increased
considerably due to their unique capabilities, such as a flexible nature and sustainable energy
production. Prosumers, who are defined as proactive users of RESs and energy storage systems
(ESSs), are deploying economic opportunities related to RESs in the electricity market. The prosumers
are contracted to provide specific power for consumers in a neighborhood during daytime. This study
presents optimal scheduling and operation of a prosumer owns RESs and two different types of ESSs,
namely stationary battery (SB) and plugged-in electric vehicle (PHEV). Due to the intermittent nature
of RESs and their dependency on weather conditions, this study introduces a weather prediction
module in the energy management system (EMS) by the use of a feed-forward artificial neural
network (FF-ANN). Linear regression results for predicted and real weather data have achieved 0.96,
0.988, and 0.230 for solar irradiance, temperature, and wind speed, respectively. Besides, this study
considers the depreciation cost of ESSs in an objective function based on the depth of charge (DOD)
reduction. To investigate the effectiveness of the proposed strategy, predicted output and the real
power of RESs are deployed, and a mixed-integer linear programming (MILP) model is used to solve
the presented day-ahead optimization problem. Based on the obtained results, the predicted output of
RESs yields a desirable operation cost with a minor difference (US$0.031) compared to the operation
cost of the system using real weather data, which shows the effectiveness of the proposed EMS in this
study. Furthermore, optimum scheduling with regard to ESSs depreciation term has resulted in the
reduction of operation cost of the prosumer and depreciation cost of ESS in the objective function has
improved the daily operation cost of the prosumer by $0.8647.

Keywords: prosumer; energy management system (EMS); energy storage system (ESS); plug-in
hybrid electric vehicle (PHEV); day-ahead optimization; battery depreciation; feed-forward artificial
neural network (FF-ANN); weather prediction

1. Introduction

Over the last two decades, using renewable energy sources (RESs) such as wind turbines (WTs)
and photovoltaic (PV) systems has increased considerably due to some environmental concerns and
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their unique features. From this perspective, traditional centralized power generations are replaced
with modern forms of decentralized power generation, which can change consumption and production
patterns pragmatically. In the modern electricity market, a new expression has been recently introduced
to present a bilateral role. In fact, prosumers are regarded as an entity consumes electrical energy and
reserve the capability to generate electricity in a reasonable way. It is often argued that market reform
and regulatory support promote electricity market and ensure the promising profits to individual
prosumers. In addition, the distribution system operator (DSO) encourages prosumers to achieve
benefits and reduction in maintenance and expansion cost of equipment. In the U.S. and some European
countries, the development of this kind of market has led to achieving a great balance between supplies
and demand as well [1–5].

Recently, Iran’s electricity market has depicted some developments in the increasing use of
renewable energy sources as well as cost adjustment by the integration of prosumers and consumers
in a prosumer market. These electricity markets have been established for prosumer aggregators,
namely smart cities, zero-carbon building, off-grid islands, or residential and commercial aggregators.
It is important to note that residential buildings play an active role in this market because they can be
equipped with modern energy technologies such as plug-in hybrid electric vehicles (PHEVs). Besides,
they can also supply energy for consumers through the nearest aggregator [6]. In fact, among different
types of electric vehicles (EVs; such as a PHEV, fuel cell electric vehicle (FCEV) [7], and fully electric
vehicle (FEV)), PHEV is the most prominent EV in Iran. Therefore, we have considered PHEV in our
model [8].

Moreover, there is an ability to deploy load management and minimize energy consumption in
order to achieve some economic benefits. Due to the high penetration of RESs and dynamic behavior
of their electricity production during different days, a variable amount of electricity can be achieved
in different hours of a specific day [9]. Although solar and wind generations are highly dependent
on weather conditions, there may be insufficient renewable outputs energy during adverse weather
conditions. As a result, decision-makers of this residential building intend to sell extra electricity to the
consumers at a reasonable price. Similarly, consumers are also mainly motivated by the prices that are
more affordable than utility rates. Since the electricity prices in Iran are based on the progressive tax
scheme, where prices rise with more electricity consumption rate, consumers will avoid paying extra
cost by a proper interacting with the prosumers.

The presence of local energy management systems (EMSs) seems essential in order to manage some
energy storage systems like stationary batteries (SBs) and PHEVs in a sensible way. Energy storage
systems (ESSs), along with other applications, are deployed to increase revenues and improve the
operation of RESs efficiently. The primary purpose of taking advantage of energy management systems
(EMS) in the current study is to reduce the incoming power from the utility at peak hours and providing
extra-generated power for contracted consumers. As a result, an advanced charge and discharge
schedule appears to be necessary, particularly for residential buildings, which have been contracted to
some consumers with a specific amount of power during scheduled periods like peak hours. Likewise,
this is more favorable to store generated electricity from RESs to support contracted consumers instead
of purchasing from the network during peak hours.

Some studies have been conducted in order to focus on the optimal scheduling and operation of
these ESSs in the power systems. In [10], the authors proposed comprehensive planning of ESSs, so
that ESSs can mitigate WT output power fluctuation by using variable-interval optimization along
with fuzzy controlling approaches. They also considered different characteristics of ESSs, including
economic costs, state-of-health, and energy capacity for effective contribution. One of the applications
of ESSs is the frequency regulation owing to their fast controlling abilities [11–14]. In addition to the
mentioned application of ESSs, high penetration of RESs may result in voltage instability of the grids.
From this perspective, they generally can be used to moderate voltage instability [15]. In these studies,
researchers have not investigated the market-based operation or control of ESSs in order to achieve the
maximum monetary incomes. In comparison to [11–14], this study purposes a market-based operation
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of ESSs in which the ESSs minimizes day-ahead operation cost of the prosumer. A different study
presented an economical approach to define a policy for electricity pricing, which leads to the optimal
charge and discharge of ESSs so that a metaheuristic algorithm is used for day-ahead scheduling of
multicarrier energy networks [16]. However, they have neglected weather variability in the proposed
method, which may affect the optimal result of the system.

In another study [17], researchers have proposed an optimum operational strategy for ESSs in
order to maximize the level of profit from the South Korean demand response (DR) program. The fact
is that ESSs are deployed in order to reduce peak load demand and make a useful contribution to grid
reliability and stability simultaneously. It is argued that generating profit from ESSs may be difficult
with the present DR program. Nevertheless, this study does not give any strategy for considering
RESs in the proposed method. In fact, integration of RESs and ESSs would increase the level of profits
from DR programs. Furthermore, some authors did not consider any specific factor for ESS aging.
However, they verify that the proposed methods may be feasible in the near future by changing the
conditions of the current DR. In [18], a two-phase ESS scheduling model has been introduced. In the
first stage of the proposed model, ESS reduces peak load, and in the second stage, electricity trading is
performed, which results in a minimization of the overall operating cost of the system by the use of the
remaining capacity. Besides, this paper has presented some machine learning techniques for a load
prediction. However, the authors indicated that in order to have a better prediction, it is advised to
consider variables related to weather, namely ambient temperature, and other environmental factors.
In a recent study [19], optimal scheduling and operation of ESSs by considering the corrective operation
of ESS has been outlined in prosumer energy market where the objective is to achieve maximum
profits of the prosumer. It is important to note that no weather predictions have been considered for
RESs productions in their work. In fact, all their assumptions are generally based on historical data.
In addition, several studies in recent years have worked on the optimal operation of PHEVs in different
networks and markets [20–22]. Due to the high capital cost of ESSs, and a limited number of charge
cycles, many new types of studies have deployed battery depreciation models in their studies [21–23].

In this paper, enhanced scheduling of the prosumer in a day-ahead electricity market has been
proposed, which can benefit from RESs and ESSs simultaneously. Due to the high dependency
of RESs upon weather conditions, they are assumed as intermittent energy sources. As a result,
a feed-forward artificial neural network (FF-ANN) has been introduced in order to predict day-ahead
weather conditions instead of using historical data for PV and WT productions. However, considering
a weather predicting module in the EMS of the prosumer was neglected in recent studies [18,19].
As a matter of fact, neglecting uncertainties of weather parameter in the day-ahead operation of the
prosumer would result in the inaccurate operation cost of the prosumer. In addition, some recent
studies in the field of prosumer scheduling have neglected to consider a proper depreciation cost
in the optimization model [20–23]. This paper tries to fill such a knowledge gap by regarding the
depreciation cost of both SB and PHEV in the optimization model based on daily depth of charge
(DOD) reduction because of the limited lifetime of the batteries. In the final step, mixed-integer linear
programming (MILP) has also been used to minimize the operation cost of the prosumer in a fair way.

2. Overall Description of the Model

2.1. System Architecture

The architecture of the proposed energy system has been shown in Figure 1. This layout includes
RESs (e.g., PV and WT), ESSs (e.g., SB and PHEV), power conversion unit (PCU), prosumer load,
and contracted power that the prosumer committed to supplying in a fair way. Electrical lines transfer
electricity among the system, and RESs generate electricity and participate in the power supplying
as well as possible grid sales. Nevertheless, the priority of RESs is to support load demand as much
as possible. In this layout, PCU is deployed to convert power from DC/AC and AC/DC. ESSs can
store additional energy as well as accumulates low-price electricity from the grid in order to inject into
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prosumer self-consumption with proper scheduling. Data lines are designed for data transfer between
components and EMS. The EMS collects data from each system and uses all gatherings in day-ahead
optimization procedures. Moreover, EMS stores collected data in data storage for pattern-analyzing,
such as weather conditions, price data, prosumer load, and contracted power. Besides, EMS is able to
predict the day-ahead output power of RESs based on the stored historical weather data.
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2.2. The Role of Prosumer

Prosumers have an active interaction with system operation. From this view, they are able to
store electrical energy during low electricity price or when surplus power is produced through RESs.
Therefore, the stored energy is injected into loads during hours when the electricity price is high
compared to other periods. In addition, they have to supply the contracted power to consumers during
defined hours. Prosumers, unlike consumers, pay for specific contracted power. Since the electricity
produced by the prosumers is lower than the utility, the consumers prefer to use electrical energy
from the prosumer. For this reason, this type of energy trading between prosumers and consumers is
considered an economic activity. It is worth mentioning that the prosumer benefits from minimizing
imported electricity from the grid during contracted hours.

According to Figure 2, a typical prosumer market includes three sections: EMS section, system
trading section, and data storage section. The EMS is utilized to monitor electricity generation and
consumption continuously. This monitoring aims to achieve historical data by the examination of
patterns for consumption load and electricity price. Moreover, EMS performs day-ahead prediction of
RESs output power based on the recorded historical weather data. Then, the optimization is performed
to reach the optimal operation of the understudy prosumer. Afterward, dispatching commands are
sent to controllers related to these dispatchable sources. If islanded conditions have occurred, EMS
analyzes the grid situation by simulation of frequency regulation and voltage stability and attempts
to amend them by taking advantage of network optimization or any other schemes. The trading
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system is able to sell extra electricity to the grid and participate in the electricity market effectively.
In addition, the electricity pricing of the prosumer and energy payments are estimated at this level of
study. Customers should utilize an intelligent energy meter to forward the measured rates to EMS of
the prosumer. Then, the incoming information to EMS is stored in data storage.
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3. Methodology

Based on the previous discussions, PV and WT are the main sources for generating electrical
energy in this market. In addition, ESSs are used for economic and technical purposes, including the
supply of prosumer and consumer contracted loads. In the following, mathematical formulations of
RESs, ESSs, and battery depreciation processes are described. Furthermore, the methods, which have
been allocated to the time-series FF-ANN prediction and optimization model are provided.

3.1. Mathematical Modeling of RESs

3.1.1. PV Unit

The output power of PV, which mostly depends on the ambient temperature and solar irradiation,
is formulated based on Equation (1). Furthermore, module efficiency (ηPV

t ) should be considered in
the output power of PV units. Equations (1) and (2) are used for calculating PV output power over
operation horizon [24,25]:

PPV
t = Apv ×Gt ×Npv × η

PV
t (1)

ηPV
t is calculated as follows:

ηPV
t = ηpvrated

[
1− α

(
Tt + Gt ×

NOCT − 20
800

− Tre f

)]
(2)

Since the PV system is an alternative power resource, its output power may vary from one hour
to another hour through changes in solar irradiance and temperature based on the above formulations.
The PV model introduced in (2) does not reflect the thermal depreciation at high temperature. The
thermal loss is quite severe in some harsh environment such as Asian countries, including Iran as
well [26,27]. Therefore, including a term to consider thermal loss would demonstrate an exact model of
PV performance. However, this study has not considered any thermal depreciation in the PV model.

3.1.2. WT Unit

WT produces electrical energy by exploiting of the wind kinetic energy. Environmental components
such as wind speed, air density, aerodynamic coefficient, and surface area are regarded as essential
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factors in the output power calculation of WT [28–30]. In this paper, the curve interpolation method is
deployed to calculate WT output power. This method has been presented as an accurate solution in
recent studies, which is formulated as follows [31]:

PWT
t =


0 vc < vwind

t < vr

Pnom

(
vwind

t −vci
vr−vci

)3
vci < vwind

t < vr

Pnom vr < vwind
t < vc

(3)

3.1.3. Energy Storage Systems

In this paper, energy storage systems include two appliances, namely stationary battery and
plug-in hybrid electric vehicle. Both of them can be described with the same formulation because of
their identical performance. However, different technical parameters of them have been proposed in
this paper. Some restrictions related to energy storage systems are taken into account in Equations
(4)–(12) [32,33]:

SOCt = SOCt−1 + ηcharge × Pcharge (t) −
Pdischarge (t)

ηdischarge
(4)

SOCt ≤ SOCmax (5)

SOCt ≥ SOCmin (6)

SOC0 = SOC24 (7)

Pcharge
t ≥ Pcharge

min (8)

Pcharge
t ≤ Pcharge

max (9)

Pdischarge
t ≥ Pdischarge

min (10)

Pdischarge
t ≤ Pdischarge

max (11)

Ucharge
t + Udischarge

t ≤ 1 (12)

In Equation (4), the level of charge in each ESS is defined by the state of charge (SOC), which
is constrained by upper and lower bands defined in Equations (5)–(6). According to Equation (7),
it is essential for ESS to have the same initial and final levels of SOC because ESS operates every
day. It is worth mentioning that the full charging/discharging of ESSs is not recommended because it
results in the fast depreciation of the batteries. From this perspective, full charging/discharging of ESS
is prohibited in the day-ahead optimization as described in Equations (8)–(11). Since charging and
discharging of ESS cannot occur at the same time, a binary value is defined in order to indicate this
constraint, as shown in Equation (12).

3.1.4. Depreciation of ESSs

According to [34], the DOD of a battery influences its lifetime to a certain extent. In addition to this,
prosumers, who contracted to provide a specific amount of power to the aggregator, may face major
daily discharge–charge cycles. Consequently, this repetitive process will result in the depreciation of
the batteries in the future. This battery depreciation can be introduced by taking into consideration a
cost on DOD parameter at the end of a day.

For both energy storage systems, decision variables of SOCmin,SB
d and SOCmin,PHEV

d are defined
to determine the minimum level of SOC at the end of the operation day. By multiplying considered
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decision variables by the depreciation cost coefficients (BSB, BPHEV), the cost of depreciation of ESSs
(DSB

d , DPHEV
d ) are obtained as described in Equations (13) and (14) follows [35]:

DSB
d = (SOCmin,SB

d × BSB) (13)

DPHEV
d = (SOCmin,PHEV

d × BPHEV) (14)

It is assumed that the battery pack would need a replacement when its total throughput is the
same throughput as its lifespan. The battery depreciation cost coefficients per kWh are characterized
using the following equations:

BSB =
RSB

LSB × ESB
(15)

BPHEV =
RPHEV

LPHEV × EPHEV
(16)

For both types of ESSs, different depreciation costs have been regarded according to their
characteristics. The formulation of total depreciation, including PHEV and SB, is described below:

DTot
d = (SOCmin,PHEV

d × BPHEV) + (SOCmin,SB
d × BSB) (17)

DESS
d = DPHEV

d + DSB
d (18)

3.2. Predicting Weather Parameters Using Time Series FF-ANN

Some recent studies have taken advantage of ANN for predicting weather conditions [36–38].
In this study, a multilayer perceptron (MLP) as an FF-ANN is used for weather parameter prediction.
The backpropagation (BP) algorithm is also used for training the FF-ANN [39]. In this study, feedforward
expresses the transaction of data from input to output. Feedforward output is determined by passing
the input through the neural network. Feedforward networks perform with supervised learning rules,
which calculate the best output to minimize the error between inputs and their respective outputs by
modifying the network’s weights.

Generally, the time series is a set of data points that are arranged by equal space–time. In fact,
in time series prediction, a model is deployed to predict upcoming values based on recently recorded
data [40]. In other words, future values are predicted by learning the previous data series. From this
perspective, MLP-ANN is introduced to predict time series because this method yields more satisfactory
results in some recent studies [41].

It is important to mention that MLP-ANN demands some memory for temporal information
processing. Different methods are established for making this memory in ANN like time delays in
this network. The fact is that these delays are used in order to adjust the parameters of ANN during
the learning process. A typical modeling of time series with MLP-ANN has been shown in Figure 3.
Three layers of this model include the input layer, hidden layer, and output layer. According to Figure 3,
single variant inputs, which are depicted through X(n− 1), X(n− 2) . . .X(n− p), are the previous data
samples, p is the prediction order, and y(n) is the output value, which indicates the prediction result.
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In this paper, solar irradiance, temperature, and wind speed predictions are represented based on
last year’s data that were gathered from a local meteorological center located in Kerman province, Iran.
Figure 4 illustrates hourly data by year from 1 January 2007 to 31 December 2007. A three distinct
MLP-ANN is considered in order to forecast the solar irradiance, temperature, and wind speed. Two
different data of each parameter were used for the training and testing of the MLP-ANN method.
In order to have a more suitable prediction for fay-ahead optimizations, the time horizon was proposed
24 h ahead at each time series. In addition to the mentioned considerations, input and output data
were normalized to [0,1] as follows:

y = ymin +
x− xmin

xmin − xmin
(ymax − ymin) (19)
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3.3. Optimization Modeling

The main purpose of the mentioned objective function is to minimize the operation cost of the
prosumer, which is mainly the electricity price that should be paid to the utility. Furthermore, it is
essential to consider battery depreciation because of the high replacement cost of ESSs. As a result,
battery depreciation can be included in this objective function as follows:

O.F. = Min
(∑tn

t=1

(
Ps

t ×Kt
)
−

∑dn

d=1
Dtot

d

)
(20)

S.t
Ps

t + PWT
t + PPV

t + Pdischarge
t = Pcharge

t + Pcontract
t + Pload

t (21)

Ps
min ≤ Ps

t (22)

Ps
min ≤ Ps

t (23)

Equations (4) to (16)

Optimization horizon considered one day-ahead (tn = 24, dn = 1). Different optimization
methods can be employed in order to solve this problem effectively. In this study, mixed-integer linear
programming (MILP) was introduced to overcome this objective function in a sensible way. In fact,
MILP is able to carry out complicated problems with less calculation time and find optimal global
solutions [42]. Furthermore, Equation (21) indicates a balance between provided and demanded power
in the prosumer grid. Equations (22) and (23) describe system capacity limits, which are −500 and 500
kWh for the lower and upper bands, respectively.

4. Simulation Results and Discussion

4.1. Prediction Results

Two different data, including real and predicted data, have been shown in Figure 5 to describe an
ordinary summer day during this research. Figure 6 and Table 1 show an error histogram and linear
regression results for predicted weather parameters. As can be seen from the results, it was evident that
predicted values for temperature and solar irradiance were predicted accurately enough. However,
wind speed was not predicted precisely in comparison to the two other parameters due to its high
hourly variations. It is worth noting that in this paper, the application of MLP in time series prediction
was investigated. Some theoretical details of the MLP are available in [43]. Prediction values were
used for calculating PV and WT output power according to the mentioned equations. In the following,
a case study was defined in a further subsection (Section 4.3.3) in order to analyze the level of accuracy
of these predictions.



Appl. Sci. 2020, 10, 2774 10 of 22
Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 23 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Real and predicted data of (a) solar irradiance; (b) temperature; and (c) wind speed. Figure 5. Real and predicted data of (a) solar irradiance; (b) temperature; and (c) wind speed.



Appl. Sci. 2020, 10, 2774 11 of 22Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 23 

 

 
(a) 

 
(b) 

 
(c) 

0

1000

2000

3000

4000

5000

Error Histogram with 20 Bins

In
st

an
ce

s

Errors = Targets - Outputs

 

 

-0
.3

40
6

-0
.3

00
8

-0
.2

61
-0

.2
21

2
-0

.1
81

4
-0

.1
41

6
-0

.1
01

7
-0

.0
61

92
-0

.0
22

11
0.

01
77

1
0.

05
75

3
0.

09
73

5
0.

13
72

0.
17

7
0.

21
68

0.
25

66
0.

29
64

0.
33

63
0.

37
61

0.
41

59

Training
Validation
Test
Zero Error

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Error Histogram with 20 Bins

In
st

an
ce

s

Errors = Targets - Outputs

 

 

-6
.0

46
-5

.3
85

-4
.7

24
-4

.0
62

-3
.4

01
-2

.7
4

-2
.0

78
-1

.4
17

-0
.7

55
9

-0
.0

94
61

0.
56

67
1.

22
8

1.
88

9
2.

55
1

3.
21

2
3.

87
3

4.
53

4
5.

19
6

5.
85

7
6.

51
8

Training
Validation
Test
Zero Error

0

200

400

600

800

1000

1200

1400

1600

1800

Error Histogram with 20 Bins

In
st

an
ce

s

Errors = Targets - Outputs

 

 

-3
.2

79
-2

.4
46

-1
.6

12
-0

.7
79

5
0.

05
35

6
0.

88
66

1.
72

2.
55

3
3.

38
6

4.
21

9
5.

05
2

5.
88

5
6.

71
8

7.
55

1
8.

38
4

9.
21

7
10

.0
5

10
.8

8
11

.7
2

12
.5

5

Training
Validation
Test
Zero Error

Figure 6. Error histograms for predicted (a) solar irradiance; (b) temperature; and (c) wind speed.
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Table 1. Linear regression results for all the predicted parameters.

Weather Parameter Training Testing Validation All

Solar irradiance 0.957 0.948 0.954 0.956
Temperature 0.989 0.988 0.987 0.988
Wind speed 0.227 0.229 0.232 0.230

4.2. Case Studies

In order to analyze the behavior of the prosumer, three case studies were introduced according
to the system architecture, which has been shown in Figure 1. The three considered case studies are
as follows.

• Case 1: Day-ahead scheduling of the prosumer considering predicted weather data.
• Case 2: Day-ahead scheduling of the prosumer considering ESSs depreciation cost and predicted

weather data.
• Case 3: Day-ahead scheduling of the prosumer considering real weather data.

As discussed in previous sections, no power loss was assumed in the mentioned objective
function since the grid of the prosumer had relatively short lines in comparison to the transmission or
distribution lines. Parameters of PV and WT are shown in Table 2, as well as technical parameters of
the energy storage system are depicted in Table 3.

Table 2. Technical parameters photovoltaic (PV) and wind turbine (WT) units [44].

PV Parameter Value WT Parameter Value

Module Nominal Power 225 W Pnom 5 kW
α −0.38% Vci 2 m/s

NOCT 45 C Vr 12 m/s
Tre f 25 C Vc 25 m/s
ηpvrated 15%

Apv 1.244
Npv 30

Table 3. Technical parameters of energy storage systems (ESSs).

Parameter SB PHEV Unit

Vnom 12 12 V
SOC0 5 4 kW

SOCmax 10 8 kW
Pmin

chargarge 0 0 kW
Pmax

chargarge 9 7 kW
Pmin

dischargarge 0 0 kW
Pmax

dischargarge 8 6 kW
ηchargarge 0.93 0.9 %
ηdischargarge 0.95 0.9 %
BSB, BPHEV 0.6 0.2 $

In this study, residential buildings with net metering devices were included in a time of use (TOU)
pricing program with different hourly rates [45]. TOU rates were used as prosumer payments to the
utility. These rates were based on real electricity prices utilized in Iran’s electricity market during the
summer season. However, the rates differ from region to region depending on their varying climates.
In a particular case, the city of Kerman (30◦28′39”N, 57◦08′34”E) was included in tropical region 2 (out
of 4 tropical regions) due to its hot and dry weather during the summer season. Table 3 depicts the
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TOU rates utilized in all simulations [46]. According to Table 4, two mid-peak (07:00 to 13:00, 17:00 to
19:00) and peak (13:00 to 17:00, 19:00 to 23:00) time intervals and one off-peak (23:00 to 07:00) time
interval occurs during a day.

Table 4. Time of use (TOU) prices.

Time of Day (h) Price ($/kWh)

23:00 to 07:00 0.0075
07:00 to 13:00 0.03
13:00 to 17:00 0.12
17:00 to 19:00 0.03
19:00 to 23:00 0.12

Both Figures 7 and 8 show the output power of PV and WT units based on predicted weather
parameters. In the following, Figure 9 illustrates the prosumer consumption pattern during an ordinary
day. The fact is that these values were acquired from a typical residential building that was recorded
during the specific year. The load profile depicted in Figure 9 has one major peak consumption at noon
(12:00). Figure 10 illustrates the contracted power that the prosumer was committed to supplying to
the consumer. From this perspective, the prosumer agreed to a contract for providing a total of 16 kW
of power during specific hours of the day (14:00 and 16:00) according to Figure 10.
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In this paper, GAMS (GAMS Development Corporation, Washington, DC, USA) software was
deployed to solve MILP problems through CPLEX (IBM ILOG CPLEX Optimization Studio, New York,
USA) solver. In addition, a 64-bit personal computer with 8 GB RAM and Core i5 (Intel) CPU was
used during all simulations. Predicted values of weather parameters were linked from the MATLAB
(MathWorks, Massachusetts, USA) environment to GAMS through the GDXMRW interface [47].

4.3. Results of Case Studies

4.3.1. Case 1

In the first case, day-ahead optimization was conducted by taking advantage of TOU prices and
real load data as well as predicted weather data according to details described in previous sections. The
predicted output power of PV and WT were calculated based on the Equations (1)–(3). Optimization
results are shown in Figures 11 and 12. Based on the results in Figure 11a,b, SB and PHEV were charged
at separate hours during mostly off-peak and mid-peak periods. SB and PHEV also discharged the
stored power during peak hours when the prosumer was responsible for providing the consumer load.
Based on Figure 12, the prosumer imported less power from the utility grid in the hours between 7:00
and 11:00 because of sufficient production of the PV and WT system, which reduced the operation cost
of the prosumer. It is worth mentioning that according to Figure 12, a noticeable decline had occurred
at 14:00 since SB was discharging its power in order to supply the consumer load in a reasonable way.
Furthermore, a considerable increase had occurred at 15:00, which is ordinary since the EMS was
charging SB and PHEV to supply the contracted load in the hours between 14:00 and 16:00. Therefore,
SB discharged at 14:00 to support the contracted power. Although PHEV was discharged at 13:00 with
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a small amount of electricity (0.2163 kW), the significant injection had occurred at 16:00. Then, SB and
PHEV were charged at 17:00 and 18:00, respectively, because the TOU prices were at a lower level in
comparison to the peak hours. In the following, ESSs were discharged in peak periods for having a
minimum operation cost. According to Figure 11b, PHEV was discharged at 19:00 and 20:00, while SB
was discharged at 22:00. Finally, when the peak period ended at 22:00, EMS was making a proper plan
in order to charge the ESSs after this time, which resulted in more power import from the grid by the
prosumer based on the overall trend in Figure 12.
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RESs are merely allocated to provide the prosumer load and consumer contracted power. The
main reason is that the production of the RESs is much less than all electricity consumption, and the
utility grid provides them to meet the customers’ requirements. It is important noting that RESs do not
inject electricity into the utility grid, and ESSs are charged through the utility grid instead of RESs
due to economic benefits. This pattern may differ from one day to another and depends on input data
such as weather and load and data. In this case, the objective function value was achieved at $20.353.
In addition, revenues of contracted power were not considered in the objective function due to fixed
costs of payments.

4.3.2. Case 2

In order to have a better understanding of ESSs depreciation, this case study was conducted. The
objective function in the previous case study was acquired by considering the depreciation cost of
ESS. In this case, simulations were performed with and without considering ESSs depreciation as
described in subsection (Section 3.1.4). The patterns of ESSs SOC were depicted for the understudy
day (Figure 13). Some significant reductions occurred when ESSs was discharging to obtain maximum
profits from the market. According to the previous description, the initial and final values of SOC
should be equal in the day-ahead operation of ESSs. The minimum values of SOC for SB and PHEV on
the day were achieved as 1.25 kW and 1.14 kW, respectively. These two values were regarded in the
first case study and the objective function achieved as $20.353. However, if the ESSs depreciation term
DESS

d has not been regarded in the mentioned objective function, the value of US$21.248751 would
have been achieved, which shows an increase in the operation cost of the prosumer. The difference
between the two values was US$0.8647 for a typical summer day. With regard to the ESS lifetime,
a higher value will be obtained, which shows the effect of battery depreciation on the system operation
cost. Moreover, the daily value of minimum SOC (SOCmin,SB

d ,SOCmin,PHEV
d ) changes based on the

operational parameters, such as load data (including prosumer load data and contracted load with the
consumer) and availability of RESs. As a result, long-term optimization seems necessary in order to
analyze the precise value of ESSs depreciation cost.

4.3.3. Case 3

In all previous cases, the output power of PV and WT units was presented under predicting
conditions. To evaluate the effect of predicted and real weather data on changes in the operation
cost of prosumer, this case study was introduced. Real weather data were deployed for optimization.
Figure 14 demonstrated the power flow of the system based on predicted and real data. As can be
seen, both diagrams followed a similar pattern where the performance of the system was not changed
significantly. However, for the case with predicted weather data, less electrical power was imported
from the grid between 4:00 and 11:00. The trend was reversed from 12:00 to 18:00, where the case
with real data imported more electricity. Between 18:00 and 3:00, the exchanged power was the same
for both cases (real and predicted weather data) because the PV as the main source of energy had no
output power in this period. It is important to say that the operation cost of the prosumer, when the
real data was used, would be US$20.384, which shows a slight increase in comparison to the use of the
predicted data for the understudy day. The difference between real and predicted operation cost was
US$0.031, which is a desirable value. Therefore, the proposed EMS for the day-ahead operation of the
prosumer, which considered intermittency of RESs and ESSs depreciation cost, was effective according
to the obtained results.
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MLP-ANN could not accurately predict the hourly wind speed. Therefore, it is highly suggested to 
implement and evaluate different predicting algorithms to validate the proposed optimization 
model. 

Uncertainty of the load demand may affect the operation cost of the prosumer. However, this 
study had not considered the load prediction for the day-ahead operation of the study, hence, it 
could be considered alongside the weather prediction in the future works. Moreover, a 
comprehensive model for depreciation cost of ESSs could be considered in the future works in which 
the gap between the highest and lowest SOC is minimized in every day. 
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Figure 14. Exchanged power between prosumer and utility grid based on predicted and real
weather data.

5. Conclusions

In this paper, the authors introduced a day-ahead optimization for the prosumer by considering
weather predictions for PV and WT output power. Linear regression results for predicted and real
weather data achieved 0.96, 0.988, and 0.230 for solar irradiance, temperature, and wind speed,
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respectively. According to the results, solar irradiance and temperature were accurately predicted,
however, due to high hourly intermittency of wind speed, it was not properly predicted. The operation
cost of the prosumer by using the predicted data had shown a minor difference (US$0.031) with the
operation cost of the system with real weather data. In order to investigate the performance of ESS,
the depreciation cost was proposed in the optimization model, and the prosumer interaction with
the market was analyzed. ESSs reduced the operation cost of the prosumer by optimal charge and
discharge cycles. Moreover, the depreciation cost of ESS in the objective function improved the daily
operation cost of the prosumer by US$0.8647. Due to a high variability of wind speed, MLP-ANN
could not accurately predict the hourly wind speed. Therefore, it is highly suggested to implement
and evaluate different predicting algorithms to validate the proposed optimization model.

Uncertainty of the load demand may affect the operation cost of the prosumer. However, this
study had not considered the load prediction for the day-ahead operation of the study, hence, it could
be considered alongside the weather prediction in the future works. Moreover, a comprehensive model
for depreciation cost of ESSs could be considered in the future works in which the gap between the
highest and lowest SOC is minimized in every day.
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Nomenclature

Parameters
SOC0 Initial ESS SOC (kWh)
SOC24 Final ESS SOC (kWh)
SOCmax Upper band of ESS SOC (kWh)
SOCmin Lower band of ESS SOC (kWh)
Pmin

chargarge Lower band of ESS charge (kWh)
Pmax

chargarge Upper band of ESS charge (kWh)
Pmin

dischargarge Lower band of ESS discharge (kWh)
Pmax

dischargarge Upper band of ESS discharge (kWh)
ηchargarge Charge coefficient of ESS (%)
ηdischargarge Charge coefficient of ESS (%)
Npv Number installed PV modules
Apv Area of the module (m2)
RSB Replacement cost of SB ($)
LSB Lifetime of the SB (year)
ESB Square root of both ways of efficiency of the SB (%)
RPHEV Replacement cost of PHEV ($)
LPHEV Lifetime of the PHEV (year)
EPHEV Square root of both ways of efficiency of the PHEV (%)
BSB SB depreciation cost coefficient per kWh
BPHEV PHEV depreciation cost coefficient per kWh
ηpvrated Rated efficiency of PV measured at referenced temperature (25 ◦C)
NOCT Normal cell operation temperature (◦C)
Tre f Reference temperature (25 ◦C)
α Temperature coefficient for cell efficiency (0.004/◦C)
Vc Cut-out speed (m/s)
Vci Cut-in speed (m/s)
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Vr Wind speed at rated power (m/s)
Ps

max Upper bound of import power from grid (kWh)
Ps

min Power export limit to grid (kWh)
Variables
ηPV

t Efficiency of PV module (%)
Gt Hourly solar irradiance (kW×m−2)
Tt Hourly ambient temperature (◦C)
Vwind

t Hourly wind speed (V)
Kt Hourly electricity price ($)

Pchargarge
t Charge power of ESS (kWh)

Pdichargarge
t Discharge power of ESS (kWh)

Ps
t Power flow from or to grid (kWh)

PPV
t Output power of PV (kWh)

PWT
t Output power of WT (kWh)

Pcontract
t Contracted power (kWh)

Pload
t Prosumer load profile (kWh)

SOCmin,SB
d Minimum SB SOC at the end of the day (kWh)

SOCmin,PHEV
d Minimum SOC of PHEV at the end of the day (kWh)

SOCt SOC in each hour (kWh)
DESS

d Total EES depreciation cost ($)
DSB

d SB depreciation cost ($)
DPHEV

d PHEV depreciation cost ($)
x Original data value
y Normalized data value
xmin, xmax Minimum and maximum value of x
ymin, ymax [0,1]

Ucharge
t ESS charge binary variable

Udischarge
t ESS discharge binary variable

Indices
t Index of time
d Index of day
Abbreviations
RES Renewable Energy Source
SB Stationary Battery
EV Electric Vehicle
FEV Fully Electric Vehicle
FCEV Fuel Cell Electric Vehicle
PHEV Plug-in Hybrid Electrical Vehicle
ESS Energy Storage System
PV Photovoltaic
WT Wind Turbine
PCU Power Conversion Unit
EMS Energy Management System
ANN Artificial Neural Network
FF Feedforward
MLP Multilayer Perceptron
DOD Depth of Charge
SOC State of Charge
MILP Mixed-Integer Linear Programming
BP Back Propagation
TOU Time of Use
DR Demand Response
DSO Distribution System Operator
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