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Abstract: Molybdenum disulfide (MoS2) field-effect transistors (FETs) with four different metallic
electrodes (Au,Ag,Al,Cu) of drain-source were fabricated by mechanical exfoliation and vacuum
evaporation methods. The mobilities of the devices were (Au) 21.01, (Ag) 23.15, (Al) 5.35 and
(Cu) 40.52 cm2/Vs, respectively. Unpredictably, the on-state currents of four devices were of the
same order of magnitude with no obvious difference. For clarifying this phenomenon, we calculated
the Schottky barrier height (SBH) of the four metal–semiconductor contacts by thermionic emission
theory and confirmed the existence of Fermi-level pinning (FLP). We suppose the FLP may be caused
by surface states of the semiconductor produced from crystal defects.
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1. Introduction

Two-dimensional (2D) materials have attracted great attention with the birth of graphene in
2004 [1]. 2D materials are planar materials with atomic thickness [2]. They have excellent electrical
properties, outstanding flexibility and good transparency [3,4]. These new physical properties can
meet the needs of different applications such as electronics, photo electricity, energy storage and
conversion [5]. In recent years, the transition metal dichalcogenides (TMDs), as an important part of
2D materials, have attracted great interest due to their various electrical properties including metal [6],
semi-conducting [7], superconducting [8], charge density wave [9] and so on.

Molybdenum disulfide (MoS2) is a typical material of TMDs. It is one of the most promising
candidates to be the semiconductor of the next generation [5]. MoS2 has a direct bandgap of 1.8 eV,
which is suitable for developing field-effect transistors (FETs) with low static power consumption
and high carrier mobility [10]. In the past decade, studies around MoS2-FET were focused on devices
preparation [11], electrode contact [12], hysteresis phenomenon [13], heterojunction structure [14],
material modification [15], and so on. However, the research on the comparison of different typical
electrode materials in MoS2-FET are relatively rare.

In this paper, we prepared MoS2 materials through a classical mechanical exfoliation method [1],
fabricated the devices with different metallic electrodes, and characterized them subsequently. We found
that the on-state currents of four devices were of the same order of magnitude with no obvious difference.
In order to clarify the internal mechanism, we calculated the Schottky barrier height (SBH) of the four
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metal–semiconductor contacts by thermionic emission theory and discovered that there may exist
Fermi-level pinning (FLP) between the contacts in four devices [16].

2. Experiment

MoS2 materials were purchased from a 2D semiconductors company. We exfoliated MoS2 flakes
with 3M Scotch tapes pasting for several times. Then, a substrate of n-type silicon wafer with
300 nm-thick silicon oxide was prepared. It was cleaned with acetone (for 20 min) and isopropanol (for
20 min) by ultrasonic. Then, the MoS2 flake was transferred to the substrate by 3M Scotch tapes. Next,
the substrate covered with MoS2 was sent to the vacuum chamber. The first electrode material of Au
was evaporated in the chamber through a shadow mask with 50 µm length channel. The fabrication
process and structure of FET devices are shown in Figures 1 and 2, respectively. Three other materials
of Ag, Al and Cu were used as electrodes in the other three devices fabricated by the process mentioned
above. Finally, four FET devices were prepared. The micro-images of the devices were obtained by
optical microscope (LEICA DM 2700M), as shown in Figure 3a–d. The electrical properties of the
devices were characterized by semiconductor characterization analyzer (Keithley 4200).
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3. Results and Discussion

The output and transfer curves of the devices with four types of metallic electrodes are shown in
Figure 4. We can find that the devices are n-type depletion FETs as the current appeared in the negative
coordinates in the transfer curve with the drain-source voltage of 10 V, 20 V and 30 V, as shown in
Figure 4e–h. This result is consistent with previous studies. Meanwhile, we obtained the on/off ratio,
threshold voltage (Vth) from the curves and calculated the carrier mobility [15] through the Equation (1).
Where W denotes the channel width, L denotes channel length, Ci stands for the capacitance per unit
area of silicon oxide.

µcarrier =
W
L

CiVDSIDS(VGS −Vth) (1)

The characteristics of the devices are as shown in Table 1. We can find that the device with silver
electrode has the relative ideal performance with a carrier mobility of 23.15 cm2/Vs, the largest on/off

ratio of 1.23 × 104 and the lowest threshold voltage of 2.21 V. This phenomenon may attributed to the
fact that the work function of silver (4.26 eV) is close to the conduction band of molybdenum disulfide.
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Table 1. Characteristic data of the MoS2-FET devices (VDS = 10 V).

Electrode Mobility (cm2/Vs) On/Off Ratio Threshold Voltage(V)

Au 21.01 2.18 × 101 −3
Ag 23.15 1.23 × 104 2.21
Al 5.35 4.14 × 100 −55
Cu 40.52 2.25 × 102 −55

The property of metal–semiconductor contact is essential to modern electronics and
optoelectronics [17]. According to the thermionic emission theory, the mean free path of the majority
of carriers (electrons) in n-type semiconductor-metal contact is much larger than the Schottky barrier
width, so the collision of electrons in the barrier region can be neglected. The influence of the
barrier shape is not prominent, and the Schottky barrier height (SBH) plays a decisive role here.
SBH represents the energy required for a single charge carrier to transfer between semiconductor
and metal. It fundamentally determines the efficiency of charge transfer and directly affects device
performance [18]. Meanwhile, SBH is derived from the difference of work functions between metal
and semiconductor, which can lead to discrepancies in barrier height and charge injection quantity [19].
All of these factors will eventually cause an obvious disparity in on-state current, which is presented
on the transfer characteristic curve. Figure 5 is the on-state current of MoS2 devices with four metallic
electrodes at three types of drain-source voltage. The difference in the on-state currents in the transfer
curve is less than 0.63 orders of magnitude that cannot fit with the gaps in the work functions of the
four metals.
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Figure 5. The comparison of the on-state current of MoS2 devices with 4 different metallic electrodes 
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As mentioned above, electrons in semiconductors can enter metals through barriers as long as
they have enough energy to cross barriers. Similarly, electrons in metals can also enter semiconductors.
Based on the above conditions, the calculation of current can be reduced to the calculation of the
number of carriers crossing the barrier, as shown in Equation (2) [16], where A is the Richardson
constant (120 A/cm2

·K2), T is the thermodynamic temperature (300 K), K0 is the Boltzmann constant
(1.380 × 10−23 J/K), VDS is the drain-source voltage (10 V), qΦSB is SBH, q is the electron charge
(1.602 × 10−19 C), and J is the current density between semiconductor and metal. It is known that the
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drain-source current (IDS) is the product of the current density (J) and the average contact area S of
the electrode in the device, as shown in Equation (3). We substituted it into Equation (2) to obtain
Equation (4). SBHs corresponding to different gate voltages between metals and semiconductors can
be calculated with the known constant and IDS in the device transfer characteristic curve at VDS = 10 V.

J = A ∗ T2 exp(−
qΦSB

k0T
) exp(

qVDS

k0T
) (2)

Ids = J ∗ S (3)

ΦSB = − ln
( IDS

A ∗ T2 ∗ S

)
∗

k0T
q

+ VDS (4)

The effective barrier height (ΦESB), defined as the SBH when Vg equals to flat-band voltage (VFB),
can be represented as the longitudinal coordinate value corresponding to an intersection point of the
tangent of the descending position and the curve, as shown in Figure 6. It can be seen that ΦESB values
of the four types of metal–semiconductor contacts ranged from 10.448 to 10.606 eV with a difference
of no more than 0.16 eV. In ideal metal–semiconductor contact, SBH can be well predicted by the
Schottky–Mott rule, as shown in Equations (5) and (6) [20], where ΦM is the work function of metals;
XS and IS are the electron affinity and ionization potential of semiconductors; ΦSB,n and ΦSB,p are the
SBH of electrons and holes, respectively. The Schottky–Mott rule shows that ΦSB is linearly related to
the work function of metals, and its relationship curve has a uniform slope, as shown in Equation (7).
In Equation (7), if S = 1, the metal–semiconductor system conforms to Schottky–Mott rule. However,
the calculation based on the experimental data in this paper shows that there is no linear correlation
between ΦSB and metal work function for S = 0.11 in the four metal material systems as shown in
Figure 7a. Theoretically, the above results are due to the effect of Fermi-level pinning (FLP). Meanwhile,
the results we obtained were concluded from the statistical data based on a certain number of devices
that meant the experimental results have high repeatability. Moreover, we present another group of
four devices with the calculated S value of 0.019 in Figure 7b. This result is in good accordance to the
former group.

We suppose the main causes of FLP are the surface states of semiconductors [20,21] formed
by crystal defects [20–23] such as interface reconstruction. If the surface density of states of MoS2

is very large, the metal semiconductor system will screen the effect of metal contact on the barrier.
Here, the barrier height at the metal-semiconductor interface is mainly determined by the surface
properties of MoS2, but not the work function of the metal. In general, due to the difference in the
surface density of states, a part of the contact potential difference will fall in the semiconductor with
metal–semiconductor contact, so the work function of metal may still impact on the surface barrier,
but to a small extent. This is in accordance with our calculated results for the barrier heights of the
four devices.

ΦSB,n = ΦM −Xs (5)

ΦSB,p = Is −ΦM (6)

S =

∣∣∣∣∣dΦSB
dΦM

∣∣∣∣∣ (7)
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4. Conclusions 

In this paper, the FLP mechanism was found in the MoS2-FETs by calculating the barrier height 
through thermionic emission theory. The FLP limits some performance of the FETs with different 
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Current studies will be helpful for obtaining a deep understanding of the metal–MoS2 contact 
mechanism and can lay a foundation for the preparation of high performance MoS2-FET devices. 
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4. Conclusions

In this paper, the FLP mechanism was found in the MoS2-FETs by calculating the barrier height
through thermionic emission theory. The FLP limits some performance of the FETs with different
electrodes and may be caused by the surface states of semiconductors produced from crystal defects.
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Current studies will be helpful for obtaining a deep understanding of the metal–MoS2 contact
mechanism and can lay a foundation for the preparation of high performance MoS2-FET devices.
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