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Abstract: Bearing preload significantly affects the running performance of a shaft-bearing system
including the fatigue life, wear, and stiffness. Due to the mounting error, the bearing rings are often
angularly misaligned. The effects of the combined bearing preload and angular misalignment on
the fatigue life of ball bearings and a shaft-bearing system are analyzed in this paper. The contact
force distribution of angular contact ball bearings in the shaft-bearing system is investigated based on
the system model. The system model includes the bearing model, and the shaft model is verified
by comparing with the manufacturer’s manual and the results from other theoretical models, with
the difference between the results from the present bearing model and manufacturer manual within
3%. The global optimization method is used to replace the Newton–Raphson algorithm to solve the
ball elements’ displacements and friction coefficients, which improves the computation efficiency of
the system model. The fatigue life of each bearing is evaluated with the consideration of the two
preload methods and two angular misalignment cases. The fatigue life results show that the system
life at the optimal angular misalignment is more than 1.5 times that without angular misalignment at
the low preload value, and this ratio decreases as the preload value increases. The optimal angular
misalignment of both the shaft-bearing system and the misaligned bearing is not always consistent,
which depends on the preload value and bearing life. Both the constant-displacement preload and
constant-force preload do not cause a significant difference in the highest system life. The different
misaligned bearings can lead to different highest system lives as the preload value is low.

Keywords: shaft-bearing system; angular contact ball bearing; bearing preload; angular misalignment;
fatigue life

1. Introduction

The shaft-bearing system is a key part in mechanical transmissions, in which the rolling element
bearing is commonly applied due to its low friction, low wear, and low energy consumption. With
the high speed and high precision requirements for rotating machinery, the shaft is usually designed
to be supported by multiple rolling element bearings. Many scholars have investigated the dynamic
characteristics of the shaft-bearing system [1–3], and a comprehensive review on dynamic model
development of a shaft-bearing system was also presented [4]. In addition to dynamic analysis, the
fatigue life of both the rolling element bearing and shaft system has also attracted much attention.

Appl. Sci. 2020, 10, 2750; doi:10.3390/app10082750 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-3492-727X
https://orcid.org/0000-0002-5369-7660
http://dx.doi.org/10.3390/app10082750
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/8/2750?type=check_update&version=2


Appl. Sci. 2020, 10, 2750 2 of 21

Among various causes that affect the fatigue life of the rolling element bearing, both preload and
angular misalignment are two common and important factors.

Many researchers have conducted numerous studies on the fatigue life of the rolling element
bearings considering the preload and angular misalignment. Harris [5], as one of first researchers,
presented the dependence of the fatigue life of a cylindrical roller bearing having crowned rolling
elements on the angular misalignment. Hagiu [6] investigated the relation between the preload and
service life for an angular contact ball bearing by theoretical and experimental methods. Hwang and
Lee [7] reviewed the three categories of preload technologies and clarified that the determination of
proper preload should take the fatigue life, stiffness, and temperature of rolling element bearings into
account. Considering the significance of the pressure distribution of roller elements on the fatigue life
estimation, Tong et al. [8] extended the 3D elastic contact method to simulate the contact pressure and
analyzed the fatigue life of a tapered roller bearing with the consideration of the angular misalignment
effect. Yang et al. [9] analyzed the effects of the combined external loads and angular misalignment on
the double-row tapered roller bearing, and the results demonstrated that the external load, rotation
speed, and angular misalignment had a significant influence on the fatigue life of a double-row
tapered roller bearing. Warda et al. [10,11] investigated the effect of the correction parameters of roller
generators and angular misalignment on the fatigue life of the radial cylindrical roller bearing, in
which the bearing radial clearance and complex loads were both taken into account.

The above research works were mainly limited to a single bearing, and many works investigated
the relations among the preload, fatigue life, temperature, and stiffness in a shaft-bearing system.
Jiang et al. [12] investigated a variable preload technology for machine tool spindles working at
different ranges of rotation speed, and the experimental results showed that the variable preload
technology can reduce the temperature rise of the system in the high speed condition compared
with the application of constant preload and improved the bearing stiffness at the low speed range.
Xu et al. [13] developed an analytical method for determining the optimum preload based on the
critical state between the skidding and rolling of ball bearings for different speed ranges, and their
results were verified with the help of a spindle bearing experimental setup. Than and Huang [14]
investigated the thermal effect of the spindle bearing system during high speed rotations when the
preload was applied, and the time-varying thermal effects on the preload and stiffness of bearings was
obtained. Zhang et al. [15] investigated the effect of external load and preload on the number of rolling
elements in the contact zone based on the a quasi-dynamic model and determined an optimum preload
for a simplified bearing-rotor system by taking the bearing fatigue life as the optimization target.

For the shaft-bearing system with high speed and high precision requirements, bearing preload is
necessary to increase bearing stiffness and suppress vibration. In addition, the angular misalignment of
the rolling bearing due to mounting error is common and unavoidable and would cause considerable
variations in ball-raceways’ contact force distribution, which affects the bearing fatigue life. Currently,
very few studies have investigated the effects of the combined preload and angular misalignment on
the fatigue life of rolling element bearings and the shaft-bearing system at high speed. The fatigue
life variation of rolling element bearings and the shaft-bearing system with the combined preload
and angular misalignment has not been well understood. In this sense, understanding the fatigue
life variation considering the combined preload and angular misalignment is important for proper
selection and assembly of rolling bearings in the shaft-bearing system, which can be achieved by
analyzing the effects of the combined preload and angular misalignment on the fatigue life of rolling
element bearings and the shaft-bearing system.

In this paper, a generic shaft-bearing system model combing the shaft model and the bearing model
is introduced. A numerical method is presented to improve the computation efficiency of the system
model. The ball-raceway contact forces of angular contact ball bearings (ACBBs) in shaft-bearing
systems are evaluated under the complex operation conditions considering both the preload and
angular misalignment. Based on the fatigue life theory, the fatigue life of each ACBB is calculated.
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The effects of the combined preload and angular misalignment on the fatigue life of ACBBs and the
shaft-bearing system are discussed. Finally, some useful conclusions are given.

2. Shaft-Bearing System Model

2.1. Quasi-Static Model of Angular Contact Ball Bearing

The scheme diagram of a shaft supported by multiple ACBBs is shown in Figure 1. O-xyz denotes
the inertial coordinate system where the z-axis is coincident with the shaft axis, and Ok-xkykzk denotes
the local coordinate system for the kth bearing in which the forward direction of the zk-axis is defined
as from the small side of the bearing to its big side. Here, the quasi-static bearing model is presented in
the bearing local coordinate system. A ball bearing is taken as an example to analyze the interactions
between ball elements and raceways.

The kinematics of the ball element is shown in Figure 2. Here, the inner ring is assembled with a
shaft that rotates at angular speed ωi about the bearing axis while the outer ring is fixed. For a bearing
with pitch diameter dm and ball diameter D, one can get the angular speed ωc at which the ball element
orbits around the bearing axis and the spinning speed ωb at which the ball element rotates around its
own axis as given in Equations (1) and (2), respectively.

ωc = ωi
(1− γi) cos(αe − β)

(1 + γe) cos(αi − β) + (1− γi) cos(αe − β)
(1)

ωb = ωi
dm

D
(1− γi)(1 + γe)

(1 + γe) cos(αi − β) + (1− γi) cos(αe − β)
(2)

where αi and αe are the contact angles between the ball and inner/outer raceway. γi and γe are equal to
D cosαi/dm and D cosαe/dm, respectively.β is the ball pitch angle.

Based on d’Alembert’s inertia force principle, Ding [16] derived the following pitch angle formula
as shown in Equation (3).

tan β =

MS
bi

MS
be

(
1+γe
1−γi

+1
)

sinαi+2 sinαe

MS
bi

MS
be

(
1+γe
1−γi

+1
)

cosαi+2(cosαe+γ′)+γ′·
MS

bi
MS

be

(
cos(αi−αe)−

1+γe
1−γi

) (3)

in which γ′ is equal to D/dm, MS
bi and MS

be are the friction moments for the ball and inner/outer
raceways, respectively, and:

MS
bi

MS
be

=
QiaiL2(κi)

QeaeL2(κe)
(4)

where Qi and Qe are the contact forces between the ball and inner/outer raceway. ai and ae are the
semi-major axes of the contact ellipses for the ball and inner/outer raceways, respectively. L2(·) is
the second kind of elliptic integral function. κi and κe are the ratios of the semi-major axis to the
semi-minor axis of the contact ellipses at the ball inner and ball outer raceway contacts, respectively.
The detailed derivation of the pitch angle is omitted here and can be found in Ding’s work [16].
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Figure 2. Kinematic relation of a ball element.

The contact angle and contact elastic deformation between the ball element and raceways are
shown in Figure 3. When the external loads are applied on the static bearing, the ball center O and
raceway groove curvature center Oe, Oi are collinear. These three points are no longer collinear due to
the centrifugal force of the ball element when the rotating speed is imposed. The ball center will be
shifted from O to O′, and the inner raceway groove curvature center moves from Oi to O′i, while the
groove curvature center of the outer raceway remains unchanged since the outer ring is fixed.
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In Figure 3, D1 j, D2 j denote the axial and radial distance between the inner and outer raceway
groove curvature centers at the jth ball element position and can be written as:

D1 j = ( fe + fi − 1)D sinα0 + δz + Ri(θx sinϕ j − θy cosϕ j) (5)

D2 j = ( fe + fi − 1)D cosα0 + δx cosϕ j + δy sinϕ j (6)

where δx, δy, and δz are the translational displacements of the inner ring along the x-, y-, and z-axis,
respectively, θx and θy are the angular displacements around the x- and y-axis, respectively. α0 is the
bearing initial contact angle. fi and fe are the inner and outer raceway groove curvature coefficients,
respectively. The radius of the locus of the inner raceway groove curvature centers Ri and the jth ball
element azimuth angle ϕ j are determined by:

Ri = 0.5dm + ( fi − 0.5)D cosα0 (7)

ϕ j = 2π( j− 1)/Z (8)

where Z is the ball element number in the bearing. The loaded contact angles αi and αe at ball-raceway
contacts can be obtained:

αi j = arctan
D2 j −X2 j

D1 j −X1 j
(9)

αej = arctan
X2 j

X1 j
(10)

The contact elastic deformations δi j and δe j can be given as:

δi j =

√
(D2 j −X2 j)

2 + (D1 j −X1 j)
2
− ( fi − 0.5)D (11)

δe j =
√

X2
1 j + X2

2 j − ( fe − 0.5)D (12)

where X1 j and X2 j are the axial and radial distances between ball center O′ and outer raceway groove
curvature center Oe, respectively.

As shown in Figure 4, considering the centrifugal force Fc j, gyroscopic moment Mg j, contact forces
Qi j and Qe j, and friction forces Fi j and Fe j, the force and moment equilibrium equations for the jth ball
element can be presented as:

Qi j sinαi j −Qe j sinαe j + Fi j cosαi j − Fe j cosαe j = 0
Qi j cosαi j −Qe j cosαe j − Fi j sinαi j + Fe j sinαe j + Fc j = 0
Fe j + Fi j − 2Mg j/D = 0

(13)

Here, an approximate relation between friction forces Fi j, Fe j and contact forces Qi j, Qe j, at
ball-raceway contacts is applied, as follows:

Fi j = µ jQi j (14)

Fe j = µ jQe j (15)

where µ j is the friction coefficients at ball-raceway contacts.
The centrifugal force and gyroscopic moment for the jth ball element can be written, respectively,

as follows:
Fc j = 0.5dmmω2

c j (16)

Mg j = Jωb jωc j sin β j (17)
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where m is the mass of the ball element and J is the mass moment of inertia:

m = ρπD3/6 (18)

J = ρπD5/60 (19)

Based on Hertz’s work, the ball-raceway contact forces can be related to the elastic contact
deformation presented in Equations (11) and (12).

Qi j/e j = Ki/eδ
1.5
i j/e j (20)

in which Ki, Ke are the contact stiffness coefficients and can be calculated based on Harris and Kotzalas’
work [17].
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The bearing loads applied on the inner ring from the shaft include the translational forces Fx, Fy,
and Fz and moments Mx, My. The total bearing loads should be balanced by contact forces and friction
forces between ball elements and the inner raceway, and the equilibrium relations of the inner ring can
be presented as: 

Fx =
Z∑

j=1

(
Qi j cosαi j − Fi j sinαi j

)
cosϕ j

Fy =
Z∑

j=1

(
Qi j cosαi j − Fi j sinαi j

)
sinϕ j

Fz =
Z∑

j=1

(
Qi j sinαi j + Fi j cosαi j

)
Mx =

Z∑
j=1

[(
Qi j sinαi j + Fi j cosαi j

)
Ri − Fi jri

]
sinϕ j

My =
Z∑

j=1

[(
Qi j sinαi j + Fi j cosαi j

)
Ri − Fi jri

]
cosϕ j

(21)

in which ri is the groove curvature radius of the inner raceway.

2.2. Shaft Model

In order to consider shaft flexibility, the finite element method is adopted here, and the shaft is
discretized into N segments containing N + 1 nodes using Timoshenko’s beam element, as shown
in Figure 5. O-xyz is the inertial coordinate system of the whole shaft-bearing system (mentioned in
Section 2.1). The torsional deformation of the shaft is ignored; only the bending and axial deformations
are considered. The ith node on beam element has three translational DOFs δi

x, δi
y, and δi

z along the
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x-, y-, and z-axis, respectively, and two rotational DOFs θi
x, θi

y around the x- and y-axis, respectively.
In the present shaft-bearing system, the bearing inner ring is close fit with the shaft; therefore, the inner
ring of the bearing has the same displacements as the shaft node at the bearing mounting position.
The displacement vector at the ith node location is:

{δi} =
{
δi

x,θi
y, δi

z, δi
y,θi

x

}T
i = 1, 2, · · · , N + 1 (22)

The corresponding load vector is:

{Fi} =
{
Fi

x, Mi
y, Fi

z, Fi
y, Mi

x

}T
i = 1, 2, · · · , N + 1 (23)

The stiffness matrix for each beam element can be obtained as follows:

[Ke] = EI
L(L2+12g)



12 6L 0 0 0 −12 6L 0 0 0
(4L2 + 12g) 0 0 0 −6L 2L2

− 12g 0 0 0
A(L2+12g)

I 0 0 0 0 −
A(L2+12g)

I 0 0
12 −6L 0 0 0 −12 −6L

(4L2 + 12g) 0 0 0 6L 2L2
− 12g

12 6L 0 0 0
symmetry (4L2 + 12g) 0 0 0

A(L2+12g)
I 0 0

12 6L
(4L2 + 12g)



(24)

where g is a parameter including the transverse shear effect of beam, and its detailed expression can be
found in [18].

The finite element equilibrium equation of the shaft can be written as:

Kδ = F (25)

where K is the global stiffness matrix obtained by assembling all the beam element stiffness matrix Ke,

δ is the node displacement vector of the shaft and can be expressed as {δ} =
{
δT

1 , δT
2 , · · · , δT

i , · · · δT
N+1

}T
,

and F is the load vector applied on the shaft nodes given as {F} =
{
FT

1 , FT
2 , · · · FT

i , · · · FT
N+1

}T
. The

load vector F consists of two parts: one part is attributed to the external loads, and the other part is
the supporting loads provided by the ball bearings and also the counter force of the bearing loads
calculated in Equation (21). Based on the transformation relation between the bearing local coordinate
system and the global inertial coordinate system, the displacements of the bearing inner ring in the
bearing local coordinate system can be easily represented by the node displacements of the shaft in the
inertial coordinate system at the location where the shaft is supported by the ball bearing. Therefore,
the supporting loads applied on the shaft nodes provided by the ball bearings can be expressed as a
nonlinear function of the node displacements of the shaft.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 22 
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2.3. Preload and Angular Misalignment Factors

In the current analysis, the ball bearing is preloaded axially on the outer ring including
constant-displacement preload and constant-force preload. The angular misalignment taken into
account here is caused by mounting error, and the misaligned inner and outer rings due to mounting
error can both lead to angular misalignment. In order to simplify the analysis, the inner ring is assumed
to be mounted accurately. The outer ring is misaligned, and its misalignment angle keeps constant
when the shaft-bearing is loaded.

Axial preload and angular misalignment can lead to additional deformation in each ball element
and cause ball element-raceway contact forces to be redistributed; therefore, they should be included
in the calculation of ball element deformation to reflect their effects on the fatigue life. Both the
axial preload and angular misalignment affect mainly the axial distance D1 j between inner and outer
raceway groove curvature centers at the jth ball element position. The translational displacement δz

should be replaced by δz + δa in Equation (5) to calculate the axial distance D1 j when the axial preload
is taken into account. The axial displacement δa is caused by axial preload on the outer ring, which
is known when constant-displacement preload is applied and unknown if constant-force preload is
applied. When angular misalignment components of the outer ring of the ball bearing, θx0 and θy0,
are considered, the angular displacements θx and θy should be replaced with θx − θx0 and θy − θy0 in
Equation (5), respectively. Then, the axial distance D1 j considering axial preload should be rewritten as:

D1 j = ( fe + fi − 1)D sinα0 + (δz + δa) + Ri(θx sinϕ j − θy cosϕ j) (26)

The axial distance considering the angular misalignment is:

D1 j = ( fe + fi − 1)D sinα0 + δz + Ri
[
(θx − θx0) sinϕ j −

(
θy − θy0

)
cosϕ j

]
(27)

3. Numerical Solution and Model Validity

3.1. Numerical Solution of the System Model

By combining the shaft model and quasi-static model of ACBB, the generic shaft-bearing system
model is obtained. The unknowns in the system model include the ball orbital speed ωc, spinning
speed ωb, pitch angle β, axial and radial distances (X1, X2) to imply the final position of the ball center,
friction coefficients µ at ball-raceway contacts, inner ring displacements

(
δx, δy, δz,θx,θy

)
for ACBB,

and the node displacements for the shaft. The unknowns are 6Z + 5 for each ball bearing and 5(N + 1)
for the shaft. Considering that the inner ring displacements of ball bearings are the same as the
displacements of shaft nodes where ball bearings are mounted, the total unknowns of the shaft-bearing
system model are kb(6Z) + 5(N + 1), and kb is the number of ACBBs supporting the shaft. Obviously,
the shaft-bearing system model is a huge system of equations provided that the shaft is supported by
several ACBBs and the number of ball elements for each bearing and of the beam elements for the
shaft is large.

It is computationally infeasible to solve all the equations of the shaft-bearing system model together.
Hence, a numerical scheme is proposed to solve the system model. The numerical solution process is
presented in Figure 6. The shaft-bearing system properties, including material properties, geometrical
parameters, operation conditions, load conditions, axial preload, and/or angular misalignment of ball
bearing, are taken as the input parameters. The initial guess for the node displacements of the shaft, the
spinning speed ωb, orbital speed ωc, and pitch angle β of each ball element are also necessary to start
the solution. Then, the distances parameters (X1, X2) and friction coefficients µ of all ball elements
in the kth ball bearing are solved together by the global optimization method. The new spinning
speed ω∗b, orbital speed ω∗c, and pitch angle β∗ for ball elements are calculated based on Equations
(1)–(3). The distances parameters (X1, X2), friction coefficients µ, speed parameters (ωb,ωc), and pitch
angle β are solved alternately until the corresponding converge criterion is reached. Once the above
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calculations for all the ball bearings are finished, the equilibrium equations of the shaft are checked.
Since the loads applied on the shaft nodes provided by the ball bearings are a nonlinear function of the
node displacements of the shaft, the equilibrium equation of the shaft, Equation (25), is nonlinear as
a function of the shaft nodes’ displacements. Based on the first order Taylor expansion of nonlinear
equilibrium equations of the shaft, the node displacements on the shaft are updated. The whole
calculation process will be continued until the equilibrium equations of the shaft are satisfied. Then,
the node displacements of the shaft, ball-raceway contact forces, spinning speed, orbital speed, and
pitch angle for each ball element can be obtained. It should be noted that, in the innermost loop of
the flowchart, the Newton–Raphson algorithm is not used to solve the equilibrium Equation (13) of
all ball elements simultaneously to obtain the distance parameters X1, X2 and friction coefficients
µ for the kth ball bearing, although this method was commonly used in the previously published
works. The accuracy of the Newton–Raphson algorithm typically relies on the trial-and-error of initial
estimates, and the numerical scheme will be very time-consuming and not be able to converge if
the initial chosen solution is far away from the exact solution. In order to overcome this deficiency,
the global optimization method is used to calculate the unknowns X1, X2 and µ of all ball elements
simultaneously for the kth ball bearing. In the global optimization method, the sum of the square of 3Z
mathematical formulas at the left of the equilibrium equations Equation (13) of all ball elements in the
kth ball bearing is the objective function, and the aim is to find the correct X1, X2 and µ that make the
objective function almost zero (global minimum). The scatter search [19] algorithm is used to generate
trial points (initial estimates of independent variables X1, X2 and µ). The two filter conditions, the
distance filter and merit filter [20], are used to examine trial points to ensure that the trial points that
do not actually contribute to finding the local minimum of the objective function are excluded. After
examination, the correct X1, X2 and µ of ball elements can be calculated, which make the objective
function nearly zero (global minimum). The calculation shows that the global optimization method is
very fast and reliable, and the computational efficiency of the system model is improved significantly.

3.2. Model Validity

In order to illustrate the validity of the ball bearing model, the contact angle results for the b218
bearing considering different load and speed conditions are compared in Figure 7 with that from
Antoine’s work [21]. It can be seen that the contact angle obtained by the present ball bearing model
agreed well with the previously published results, and the maximum relative error between them was
16% as the preload was near 8000 N and the bearing speed was 10,000 rpm; However, the error was
very small for other running conditions, which validated that the ball bearing model was effective.
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Table 1 gives the stiffness comparison of ball bearing NSK 7014A5TYSULP4 between the NSK
manual and the calculation results based on the present ball bearing model. The bearing stiffness
formulas can be derived from the partial derivatives of the bearing load with respect to bearing
displacement based on Equation (21). The detailed calculation process is omitted here, and a similar
work can be found in [22–24]. It can be seen that the errors between the calculation results and
manufacturer data were very small and less than 3%, which indicated that the ball bearing model was
very valid.

Table 1. The bearing stiffness comparison between the numerical calculation results and the
NSK manual.

Item

Super Light Preload Light Preload Medium Preload Heavy Preload

Force
(N)

Axial
Stiffness
(N/µm)

Force
(N)

Axial
Stiffness
(N/µm)

Force
(N)

Axial
Stiffness
(N/µm)

Force
(N)

Axial
Stiffness
(N/µm)

Manual 245 170 490 218 1080 293 2160 390
Calculation 245 164.90 490 213.48 1080 291.27 2160 389.80

Error 3.00% 2.07% 0.59% 0.05%

To further validate the effectiveness of the system model, a gear shaft supported by a pair of
angular contact ball bearings from Tong’s work [25] was analyzed considering different shaft diameters
and bearing arrangements. The bearing displacements and loads are presented in Figures 8 and 9.
As shown in Figures 8 and 9, the results calculated by the present system model were very consistent
with those from Tong’s model [25], and the difference between the results from the two different models
was less than 8%, which verified the system model and the calculation procedure.
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(a) Face-to-Face arrangement; (b) Back-to-Back arrangement.
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where   is 0 mcosD d  and the upper sign and the lower sign denote the inner- and 
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4. Fatigue Life Model

Based on the fatigue life theory proposed by Lunberg and Palmgren [26], the basic reference rating
life model of the rolling element bearing, in million revolutions, can be calculated as:

L10r =
(
L−10/9

i + L−10/9
e

)−9/10
(28)

In addition:

Li,e =

(
Qci/ce

Qei/ee

)3

(29)

in which the subscripts i and e refer to the inner and outer ring. The basic dynamic load rating of the
inner and outer rings, Qci/ce, can be calculated as:

Qci/ce = 98.1
(

2 fi,e
2 fi,e − 1

)0.41 (1∓ γ)1.39

(1± γ)1/3

(
γ

cosα0

)0.3

D1.8Z−1/3 (30)

where γ is D cosα0/dm and the upper sign and the lower sign denote the inner- and outer-raceway
contact, respectively. For the current analysis, the equivalent dynamic loads for the rotating inner ring
and the fixed outer ring are calculated, respectively, as:

Qei =
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i j
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(31)
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e j
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(32)

Based on the geometry parameters of the ball bearing, the basic dynamic load rating of the inner
and outer rings can be calculated by Equation (30). The contact force distribution in each bearing is
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solved by the presented system model considering bearing preload and angular misalignment, then
the equivalent dynamic loads of the inner and outer rings can be obtained by Equations (31) and
(32). The basic reference rating life of ball bearings taking into account different preload and angular
misalignment conditions is calculated according to Equations (28) and (29).

5. Results and Discussion

A sample three-bearing shaft system was investigated as shown in Figure 10, and the shaft was
supported by three identical 7008C ACBBs. All ball bearings’ inner rings were perfectly fixed to the
shaft. The outer ring of front bearing was free to move axially in order to apply preload, and the
outer ring of each rear bearing was fixed either ideally or with a small misalignment angle caused
by mounting error. The three ball bearings were assembled 32.5 mm, 187.5 mm, and 237.5 mm away
from the left end of the shaft, respectively, and named as the front bearing, Rear Bearing 1 and Rear
Bearing 2. The geometrical and material parameters for the bearing and shaft are given in Tables 2
and 3, respectively. The external loads acting on the shaft (radial loads Fx, Fy were 1500 N and 1000 N,
respectively; axial load Fz was −1000 N; and moments Mx, My were 5000 N·mm and 6000 N·mm,
respectively) were applied to the shaft node 110mm away from the left end of the shaft. The shaft
rotation speed ni was 10,000 r/min with a centrifugal force of around 11 N for each ball element.
The two axial preload methods, including constant-displacement preload and constant-force preload,
were considered, and the preload was applied on the outer ring of the front bearing. The outer ring of
either Rear Bearing 1 or Rear Bearing 2 was subjected to angular misalignment caused by mounting
error, and only the angular misalignment around the y-axis of the bearing local coordinate system was
considered here. For brevity, Case I was used to indicate that Rear Bearing 1 was subjected to angular
misalignment, and Case II implied that Rear Bearing 2 was subjected to angular misalignment.
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Figure 10. Shaft-bearing system with three angular contact ball bearings.

Table 2. The parameters of angular contact ball bearing 7008C.

Parameter Value

Inner diameter of bearing di (mm) 40
Outer diameter of bearing de (mm) 68

Ball diameter D (mm) 7.9
Groove curvature coefficients of inner raceway fi 0.52
Groove curvature coefficients of outer raceway fe 0.52

Initial contact angle α0 (deg) 15
Number of balls Z 16
Thickness B (mm) 15

Modulus of elasticity E (GPa) 206
Poisson’s ratio ν 0.3

Density ρ (kg·m−3) 7890
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Table 3. The parameters of the shaft.

Parameter Value

d1 (mm) 40
d2 (mm) 44

Total length Ls (mm) 270
Modulus of elasticity E (GPa) 206

Poisson’s ratio ν 0.3

5.1. The Constant-Displacement Preload Condition

Figure 11 shows the nonlinear dependence of the basic reference rating life of all three bearing on
the angular misalignment in the constant-displacement preload condition. As can be seen, the fatigue
life of each bearing varied significantly with the angular misalignment, and most of them were not
the highest when the angular misalignment was zero, except for that of Rear Bearing 2 in the Case
II condition. For each misaligned bearing, an optimal angular misalignment existed regardless of
the preload value at which the misaligned bearing had the highest fatigue life. The optimal angular
misalignment values were different for the two misaligned bearings, −0.8 mrad for Rear Bearing 1 and
0 mrad for Rear Bearing 2, which mainly depended on the contact force distribution of the misaligned
bearings [27]. According to SKF [28], the permissible misalignment angle was 1.2 mrad. It could be
seen that the fatigue life of all bearings was very low at either 1.2 mrad or −1.2 mrad compared with
that within the permissible misalignment angle, as shown in Figure 11; the angular misalignment
approaching the permissible misalignment angle could lead to a significant reduction of bearing life.

For a shaft-bearing system, the failure of any bearing will cause the system to fail. Due to the
dispersion of material properties, the bearing with a high rated life may fail earlier than that with a
low rated life, but the probability of this phenomenon decreases significantly as the gap between the
high rated life and low rated life increases. In general, the bearing with a low rated life is more likely
to fail first compared with the bearing with a high rated life. Without losing generality, it is supposed
that the system life is mainly related to the bearing with the lowest rated life. The shaft fatigue life
is not taken into account here. In the Case I condition, Rear Bearing 1 was misaligned. When the
front bearing was preloaded by an axial displacement of 0.025 mm, the fatigue life of Rear Bearing 1
was always the lowest among the three bearings as the angular misalignment varied from −1.2 mrad
to 1.2 mrad, therefore governing the system life. The shaft system had the same optimal angular
misalignment, −0.8 mrad, and the same highest fatigue life with Rear Bearing 1. The highest system
life was significantly greater than the system life at the angular misalignment of 0 mrad, reaching 1.55
times. As the preload displacement increased to 0.050 mm, the system life depended on the fatigue life
of both Rear Bearing 1 and the preloaded front bearing, and the optimal angular misalignment turned
to −0.21 mrad. The system optimal angular misalignment was no longer the same as the bearing
optimal angular misalignment and approached 0 mrad, which was caused by the significant reduction
of the fatigue life of the preloaded front bearing with increasing preload value. The system life at
the optimal angular misalignment was only 1.12 times that at the angular misalignment of 0 mrad.
The difference between the system life at the optimal angular misalignment and the system life at the
angular misalignment of 0 mrad decreased with the increasing constant-displacement preload. In the
Case II condition, the system life was mainly related to both the front bearing and Rear Bearing 1 due to
the high fatigue life of the misaligned Rear Bearing 2. The optimal angular misalignments of the shaft
system were 0.8 mrad, 0.8 mrad, and 0.21 mrad, respectively, as the preload displacement varied from
0.025 mm to 0.050 mm. The optimal angular misalignments of the shaft system for Case I and Case II
were nearly opposite each other at the same preload displacement. Such a phenomenon was attributed
to the negative optimal angular misalignment in the Case I condition and the positive optimal angular
misalignment in the Case II condition causing a similar shaft elastic deformation, therefore producing
a similar contact force distribution in Rear Bearing 1. The contact force distribution of Rear Bearing 1
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at the preload displacements of 0.025 mm and 0.035 mm is given in Figure 12 to verify this point, and
the contact force results at the preload displacement of 0.050 mm were omitted here.

In addition, the comparison of the highest system life showed that the Case I condition could lead to
a reduction of system life compared with the Case II condition, the reduction amount being from 15% to
1% with the constant-displacement preload varying from 0.025 mm to 0.050 mm. The reduction amount
was significant at the low preload displacement and could be ignored at the high preload displacement.
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5.2. The Constant-Force Preload Condition

Figure 13 shows the variation of bearing life with the angular misalignment in the constant-force
preload condition. In order to analyze the effects of the preload method on the bearing life, the preload
force was taken as 500 N, 1000 N, and 1500 N. When the shaft was running without external loads,
the preload force of 500 N could cause 0.0355 mm axial displacement of the outer ring of the front
bearing, which was very close to 0.035 mm, and the preload force of 1000 N could cause 0.050 mm
axial displacement. Therefore, the preload force of 500 N and 1000 N at the constant-force preload
could be assumed to be equivalent to the preload displacement of 0.035 mm and 0.050 mm in the
constant-displacement preload, respectively. The life comparisons can be made between Figures 11c–f
and 13a–d. As can be seen, the two preload methods had a certain effect on the variation of the fatigue
life of the preloaded front bearing with the angular misalignment. For the constant-force preload
condition, the fatigue life of front bearings was basically linear with angular misalignment, and for
the constant-displacement condition, a nonlinear relation could be found. The above difference was
mainly due to the outer ring of the front bearing moving slightly with the angular misalignment for
the constant-force preload condition, while the outer ring of the front bearing was immovable for the
constant-displacement preload condition, which affected the contact force distribution in the front
bearing, therefore resulting in different trends of the front bearing life with angular misalignment.
With the increasing of the constant-displacement preload, the nonlinear relation between the fatigue
life of the front bearing and the angular misalignment became more obvious, as shown in Figure 11.
For the constant-force preload condition, the increasing preload force reduced the dependence of the
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front bearing life on the angular misalignment, and the relation between the front bearing life and
the angular misalignment approached a horizontal line at the preload force of 1500 N, as shown in
Figure 13. Among the three bearings in the shaft system, the effect of the preload method on the fatigue
life of Rear Bearing 1 was the weakest, and the two preload methods only caused a small change in the
fatigue life of Rear Bearing 1. From Figures 11c–f and 13a–d, it can be seen that the fatigue life of Rear
Bearing 1 was lowest over a wide angular misalignment range, therefore playing a significant role in
the system life. Due to the effect of the preload method on the fatigue life of Rear Bearing 1 being very
limited, the optimal angular misalignment and highest fatigue life for the shaft system were the same
for the two preload methods.
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As the preload force reached 1500 N, the system life depended on the fatigue life of both the
front bearing and Rear Bearing 1. The optimal angular misalignment for the shaft system was close
to 0.4 mrad in the Case I condition and −0.4 mrad in the Case II condition. As mentioned above,
the fatigue life of the front bearing varied slowly with angular misalignment, which resulted in very
small variation of the system life near the optimal angular misalignment. Therefore, a large range, for
example from −0.4 mrad to 0.4 mrad for the Case I condition and from −0.8 mrad to 0.4 mrad for the
Case II condition, could be regarded as the optimal angular misalignment range of the shaft system.
Such a phenomenon implied that the increasing constant-force preload could weaken the effects of
angular misalignment on the system life.

6. Conclusions

In this paper, to analyze the effects on the fatigue life of bearings and the shaft system resulting
from the combined preload and angular misalignment induced by inaccurate mounting, a shaft-bearing
system with bearing preload and angular misalignment was investigated. By improving the
computational efficiency of ball element force analysis, the system model was solved fast and
reliably. Comparisons were also made to verify the correctness of the system model and calculation
program. Based on the contact force distribution of ball bearings, the fatigue life of each ball bearing
was obtained. The results showed that both the preload and angular misalignment had significant
effects on the fatigue life of ball bearings and the shaft-bearing system.

An optimal angular misalignment existed for the shaft-bearing system and could prolong the
system life. At the low preload value, the system life at the optimal angular misalignment was
much higher than that at 0mrad, and such a difference decreased with the increasing preload value.
The optimal angular misalignment of the shaft system was not always the same as that of the
misaligned bearing, which depended on the preload value and the fatigue life of each bearing. The two
preload methods, constant-displacement preload and constant-force preload, had significant effects
on the variation of the preloaded bearing life with the angular misalignment, but weak effects on
the highest system life. At high constant-force preload, the system life varied very slowly with
angular misalignment, and an optimal angular misalignment range existed. The angular misalignment
occurring on different bearings could lead to a significant difference of the highest system life when the
preload value was low, but the difference could be ignored when the preload value was high.
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Nomenclature

a major semi-axis for ball-raceway contact ellipse, mm
b minor semi-axis for ball-raceway contact ellipse, mm
D ball diameter, mm
dm bearing pitch diameter, mm
di inner diameter of bearing, mm
de outer diameter of bearing, mm
B thickness of bearing, mm
fe groove curvature coefficients of outer raceway
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fi groove curvature coefficients of inner raceway
J mass moment of inertia, kg·mm2

ρ density, kg/m3

m ball mass, kg
N number of beam elements
Z number of balls
γe D cosαe/dm

γi D cosαi/dm

γ′ D/dm

γ D cosα0/dm

α0 initial contact angle, rad
αe contact angle at ball-outer raceway contact, rad
αi contact angle at ball-inner raceway contact, rad
β ball pitch angle, rad
ωi angular speed of inner ring/shaft around the bearing axis, rad/s
ωc ball orbital speed around the bearing axis, rad/s
ωb ball spinning speed around its own axis, rad/s
MS

be friction moment at ball-outer raceway contact due to spinning, N·mm
MS

bi friction moment at ball-inner raceway contact due to spinning, N·mm
L2(·) second kind of elliptic integral function
Qi contact force at ball-inner raceway contact, N
Qe contact force at ball-outer raceway contact, N
Fc ball centrifugal force, N
Mg gyroscopic moment, N·mm
Fi friction force at ball-inner raceway contact, N
Fe friction force at ball-outer raceway contact, N

Fx
bearing force applied on the inner ring of ball bearing along x-axis of bearing local coordinate
system, N

Fy
bearing force applied on the inner ring of ball bearing along y-axis of bearing local coordinate
system, N

Fz
bearing force applied on the inner ring of ball bearing along z-axis of bearing local coordinate
system, N

Mx
moment applied on the inner ring of ball bearing around x-axis of bearing local coordinate system,
N·mm

My
moment applied on the inner ring of ball bearing around y-axis of bearing local coordinate system,
N·mm

F external load vector applied on the shaft nodes, N
µ ball-raceway friction coefficient
O initial position of ball center
O′ final position of ball center

Oe outer raceway groove curvature center
Oi initial position of inner raceway groove curvature center
O′i final position of inner raceway groove curvature center

X1 axial distance between ball center O′ and outer raceway groove curvature center Oe, mm
X2 radial distance between ball center O′ and outer raceway groove curvature center Oe, mm
δx translational displacement of inner ring along x-axis of bearing local coordinate system, mm
δy translational displacement of inner ring along y-axis of bearing local coordinate system, mm
δz translational displacement of inner ring along z-axis of bearing local coordinate system, mm
θx angular displacement of inner ring around x-axis of bearing local coordinate system, rad
θy angular displacement of inner ring around y-axis of bearing local coordinate system, rad
δe ball-outer raceway contact deformation, mm
δi ball-inner raceway contact deformation, mm
ni rotational speed of inner ring/shaft, rpm
Ri radius of locus of inner raceway groove curvature centers, mm
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ϕ ball azimuth angle, rad
κ a/b
ν Poisson’s ratio
Ke deflection coefficient at ball and outer raceway contact, N/mm1.5

Ki deflection coefficient at ball and inner raceway contact, N/mm1.5

ri groove curvature radius of inner raceway, mm
K global stiffness matrix of the shaft
Ke stiffness matrix of the beam element
δ displacement vector of the shaft nodes, mm
E modulus of elasticity, GPa
I moment of inertia of the shaft section, mm4

L length of beam element, mm
Ls total length of the shaft, mm
kb number of angular contact ball bearings supporting the shaft
εb calculation error of ball spinning speed
εc calculation error of ball orbit speed
εβ calculation error of ball pitch angle
δa axial displacement caused by constant-displacement preload or constant-force preload, mm

θx0
angular misalignment of outer ring of ball bearing around x-axis of bearing local coordinate
system, mrad

θy0
angular misalignment of outer ring of ball bearing around y-axis of bearing local coordinate
system, mrad

L10r basic reference rating life of bearing, in million revolutions
Li basic reference rating life of inner ring, in million revolutions
Le basic reference rating life of outer ring, in million revolutions
Qci basic dynamic load rating of inner ring, N
Qce basic dynamic load rating of outer ring, N
Qei equivalent dynamic load for rotating inner ring, N
Qee equivalent dynamic load for fixed outer ring, N
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