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Abstract: Di-2-ethylhexyl phthalate (DEHP) has attracted attention as an emerging dominant phthalate
contaminant in marine sediments. Macrophthalmus japonicus, an intertidal mud crab, is capable of
tolerating variations in water temperature and sudden exposure to toxic substances. To evaluate the
potential effects of DEHP toxicity on cellular protection, we characterized the partial open reading
frames of the stress-related heat shock protein 60 (HSP60) and small heat shock protein 67B2 (HSP67B2)
genes of M. japonicus and further investigated the molecular effects on their expression levels after
exposure to DEHP. Putative HSP60 and small HSP67B2 proteins had conserved HSP-family protein
sequences with different C-terminus motifs. Phylogenetic analysis indicated that M. japonicus HSP60
(Mj-HSP60) and M. Japonicus HSP67B2 (Mj-HSP67B2) clustered closely with Eriocheir sinensis HSP60
and Penaeus vannamei HSP67B2, respectively. The tissue distribution of Heat shock proteins (HSPs)
was the highest in the gonad for Mj-HSP60 and in the hepatopancreas for Mj-HSP67B2. The expression
of Mj-HSP60 Messenger Ribonucleic Acid (mRNA) increased significantly at day 1 after exposure to
all doses of DEHP, and then decreased in a dose-dependent and exposure time-dependent manner in
the gills and hepatopancreas. Mj-HSP67B2 transcripts were significantly upregulated in both tissues
at all doses of DEHP and at all exposure times. These results suggest that cellular immune protection
could be disrupted by DEHP toxicity through transcriptional changes to HSPs in crustaceans. Small
and large HSPs might be differentially involved in responses against environmental stressors and in
detoxification in M. japonicus crabs.

Keywords: di(2-ethylhexyl) phthalate (DEHP); crustacean; heat shock proteins (HSPs); gene
expression; environmental risk assessment

1. Introduction

Artificial chemical additives have come to the fore as one of the main environmental pollution
triggers. Plasticizers, which assign flexibility and durability to plastic, have been heavily utilized, owing
to the widespread application of plastic products. As the most common plasticizer, di-2-ethylhexyl
phthalate (DEHP) has contributed to the manufacture of flexible products from solid plastics such as
polyvinyl chloride [1]. Owing to its widespread use, DEHP is ubiquitously released into the aquatic
environment [2,3]. A recent study showed that the main source of DEHP is emissions from household
sewage and sludge disposal activities [2]. DEHP is detected at high levels in all sediment samples
taken from coastal bays, indicating ubiquitous contamination of the marine environment [3]. DEHP
concentrations were found to range from 3020 to 3970 ng/g in sediments from the Kuwait Coast,
Pearl River Delta in China, and Kaohsiung Harbor in Taiwan [4–6]. In addition, in the northwestern
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Mediterranean Sea, the range of DEHP concentrations was 42–802 ng L−1 and 130–924 ng L−1 in
the surface seawater (depth 0.5 m) and bottom seawater (depth 30 m), respectively [7]. DEHP
concentrations were found to range from 62 to 4352 ng L−1 from the bottom to the surface seawater of
the Bohai Sea and the Yellow Sea, China [8]. DEHP, an endocrine-disrupting chemical (EDC), exhibits
a perturbing effect on steroidogenesis activities [9,10].

Macrophthalmus japonicus is one of the main benthic species ubiquitously detected in tidal flats and
shows high distribution rates in estuarine regions of Korea and Japan [11,12]. As a main member of the
tidal flat food chain, this species contributes to the maintenance of biodiversity in estuarine ecosystems.
Because of their dominant distribution, crabs might be a good candidate organism to sense changes in
the condition of the surrounding environment, as well as changes involving food reserves, as they have
abundant nutrients and are of high economic value in commercial fisheries. However, crab habitats
are easily exposed to great hazards, such as plastic waste pollutants and chemicals that are transported
into mud flats through rivers or from the ocean. The effects of various stress conditions, such as
salinity and heavy metal and biocide contaminants, have been reported following expression analysis
of immune-related or stress-related genes in crabs [11,13–16]. A recent study showed the relationships
between EDCs and gene expression alterations involving crab innate immune systems [17], but there
have been no studies of the relationship between stress-related gene expression and EDC exposure.
Despite its biological importance as a nutritional resource, few studies have been conducted on the
M. japonicus genomic DNA sequence.

Heat shock proteins (HSPs) are ubiquitous proteins secreted in cells after exposure to stressful
conditions and are classified into six major groups (HSP27, HSP60, HSP70, HSP90, and large HSPs)
based on their molecular weights [18,19]. HSPs function as molecular chaperones to prevent the
formation of denatured proteins during high temperature stress and exhibit upregulation in their
expression patterns under such stress conditions [18,20]. In addition, these stress proteins play an
important role in the maintenance of normal polypeptide structures and in the promotion of correct
refolding of cellular proteins in response to various external stimuli, such as anoxia, heavy metals, or
chemicals, which cause protein denaturation [20–22]. HSPs assist in protecting cellular homeostasis
from such stress. HSP60 is well known as a pro-apoptotic molecule, which induces apoptosis and acts as
a chaperone for proteins transcribed from mitochondrial DNA [23–25]. HSP60 is a highly immunogenic
protein, which is implicated in a variety of autoimmune diseases [26,27]. The upregulation of HSP60
indicates its involvement in crucial functions mediating immune responses in the Chinese mitten
crab, Eriocheir sinensis, after crustacean pathogen infection [27]. HSP67B2 was characterized as a
Relish-regulated gene in the innate immunity of the Chinese shrimp (Fenneropenaeus chinensis) [28].
However, there is limited information about the molecular characterization and expression responses
involving the crustacean HSP67B2.

In the present study, we identify two stress-related genes, Mj-HSP60 and Mj-HSP67B2,
in M. japonicus crabs to evaluate the toxic effects of DEHP on cellular immune protection in crustaceans.
We investigate the genomic structure, phylogenetic relationships with other homologous HSPs, and
transcriptional responses of HSPs under DEHP stress. We seek to provide molecular information
regarding the influence of EDCs on stress-related gene expression in M. japonicus.

2. Materials and Methods

2.1. Ethical Statement

All experiments involving M. japonicus crabs in this study were carried out in accordance with the
guidelines and regulations approved by the Institutional Animal Care and Use Committee of Chonnam
National University.
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2.2. Preparation of M. japonicus Individuals

Crabs used in this study were collected from the Yeosu marine products market in Korea.
All individuals involved were 3 ± 0.5 cm in shell height, 3.5 ± 0.8 cm in shell width, and 7.5 ± 3.5 g
in body weight. We prepared glass tanks (45.7 × 35.6 × 30.5 cm) filled with seawater at 18 ◦C, with
25% salinity and a photoperiod of 12 h. Crabs were stabilized in glass tanks for 1 day prior to
exposure to DEHP solutions. After 1 day, healthy, undamaged crabs were selected for DEHP exposure
experiments (below).

2.3. DEHP Exposure Experiments

DEHP solutions were made from a solid compound (99%, Junsei Chemical Co. Ltd., Tokyo, Japan).
For preparation of a 10 mg L−1 stock solution of DEHP, we dissolved DEHP in 99% acetone at room
temperature. This stock solution was diluted with seawater for DEHP solutions with concentrations of
1, 10, and 30 µg L−1. A concentration of <0.5% acetone was used as a solvent control. For the DEHP
exposure experiments, a total of 40 crabs were randomly divided into four experimental groups (1, 10,
and 30 µg L−1 DEHP solutions and solvent control). Ten crabs were placed in each glass tank and
exposed to one of the three doses of DEHP over days 1, 4, and 7, respectively. Three individuals were
selected for tissue extraction at each time interval from the DEHP treatment and control groups. Food
was not provided for the crabs, but seawater with equivalent concentrations of DEHP was added every
day during the experiments. The experiments were conducted in triplicate with independent samples.

2.4. Total RNA Extraction and cDNA Synthesis

Crab gill and hepatopancreatic tissues were acquired from the exposure and control
groups. Total RNA was extracted using TRIzol reagent (Life Technologies, Rockville, MD, USA)
with Recombinant DNase I (Takara, Otsu, Japan) according to the manufacturers’ protocols.
The concentration of each RNA sample was measured using a Nano-Drop 1000 (Thermo Fisher
Scientific, Waltham, MA, USA). RNA integrity was checked by 1% agarose gel electrophoresis.
Single-stranded Complementary Deoxyribonucleic Acid (cDNA) synthesis was carried out with
1000 ng of total RNA using an oligo dT primer (50 µM) for reverse transcription in 20 µL reactions
(PrimeScript™ 1st strand cDNA synthesis kit, Takara) according to the manufacturer’s protocol.

2.5. Gene Expression Analysis Using Quantitative Reverse-Transcription PCR (RT-PCR) Amplification

To confirm the expression patterns of Mj-HSP60 and Mj-HSP67B2 in various tissues of
M. japonicus, and in the control and DEHP-exposed samples, quantitative RT-PCR was carried
out on an ExicyclerTM96 instrument (Bioneer, Daejeon, Korea). Each reaction was conducted
in a final volume of 20 µL containing 10 µL of Accuprep®2 × Greenstar qPCR Master Mix
(Bioneer, Daejeon, Korea), 6 µL of DEPC-treated water, 0.5 µL each of sense primer and antisense
primer (10 pM), and 3 µL of 30-fold diluted cDNA sample as a template. Quantitative RT-PCR
of two genes was carried out for 40 cycles of 95 ◦C for 15 s and 60 ◦C for 45 s using
the following primer pairs: Mj-HSP60 forward 5′-CCCTGAAGGATGAGCTTGAG-3′; Mj-HSP60
reverse 5′-GCTGGGATGATGGA CTGAAT-3′; Mj-HSP67B2 forward 5′-GAGCCGCGGTAGATTCTAT
G-3′; Mj-HSP67B2 reverse 5′-CTGGACAAGGAGGGTTTCAA-3′; Glyceraldehyde-3-Phosphate
Dehydrogenase (GAPDH) forward 5′-TGCTGATGCACCCATGTTT G-3′; and GAPDH reverse
5′-AGGCCCTGGACAATCTCAA AG-3′. Melting curves were determined by increasing the
temperature from 68 ◦C to 94 ◦C. All samples were amplified in triplicate to ensure reproducibility. The
relative expression level of each transcript was determined using M. japonicus GAPDH as an internal
reference gene and employing the 2−∆∆Ct method [29].
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2.6. M. japonicus Hsp Identification and Bioinformatics Analysis

Two HSP genes (Mj-HSP60 and Mj-HSP67B2) were identified by screening a previously generated
454 GS-FLX transcriptome database. Sequences were analyzed based on nucleotide and protein
databases using the BLASTN and BLASTX programs (National Center for Biotechnology Information,
U.S. National Library of Medicine, Bethesda, MD, USA), respectively [30]. Two domains, the
chaperonin-like super family of Mj-HSP60 and Rhodonase (RHOD) superfamily of Mj-HSP67B2, were
identified by PROSITE profile analysis [31]. A phylogenetic tree for the two HSPs was generated by
the neighbor joining method using Molecular Evolutionary Genetic Analysis (MEGA X, Pennsylvania
State University, State College, PA, USA) [32] with 1000 bootstrap replications.

2.7. Statistical Analysis

The Statistical Package for the Social Sciences (SPSS) 12.0 KO (SPSS Inc., Chicago, IL, USA)
was used for statistical analysis in this study. Data are presented as the mean ± standard deviation.
Two-way analysis of variance was conducted to identify the statistical effects of the exposure period
and each DEHP dose on Mj-HSP60 and Mj-HSP67B2 mRNA expression. Significant differences were
presented as *P < 0.05 and **P < 0.01.

3. Results

3.1. Characterization of Mj-HSP60 and Mj-HSP67B2 in M. japonicus

We identified two HSP genes (Mj-HSP60 and Mj-HSP67B2) in our 454 GS-FLX transcriptome
analysis [33] that were composed of 1360 nucleotides (nt) and 511 nt, which comprised open reading
frames encoding 330 and 149 amino acids, respectively (Figures 1A and 2A). Mj-HSP60 encoded
a mature protein of 330 amino acids, 75 bp of 5′ untranslated region (UTR) and 57 bp of 3′ UTR,
with a putative methionine initiation codon (ATG) beginning at 58 nt and a stop codon ending at
1224 nt. The SignalP Server (ExPASy) [34] predicted that the first 28 amino acids in the N-terminal
region of the polypeptide chain would form a signal peptide sequence. We found that Mj-HSP60
included a chaperonin-like super family main domain, whereas a RHOD superfamily motif was
detected in Mj-HSP67B2 (Figure 2A). The predicted molecular mass of the deduced amino acid
sequence was 61 kDa, with an estimated isoelectric point (pI) of 5.74. Mj-HSP60 was identified by
a BLAST search of the National Center for Biotechnology Information (NCBI) non-redundant (nr)
database. To understand the evolutionary position of the Mj-HSP60, we undertook phylogenetic
analysis using another 11 species of crustaceans. As shown in Figure 1B, the phylogenetic tree
consisted of two clades involving 12 crustacean species. The Mj-HSP60 formed one main clade
with other crabs (Eriocheir sinensis, Scylla paramamosain, and Portunus trituberculatus) and crayfish
(Cherax cainii, Cherax quadricarinatus, and Cherax destructor). The other clade was composed of shrimp
species (Macrobrachium nipponense, Macrobrachium rosenbergii, Penaeus japonicus, Penaeus monodon, and
Penaeus vannamei). For clear annotation of Mj-HSP67B2, we examined the RHOD superfamily domain
sequence (98 amino acids) using BLASTN searches of the nr database to detect sequences of other species
with high similarity. We carried out pairwise alignment of Mj-HSP67B2 using EMBOSS alignment
(EMBL-EBI, Cambridgeshire, UK) [35] with sequences identified in BLAST searches. The results showed
35.9–72.8% sequence identity, 54.4–81.6% similarity, and 4.9–10.5% gap percentage when compared
with HSP67B2 from other species (Table 1). The Mj-HSP67B2 sequence revealed considerable identity
(72.8%), similarity (81.6%), and gap percentage (4.9%) with Penaeus vannamei HSP67B2. In addition,
phylogenetic analysis of the Mj-HSP67B2 was carried out using data from various arthropod species,
owing to deficient genomic information regarding the HSP67B2 in crustaceans (Figure 2B). The results
showed that the two main clades were divided into Crustacea and Insecta, including mosquito and fly
species. The Mj-HSP67B2 showed the closest phylogenetic relationship to Penaeus vannamei HSP67B2.
Given these results from analysis of phylogenetic and pairwise sequence alignment comparisons, our
transcript sequence from the transcriptome database was identified as Mj-HSP67B2.
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Figure 1. Genomic information of Macrophthalmus japonicus HSP60 sequences identified in this study. 
(A) Mj-HSP60 structure was represented using the BioEdit program (North Carolina State University, 
Raleigh, NC, USA). The open reading frame (ORF) of Mj-HSP60 was predicted using the ExPASy tool 
and is shown as a black box. The yellow box indicates the chaperonin-like super family domain. (B) 
Phylogenetic analysis of Mj-HSP60 with known HSP60 sequences from 11 Crustacean species. The 
phylogenetic tree is based on amino acid sequences translated from Mj-HSP60 ORF by the neighbor 
joining method (bootstrap value 1000) using MEGA X software. The numbers at the nodes represent 
the bootstrap majority consensus values for 1000 replicates. GenBank accession numbers are shown 
with scientific and common names of each species. 

  

Figure 1. Genomic information of Macrophthalmus japonicus HSP60 sequences identified in this study.
(A) Mj-HSP60 structure was represented using the BioEdit program (North Carolina State University,
Raleigh, NC, USA). The open reading frame (ORF) of Mj-HSP60 was predicted using the ExPASy tool
and is shown as a black box. The yellow box indicates the chaperonin-like super family domain. (B)
Phylogenetic analysis of Mj-HSP60 with known HSP60 sequences from 11 Crustacean species. The
phylogenetic tree is based on amino acid sequences translated from Mj-HSP60 ORF by the neighbor
joining method (bootstrap value 1000) using MEGA X software. The numbers at the nodes represent
the bootstrap majority consensus values for 1000 replicates. GenBank accession numbers are shown
with scientific and common names of each species.

3.2. Expression Analysis of Mj-HSP60 and Mj-HSP67B2 in Various Tissues of M. japonicus

To better understand the expression patterns of Mj-HSP60 and Mj-HSP67B2, quantitative RT-PCR
was carried out for six tissue sources (gill, hepatopancreas, muscle, gonad, heart, and stomach) of
M. japonicus. The highest level of Mj-HSP60 expression was found in the gonad, while Mj-HSP67B2
was predominantly expressed in the hepatopancreas (Figure 3). In the gonad, Mj-HSP60 was expressed
3.7-fold higher than Mj-HSP67B2. In contrast, Mj-HSP67B2 exhibited a higher expression level than
Mj-HSP60 in the gills (1.7-fold) and hepatopancreas (3.1-fold). Relatively low levels of Mj-HSP60 and
Mj-HSP67B2 expression were observed in the muscle, heart, and stomach tissues.
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by a black box. The yellow box indicates a RHOD superfamily domain. (B) Phylogenetic analysis of 
Mj-HSP67B2 with known HSP67B2 sequences from seven Arthropoda species. The phylogenetic tree 
is based on amino acid sequences translated from Mj-HSP67B2 ORF by the neighbor joining method 
(bootstrap value 1000) using MEGA X software. The numbers at the nodes represents the bootstrap 
majority consensus values for 1000 replicates. GenBank accession numbers are shown with the 
scientific and common names of each species. 

  

Figure 2. Sequence information for Macrophthalmus japonicus HSP67B2 identified in this study. (A) An
open reading frame (ORF) of Mj-HSP67B2 was predicted using the ExPASy tool and is represented
by a black box. The yellow box indicates a RHOD superfamily domain. (B) Phylogenetic analysis of
Mj-HSP67B2 with known HSP67B2 sequences from seven Arthropoda species. The phylogenetic tree
is based on amino acid sequences translated from Mj-HSP67B2 ORF by the neighbor joining method
(bootstrap value 1000) using MEGA X software. The numbers at the nodes represents the bootstrap
majority consensus values for 1000 replicates. GenBank accession numbers are shown with the scientific
and common names of each species.

Table 1. Percentage identity, similarity, and gaps involving Macrophthalmus japonicus HSP67B2 and
HSP67B2 homologs from other species at the amino acid level

Species Gene Name Accession
Number

RHOD Superfamily
Domain Length Identity (%) Similarity (%) Gap (%)

Macrophthalmus
japonicus

Heat Shock protein
67B2 98

Penaeus vannamei Heat Shock protein
67B2 ROT83326.1 103 72.8 81.6 4.9

Lepeophtheirus
salmonis

Heat Shock protein
67B2 ACO11957.1 106 43.4 60.4 7.5

Lucilia cuprina Heat Shock protein
67B2-like XP_023305341.1 101 40.0 60.0 10.5

Hyalella azteca PREDICTED: heat
shock protein 67B2-like XP_018026303.1 106 44.3 58.5 7.5

Drosophila busckii PREDICTED: heat
shock protein 67B2 XP_017840691.1 99 39.8 58.3 8.7

Anopheles darlingi Heat Shock protein
67B2 ETN62322.1 103 39.8 56.3 4.9

Aedes aegypti Heat Shock protein
67B2 isoform X3 XP_021696792.1 99 35.9 54.4 8.7

Pairwise identity percentage was calculated using the EMBOSS alignment program.
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Figure 3. Relative mRNA expression levels of HSP60 and HSP67B2 in various Macrophthalmus 
japonicus tissues. Six tissues were used in this experiment. Quantitative reverse-transcription (RT)-
PCR was conducted in triplicate. Bars indicate the standard deviation of the mean. mRNA expression 
was normalized against GAPDH. Abbreviations: Gill (Gi), Hepatopancreas (Hp), Muscle (Ms), Gonad 
(Gn), Heart (Ht), and Stomach (St). 

Figure 3. Relative mRNA expression levels of HSP60 and HSP67B2 in various Macrophthalmus japonicus
tissues. Six tissues were used in this experiment. Quantitative reverse-transcription (RT)-PCR was
conducted in triplicate. Bars indicate the standard deviation of the mean. mRNA expression was
normalized against GAPDH. Abbreviations: Gill (Gi), Hepatopancreas (Hp), Muscle (Ms), Gonad (Gn),
Heart (Ht), and Stomach (St).

3.3. M. japonicus Mj-HSP60 Expression Changes after DEHP Exposure

To confirm the effects of DEHP exposure on Mj-HSP60 expression, we conducted quantitative
RT-PCR analysis using mRNA acquired from the gill and hepatopancreas samples after exposure to
DEHP for 1, 4, and 7 days. Mj-HSP60 was expressed approximately 8.2-fold higher after exposure to
1 µg L−1 DEHP (P < 0.01), 3.2-fold higher for 10 µg L−1 (P < 0.05), and 9.4-fold higher for 30 µg L−1

(P < 0.01) in the gill tissue on day 1 (Figure 4A). With the passage of time, expression levels gradually
decreased in all DEHP concentration groups. By day 4, for the 10 and 30 µg L−1 treatment groups,
expression levels were restored to control levels. By day 7, Mj-HSP60 expression levels were lower
than those of the control. In particular, sharp decreases in expression levels were found in 10 µg L−1

(0.3-fold) and 30 µg L−1 (0.21-fold) (P < 0.05) groups. In the hepatopancreatic tissue, expression levels
of Mj-HSP60 exhibited an overall increased pattern compared to the expression levels in the controls
on day 1 (Figure 4B). Expression levels significantly increased by 2.4-fold for 1 µg L−1, 2.6-fold for
10 µg L−1, and 2.9-fold for 30 µg L−1 DEHP (P < 0.05). By days 4 and 7, Mj-HSP60 expression levels
returned to control levels for the 1 µg L−1 group. In the 10 µg L−1 DEHP group, Mj-HSP60 expression
decreased to <0.5-fold on day 4, and then recovered slightly toward that of control levels by day 7.

3.4. Variation in Expression of Mj-HSP67B2 after DEHP Exposure in M. japonicus

Expression of Mj-HSP67B2 consistently increased in the gill and hepatopancreatic tissues for
4 days after DEHP exposure at all concentrations (Figure 5). After a peak in expression at day 4,
Mj-HSP67B2 levels somewhat decreased. These Mj-HSP67B2 expression patterns were found in the
two tissues, regardless of DEHP exposure concentration. Although expression levels of Mj-HSP67B2
decreased after day 4, the expression was still maintained in the gill tissue at higher levels than
those of the controls for all concentration groups, except on day 7 (0.86-fold) for the 1 µg L−1 group
(Figure 5A). Similar changes in Mj-HSP67B2 expression levels were noted in the hepatopancreas tissue.
Mj-HSP67B2 was strongly overexpressed for 4 days in response to exposure to all concentrations of
DEHP (P < 0.05), and its expression levels displayed dose-dependent and time-dependent increases for
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4 days (Fig. 5B). The highest expression levels were noted on day 4 in each DEHP concentration group
(3.9-fold for 1 µg L−1 (P < 0.05), 5.48-fold for 10 µg L−1 (P < 0.01), and 5.88-fold for 30 µg L−1 (P < 0.01).
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4. Discussion

Cellular responses to stressors are an evolutionary, ubiquitous, and essential mechanism for cell
survival. HSPs are known as extrinsic chaperons that are involved in certain cellular processes, such
as germ cell differentiation, reproduction, development, thermoprotection, mammalian autoimmune
defense, and toxic stress responses, and they have even been regarded as a potential marker of
environmental stress [36–42]. HSPs are found in all eukaryotes and are identified based on their
size, molecular weight, and functions. HSP60, HSP70 and HSP90 are highly conserved genes and
are stress-inducible and multigenic [43]. It has been observed that the HSP60 and HSP70 family
members play significant roles in cell survival, stress, and thermal tolerance in response to various
heat shocks [44].

Here, we studied two stress-related genes, Mj-HSP60 and Mj-HSP67B2, and conducted expression
analysis in different tissues of M. japonicus after treatment with the xenobiotic DEHP. Mj-HSP60 and
Mj-HSP67B2 were highly expressed in the gonad and hepatopancreas, respectively. In addition, these
molecules are moderately expressed in the gills, muscle, heart, and stomach. Our findings are consistent
with the results of an earlier study showing that the hepatopancreas is the main source of immune
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molecules in crustaceans [45]. The hepatopancreas acts as an essential metabolic center in crustaceans
and performs versatile roles in defense systems, detoxification, reactive oxygen species production,
digestion, absorption, and nutrient secretion. Owing to the critical importance of the hepatopancreas
in detoxification and immunological activities, it is highly sensitive to xenobiotic exposure. Similarly,
increased upregulation of HSP90 was noted in the hepatopancreas of P. monodon [46]. In addition, three
HSPs, namely MrHSP60, MrHSP70 and MrHSP90, are constitutively expressed in M. rosenbergii during
pathogenic infections involving different tissues [47]. Related results were obtained in the Pacific oyster
Crassostrea gigas, which exhibits highly upregulated HSP70 expression in the gill tissue after exposure to
Cu2+ [48]. DEHP has been shown to alter the expression of HSPs in Chironomus riparius [49,50]. In this
species, HSP40 and HSP90 mRNA expression levels increased under various DEHP concentrations for
24 h, which caused morphological deformities [49]. In addition, HSP70 showed increased expression
when treated with low doses of DEHP. Overall, our results indicated that two HSPs, Mj-HSP60 and
Mj-HSP67B2, in M. japonicus are constitutively expressed, owing to DEHP exposure at day 1. Hence,
these molecules can be considered as upregulated responses of xenobiotic levels for the early exposure
time in M. japonicus crabs. However, at long-term exposure for 7 days, there are different expression
patterns between the Mj-HSP60 and the Mj-HSP67B2 transcripts. The Mj-HSP60 expression was
downregulated in most crabs after 7 days of DEHP exposure due to reducing cellular immune protection,
although expressions of the detoxifying Mj-HSP67B2 gene [51] were continuously upregulated in
DEHP-treated groups compared to the control. HSP67B2 is significant both in detoxification and in
anti-oxidative stress systems, as well as immune protection [26,27,51]. For instance, in P. trituberculatus,
an important marine and aquaculture species, Mj-HSP60 displays differential expression patterns in
response to environmental salinity stress and exhibits upregulation in the gills [52].

Likewise, L. vannamei HSP60 mRNA is regulated between 4 and 32 h after the injection of
bacteria [53]. HSP70 is upregulated 24 h after copper exposure in the zebra mussel Dreissena polymorpha
and midge larvae Chironomus tentans [54,55]. In addition, HSP70 expression is dramatically induced,
owing to microbial pathogens in the Chinese shrimp Fenneropenaeus chinensis [56]. However, little is
known regarding the response of HSP60 to xenobiotics and stresses in invertebrates such as the sea
anemone (Anemonia viridis) [29], D. polymorpha [54], and the white shrimp (Litopenaeus vannamei) [57].
The limited study reported that HSP67B2 acts like a rhodanese homolog with a single RHOD
domain, is characterized from the housefly M. domestica, and plays potential roles under oxidative
stress conditions [57]. M. domestica, and plays potential roles under oxidative stress conditions [51].
In crustaceans, HSP expression studies have been conducted on the Asian paddle crab Charybdis
japonica, with exposure to EDCs (bisphenol A and 4-nonylphenol) [16,58]. To date, this is the first
nucleotide and protein sequence information reported regarding Mj-HSP60 and Mj-HSP67B2 in the
crab species M. japonicus. Our gene expression results revealed the potential involvement of the two
HSPs in the immune system of crabs. This study highlights the potential importance of these molecules
in crustaceans, protecting cells against pathogens as well as in severe cellular and environmental
stress conditions.
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