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Abstract: The infinite spragging force can be produced by a spring inclined with a constant angle in a
frictional sliding system. The ensuing oscillation is called the sprag-slip oscillation. This sprag-slip
oscillation is re-examined by using the minimal nonlinear dynamic model with the variable angle of
the inclined spring. Nonlinear equilibrium equation is converted into the novel polynomial form.
This simple but more realistic sprag model shows that the infinite spragging force is not realistic and
the catastrophic static deformation in the steady-sliding state can occur. It indicates that the ‘sprag’,
termed by Spurr, can be described by this catastrophic characteristic of the frictional sliding system.
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1. Introduction

Friction-induced vibration is usually known as self-excited vibration by friction producing
unwanted phenomena such as vibration, noise, and fatigue. Owing to its frequent and serious
problems in many applications such as automotive brakes, machine joints, and tools, enormous
research for the source of instability in the friction-engaged system has been conducted over the
decades [1–17].

In the literature, the minimal model has been widely used to explain the dynamic instability
induced by the negative friction-slope and mode-coupling instability [10–13]. In a general approach,
a stability analysis based on linear eigenvalue analysis was performed and stability boundaries
in the parameter space were derived for the equilibrium of the system. Then, their nonlinear
stick-slip oscillations at the unstable steady-sliding equilibrium have been demonstrated by solving
discontinuous differential equations using several different friction models such as the smoothing [10]
and switching [11] methods.

In this scenario, the determination of the dynamic instability in the parameter space is valid
when steady-sliding exists, and the resulting nonlinear motion in this space can be reasonably found.
However, in the parameter space for which steady-sliding does not exist, the above analysis is no
more applicable, and the true nonlinear response cannot be examined. Therefore, the determination of
the parameter space for which the steady-sliding does not exist is critical for the so-called “sprag-slip
oscillation”.

Sprag-type instability and its realistic interpretation were of particular interest in this study.
Its dynamic behavior has not been vigorously investigated due to its unbounded and discontinuous
nature. The term “sprag” was firstly named by Spurr in his article [1] by using two simple examples:
One, the inclined rigid rod hinged at one end under sliding and can have infinite contact forces, and two,
the mass attached by an inclined spring and may experience an unbounded steady-sliding equilibrium
(equivalent to the infinite contact forces) for a certain geometric condition. Later, this kinematic
constrained instability was investigated in the beam-on-disk system by Jarvis et al. [14] and the pin-disc
model by Earles et al. [15]. In the beam-on-belt configuration, Hoffmann et al. [16] extended the sprag
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theory by assuming that the sprag condition can be, in another way, characterized as the non-existence
of the steady-sliding equilibrium, which is presumably equivalent to the lift-off of the sliding beam at
the contact. Kang et al. [17] also investigated the sprag conditions of the several sliding mass-spring
systems and found that, in the parametric space, the unbounded spragging force corresponds to
the boundary of the regime for the non-existence of the steady-sliding equilibrium. In other words,
the sprag condition in [1] is shown to be the condition for the onset of loss-of-contact in [16,17].
However, it is still unclear that the sprag-type oscillation truly exists in the friction-sliding system.
The infinite contact force or the loss of contact at sliding is quite ambiguous from the engineering
point of view. Honestly, the sprag-slip oscillation is not based on the mathematical principles, but the
hypothesis that a lacking steady-sliding presumably leads to stick-slip oscillation.

The infinite contact force is generated in a specific region in the parametric space by a linearized
equilibrium. [17] Kinematic and dynamic analysis includes initial condition and static equilibrium
position in open and closed loop mechanisms. Hence, it is very important to find the equilibrium
position. In dynamical system, steady-sliding equilibrium can be represented by a nonlinear equation.
Its nonlinear equation derives a solution with abrupt changes that are difficult to predict in a parametric
space. Nonlinearities, such as social and behavioral sciences and natural phenomena where continuous
changes in parameters can lead to discontinuous changes in the resulting variables, are described as
cusp catastrophes [18–28].

Qin et al. [19] studied the necessary and sufficient conditions leading to landslides. The bifurcation
point is a turning point from stability to potential instability, showing that chaos can be formed. It also
shows that the chaos phenomenon is related to the mechanical parameters of the medium along the
sliding surface. In a similar study case, Miao et al. [23] studied the dynamical behavior of water or gas
flow in a broken rock. They used the catastrophe theory to obtain the fold catastrophe model of the
stability of flow system and predicted that dynamic disasters could occur near bifurcation. In this way,
the catastrophe theory was used to analyze bifurcation curve in a nonlinear equilibrium. In another
study, cusp catastrophe interpretation was also studied in the analysis of dynamic instability due
to friction. Carpinteri et al. [24] simulated the problem of tangential force with the perspective of a
micromechanical contact model. It has also been shown that reducing the applied normal force results
in energy release due to snap-back instability associated with tangential force and sliding displacement.
This result provides an explanation of the stick-slip phenomenon according to the catastrophe theory
of tangential load, which showed similar to cusp-catastrophe instability. Tian et al. [28] expressed
equilibrium surfaces using cusp catastrophe theory in harmful algae blooms (HABs). The static
equilibrium surface consists of two stable areas and a folded area, which can be projected as a
bifurcation set. When entering the bifurcation set on the equilibrium surface, the state variable
suddenly jumps and causes cusp catastrophes of the system.

The basic concept of the cusp catastrophe theory is the ’potential’ of the system, and it tends
to produce certain sudden results. Catastrophic phenomena undergo periods of equilibrium at a
minimum potential and, conversely, periods of sudden changes at a maximum potential. The potential
of the system is not a structurally stable function, but the critical point (singularity) is degenerated.

In the field of multi-body dynamics, the nonexistence of solutions under the Coulomb friction on
rigid contact is well known as Painleve’s paradox [29–33]. Under the assumption of the impenetrability
where the gap between the rigid system and rigid ground is not allowed negative, the occurrence
of inconsistency and indeterminate can be found in the parameter space. Frictional hopping
motion has been suggested as the similar kind of sprag-slip oscillation by the Painleve paradox [29].
Painleve’s paradox was well introduced in a review study by Champneys et al. [33]. The author
described the Painleve’s paradox through the difference between pulling and pushing force by inducing
chalk’s sprag-slip vibration. In addition, various minimal models were reinterpreted to describe the
uncertainty, multiple stability, and instability associated with Painleve’s paradox. In compliant contact
for which the negative gap is allowed, the indeterminate of the steady-sliding equilibrium was found
in the parameter space [16,17].



Appl. Sci. 2020, 10, 2748 3 of 14

However, the static and dynamic phenomenon at a nonlinear equilibrium of a dynamic system
has not been investigated when a sudden jump occurs in friction-induced vibration. The previous
study [17] presumed that the so-called “sprag-slip oscillation” occurs when a singular condition such
as no steady-sliding situation is met. The purpose of the present work was to resolve this singularity
problem and explain the sprag-slip oscillation in a continuous manner. For this, the more and realistic
nonlinear modeling was introduced and adopted.

In our model, one mass was attached by an inclined spring where the inclined spring angle was
allowed varying. This simple and nonlinear configuration was the key avoiding the paradoxical case
mentioned above. It resulted in the fully nonlinear equations of equilibrium, which seemed very
complicated to solve. However, we successfully converted them into the novel polynomial form to
be analytically solved. The solution set of the equilibrium equations will be used to show how the
non-existence of steady-sliding was avoided and bifurcation set was formed in the parametric space.
Then, the sprag phenomenon, understood as the infinite spragging force, was newly interpreted as the
catastrophe-type behavior with finite static sliding deformation.

2. Materials and Methods

A simple compliant model was proposed, as shown in Figure 1. The kx and ky represent system
stiffness fixed to ground as opposed that the inclined stiffness and k was applied for representing
kinematic variation of system stiffness during sliding. The contact stiffness kc was applied for allowing
the downward acceleration. It should be noted that the inclined stiffness k may produce the infinite
spragging force for the constant inclined angle [17]. In the present work, the inclined angle θ was
allowed varying for preventing the sprag force from becoming infinite and providing the nonlinear
perspective on spragging, as shown in Figure 2.
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The equations of motion for this nonlinear spring-mass model are given by:

m
..
x = µN − k∆ cosθ− kxx (1)

m
..
y = N − FL − k∆ sinθ− kyy (2)

where the stretch/compression in the inclined spring is obtained from (Figure 2b):

∆ = Lo − L (3)

and where the relationship between the original length Lo and the deformed length L is given by:

L cosθ = Lo cosθo − x (4)

L sinθ = Lo sinθo − y (5)

L =

√
(Lo cosθ− x)2 + (Lo sinθ− y)2 (6)

It is important to note that the contact normal load N in Equations (1) and (2) is a nonsmooth
function defined as:

N =

{
−kcy, i f y < 0

0, i f y ≥ 0
(7)

The equations of motion, Equations (1)–(2), can be rewritten in the dimensionless form by
introducing the new time scale and system parameters:

x′′ +
σ
L
(1− L)(cosθo − x) + αx− µn = 0 (8)

y′′ +
σ
L
(1− L)(sinθo − y) + βy− n = 0 (9)

where τ = t
√

kc/m, (•)′ = d(•)/dτ, x→ x/Lo , y→ y/Lo , L→ L/Lo , σ = k/kc, α = kx/kc, β = ky/kc,
κ = FL/(kcLo), and n = N/kc. For a convenient mathematical form, µ is set to be a regularized friction
coefficient and n is expressed in a mathematical function form such that:

µ = µo
{
1− exp

(
−d

∣∣∣V − .
x
∣∣∣)}sgn(V −

.
x) (10)

n =
1
2

(∣∣∣y∣∣∣− y
)

(11)

where d is the control parameter in the creep regime (Figure 3).
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The system equilibriums can be found from Equations (8) and (9) when x′′ = x′ = 0 and
y′′ = y′ = 0. The corresponding equilibrium equations become:

Fx =
σ
L
(1− L)(cosθo − x) + αx− µon = 0 (12)

Fy =
σ
L
(1− L)(sinθo − y) + βy− n = 0 (13)

Here the two set of equilibrium equations are formulated for the contact and noncontact conditions.
For the contact condition, n > 0, the equilibrium equations are rewritten as:

σ(1− L) cosθ+ α(cosθo − L cosθ) + µo(sinθo − L sinθ) = 0 (14)

σ(1− L) sinθ+ β(sinθo − L sinθ) + (sinθo − L sinθ) = −κ (15)

It can be also expressed in the matrix form:

D
{

cosθ
sinθ

}
= b (16)

where
D = σI + LA (17)

A =

[
−(σ+ α) −µ

0 −(σ+ β+ 1)

]
(18)

b =

{
−α cosθo − µ sinθo

−(β+ 1) sinθo − κ

}
(19)

For further numerical calculation, Equation (16) is converted into:{
cosθ
sinθ

}T{
cosθ
sinθ

}
= 1 = bT

(
DDT

)−1
b (20)

which results in the polynomial equations in L:

c0 + c1L + c2L2 + c3L3 + c4L4 = 0 (21)

where the coefficients are referred to in the Appendix A. The solutions of Equation (21) give the
steady-sliding equilibriums.

Similarly, for the noncontact condition, n = 0, the equilibrium equations are expressed in the
matrix form:

D̃
{

cosθ
sinθ

}
= b̃ (22)

{
cosθ
sinθ

}T{
cosθ
sinθ

}
= 1 = b̃

T
(
D̃D̃

T
)−1

b̃ (23)

where

D̃ =

[
σ(1− L) − Lα 0

0 σ(1− L) − Lβ

]
(24)

b̃ =

{
−α cosθo

−β sinθo − κ

}
(25)
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The corresponding polynomial equation in L is given by:

d0 + d1L + d2L2 + d3L3 + d4L4 = 0 (26)

where its coefficients are also referred to in the Appendix A. The solutions of Equation (26) represent
the equilibriums under the noncontact condition. Therefore, the possible equilibriums of this
nonlinear spring-mass model can be either the steady-sliding equilibriums or the static equilibrium
without contact.

The stability of the equilibrium is determined by the eigenvalue λ of Equations (12) and (13):

det
(
λ2I + K

)
= 0 (27)

where

K =


∂Fx
∂x

∂Fx
∂y

∂Fy
∂x

∂Fy
∂y


equilibriums

=

 σ
(
1−

sin2 θeq
Leq

)
+ α σ

Leq
sinθeq cosθeq + µon

σ
Leq

sinθeq cosθeq σ
(
1−

cos2 θeq
Leq

)
+ β+ n

 (28)

where

n =

{
1 , i f n , 0
0 , i f n = 0

(29)

3. Results

For the preliminary investigation, θo was chosen to be a control parameter and the other system
parameters were set to be µo = 0.5, κ = 0.007, α = 0.007, σ = 0.1, and β = 0 for clearly showing the
catastrophic behavior. The equilibrium curve and its stability types can be determined by solving
Equations (21), (22), and (27) numerically with respect to θo. The equilibrium set of the contact
and noncontact conditions can be obtained separately, as shown in Figure 4a,b and Figure 4c,d,
respectively. The fixed points under contact (yeq < 0) are the steady-sliding equilibriums essential
in the friction-induced vibration problems. However, the fixed points under noncontact condition
(yeq ≥ 0) represent the static equilibrium in the lift-off state that was not of interest in this analysis.
The dynamic behavior of the system can be investigated by the stability at the sliding deformation
with respect to the control parameter, as illustrated in Figure 4a. In this example, three steady-sliding
equilibriums exist for the lower and upper range of θo where one is geometrically unstable and the
others are stable.

It is important to note that, for the constant inclined angle case [17], the steady-sliding disappeared
under the so-called sprag condition. This constant angle approximation will be called the “linear
sprag model”. The corresponding dynamic behavior can be hardly analyzed due to its discontinuous
characteristics. Therefore, the spragging force should be interpreted by the proposed nonlinear model.

In this example, the critical value for the existence of the sprag condition in the linear sprag model
was around µo ≡ µcr = 0.58. The steady-sliding equilibrium of the linear sprag model always exists in
the bounded manner for µo < µcr as shown in Figure 5a,b. In contrast, Figure 5c,d indicates that the
equilibrium of the linear sprag model goes to infinity at the certain angles for µo > µcr. Equivalently,
the spragging force increases in infinity on the contact. However, if the inclined angle is allowed
varying, the real roots of the steady-sliding always exist in the bounded one or three real numbers.
Figure 5 demonstrates that the equilibrium solution of the linear sprag model can approximate the one
of the nonlinear model for the lower and upper range of θo, but it is not valid in between.
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Figure 6a illustrates a discontinuous jump from the lower to the upper stable equilibrium if θo

increases from zero. This jump is called catastrophe, which results in large static deformation in
the sliding direction. In the reverse direction, as decreasing θo there was no jump, but there was
increase of the static deformation. This interpretation differs from the conclusion of the previous sprag
model [16,17], i.e., that there are the critical angles leading to the infinite spragging force and the sprag
condition for the nonsteady-sliding equilibrium in between, as shown in Figure 6b. It implies that the
sprag condition may not be the correct interpretation for the so-called sprag-slip oscillation presumably
induced by spragging force.
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Figure 6. Trajectory of equilibrium with respect to θo at µo = 0.7, (a) nonlinear model and (b) linear
sprag model.

The above results indicate that the term "sprag" can be replaced by the catastrophic characteristics
with changes in system parameters such as the initial inclined angle θo. In the sliding oscillation,
the discontinuous jump can still dominates the oscillatory behavior. Figure 7a illustrates that the
oscillation started from the zero initial position, x = 0 and y = 0 for the angle θo = 49◦, and reached the
stable limit cycle. As the angle varied, the amplitude of oscillation drastically increased near the value
of catastrophe, as shown in Figure 7b. It implies that the "sprag-slip oscillation" was initiated from the
catastrophic behavior rather than the infinite spragging force. In this scenario, the sliding equilibrium
met the catastrophe, lost the balance of forces, and then sought the adjacent attractor. It required
large sliding deformation, leading to the limit cycle oscillation. This will be called "catastrophe-type
oscillation" in frictional sliding system.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 15 

 

Figure 7. Amplitude of oscillation from the zero initial position at 0.5oμ = , (a) time signal at  

49oθ = ° , and (b) root mean square of x-displacement. 

The influence of system parameters on the catastrophe was numerically investigated. The 
steady-sliding equilibrium curves were calculated with the three different values of system 
parameters with respect to oθ . In Figure 8, the equilibrium curves are plotted with respect to 0β = , 
1, and 2. If the steady-sliding equilibrium in the sliding direction started near the zero sliding 
deformation, the catastrophe took place for 0β =  and 1. However, its trajectory with 2β =  did 
not cross the catastrophe, but became a smooth curve. Similarly, for the steady-sliding equilibrium 
starting near the zero sliding deformation in Figure 9, the catastrophe occurred only for 0.007α = , 
whereas the others for 0.07α =  and 0.7α = toke smooth curves as well. In this example, the flutter 
instability due to mode-coupling took place for 0.7α = around 150oθ °= . It should be noted that the 
stable steady-sliding was changed dynamically unstable if the condition of mode-coupling instability 
was met [17]. Figure 10 illustrates the effect of σ  where the steady-sliding starting near the zero 
sliding deformation met the catastrophe for 0.1σ =  and 1, but not for 0.01σ = . It is also seen that 
one of the stable equilibriums for 1σ =  can become dynamically unstable due to mode-coupling 
mechanism. 

 

Figure 8. Steady-sliding equilibrium curve with respect to oθ  at 0.5oμ = . 

(a) (b) 

Figure 7. Amplitude of oscillation from the zero initial position at µo = 0.5, (a) time signal at θo = 49◦,
and (b) root mean square of x-displacement.

The influence of system parameters on the catastrophe was numerically investigated.
The steady-sliding equilibrium curves were calculated with the three different values of system
parameters with respect to θo. In Figure 8, the equilibrium curves are plotted with respect to β = 0, 1,
and 2. If the steady-sliding equilibrium in the sliding direction started near the zero sliding deformation,
the catastrophe took place for β = 0 and 1. However, its trajectory with β = 2 did not cross the
catastrophe, but became a smooth curve. Similarly, for the steady-sliding equilibrium starting near
the zero sliding deformation in Figure 9, the catastrophe occurred only for α = 0.007, whereas the
others for α = 0.07 and α = 0.7 toke smooth curves as well. In this example, the flutter instability
due to mode-coupling took place for α = 0.7 around θo = 150

◦

. It should be noted that the stable
steady-sliding was changed dynamically unstable if the condition of mode-coupling instability was
met [17]. Figure 10 illustrates the effect of σ where the steady-sliding starting near the zero sliding
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deformation met the catastrophe for σ = 0.1 and 1, but not for σ = 0.01. It is also seen that one of the
stable equilibriums for σ = 1 can become dynamically unstable due to mode-coupling mechanism.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 15 

 

Figure 7. Amplitude of oscillation from the zero initial position at 0.5oμ = , (a) time signal at  

49oθ = ° , and (b) root mean square of x-displacement. 

The influence of system parameters on the catastrophe was numerically investigated. The 
steady-sliding equilibrium curves were calculated with the three different values of system 
parameters with respect to oθ . In Figure 8, the equilibrium curves are plotted with respect to 0β = , 
1, and 2. If the steady-sliding equilibrium in the sliding direction started near the zero sliding 
deformation, the catastrophe took place for 0β =  and 1. However, its trajectory with 2β =  did 
not cross the catastrophe, but became a smooth curve. Similarly, for the steady-sliding equilibrium 
starting near the zero sliding deformation in Figure 9, the catastrophe occurred only for 0.007α = , 
whereas the others for 0.07α =  and 0.7α = toke smooth curves as well. In this example, the flutter 
instability due to mode-coupling took place for 0.7α = around 150oθ °= . It should be noted that the 
stable steady-sliding was changed dynamically unstable if the condition of mode-coupling instability 
was met [17]. Figure 10 illustrates the effect of σ  where the steady-sliding starting near the zero 
sliding deformation met the catastrophe for 0.1σ =  and 1, but not for 0.01σ = . It is also seen that 
one of the stable equilibriums for 1σ =  can become dynamically unstable due to mode-coupling 
mechanism. 

 

Figure 8. Steady-sliding equilibrium curve with respect to oθ  at 0.5oμ = . 

(a) (b)

Figure 8. Steady-sliding equilibrium curve with respect to θo at µo = 0.5.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 15 

 

Figure 9. Steady-sliding equilibrium curve with respect to oθ  at 0.5oμ = . 

 

Figure 10. Steady-sliding equilibrium curve with respect to oθ  at 0.5oμ = . 

In order to illustrate the possibility of the catastrophe-type oscillation in relation to the friction 
coefficient, the solution surface of the fixed points was plotted in the topological sense with two 
control variables, oθ  and oμ , as shown in Figure 11. Such surface allowed us to investigate the 
dynamic behavior in a nonlinear compliant system with friction. For given values, one or three 
steady-sliding equilibriums were possible where one central surface was divergent and the upper 
and lower surfaces were stable. There must be the bifurcation set, which separates the single solution 
set from the triple one. To demonstrate this, the bifurcation set was plotted in the figure of control 
variables, as shown in Figure 12. At the bifurcation set, the state of system must jump to another state. 
Such jump can take place twice for a given oθ  if the state is on the cusp of bifurcation curve, which 
is the cusp catastrophe. In the cusp catastrophic behavior, the trajectory (a-a’ in Figure 11) took 
hysteresis where the reverse path was not same as the original one, as illustrated in Figure 13a. On 
the other hand, Figure 13b shows that the trajectory in the single jump condition (b-b’ in Figure 11) 
did not return to the original. Figure 14 indicates that the surface of the stable steady-sliding 
equilibrium set can also be separated with the set of dynamically unstable equilibriums by the Hopf 
bifurcation for the specific system parameters. 

Figure 9. Steady-sliding equilibrium curve with respect to θo at µo = 0.5.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 15 

 

Figure 9. Steady-sliding equilibrium curve with respect to oθ  at 0.5oμ = . 

 

Figure 10. Steady-sliding equilibrium curve with respect to oθ  at 0.5oμ = . 

In order to illustrate the possibility of the catastrophe-type oscillation in relation to the friction 
coefficient, the solution surface of the fixed points was plotted in the topological sense with two 
control variables, oθ  and oμ , as shown in Figure 11. Such surface allowed us to investigate the 
dynamic behavior in a nonlinear compliant system with friction. For given values, one or three 
steady-sliding equilibriums were possible where one central surface was divergent and the upper 
and lower surfaces were stable. There must be the bifurcation set, which separates the single solution 
set from the triple one. To demonstrate this, the bifurcation set was plotted in the figure of control 
variables, as shown in Figure 12. At the bifurcation set, the state of system must jump to another state. 
Such jump can take place twice for a given oθ  if the state is on the cusp of bifurcation curve, which 
is the cusp catastrophe. In the cusp catastrophic behavior, the trajectory (a-a’ in Figure 11) took 
hysteresis where the reverse path was not same as the original one, as illustrated in Figure 13a. On 
the other hand, Figure 13b shows that the trajectory in the single jump condition (b-b’ in Figure 11) 
did not return to the original. Figure 14 indicates that the surface of the stable steady-sliding 
equilibrium set can also be separated with the set of dynamically unstable equilibriums by the Hopf 
bifurcation for the specific system parameters. 

Figure 10. Steady-sliding equilibrium curve with respect to θo at µo = 0.5.



Appl. Sci. 2020, 10, 2748 10 of 14

In order to illustrate the possibility of the catastrophe-type oscillation in relation to the friction
coefficient, the solution surface of the fixed points was plotted in the topological sense with two control
variables, θo and µo, as shown in Figure 11. Such surface allowed us to investigate the dynamic
behavior in a nonlinear compliant system with friction. For given values, one or three steady-sliding
equilibriums were possible where one central surface was divergent and the upper and lower surfaces
were stable. There must be the bifurcation set, which separates the single solution set from the triple
one. To demonstrate this, the bifurcation set was plotted in the figure of control variables, as shown in
Figure 12. At the bifurcation set, the state of system must jump to another state. Such jump can take
place twice for a given θo if the state is on the cusp of bifurcation curve, which is the cusp catastrophe.
In the cusp catastrophic behavior, the trajectory (a-a’ in Figure 11) took hysteresis where the reverse path
was not same as the original one, as illustrated in Figure 13a. On the other hand, Figure 13b shows that
the trajectory in the single jump condition (b-b’ in Figure 11) did not return to the original. Figure 14
indicates that the surface of the stable steady-sliding equilibrium set can also be separated with the set
of dynamically unstable equilibriums by the Hopf bifurcation for the specific system parameters.
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4. Discussions

We developed the nonlinear sliding system with the variable angle of the inclined spring in order
to examine the sprag-slip oscillation. Nonlinear equilibrium equation was calculated by converting
into the form of the polynomial equation. From the equilibrium solution, the infinite spragging force
was found only for the constant angle of the inclined spring, which is the linear sprag model. However,
the spragging force is always bounded if the angle of the inclined spring is set to be variable. Also,
it was found that the catastrophic static deformation in the steady-sliding state can occur. Consequently,
the catastrophe in equilibrium curve can lead to the large oscillations. Therefore, it was concluded that
the ’sprag’, termed by Spurr [1], can be described by the catastrophic characteristics of the frictional
sliding system in association with the angle of the inclined spring.

We also illustrated that the cusp catastrophe can take place for certain system parameters depending
on the inclined angle of spring and the friction coefficient. The bifurcation set was demonstrated on
the topological surface of the steady-sliding equilibrium over the parametric space,µo and θo. In some
cases, the flutter instability due to mode-coupling mechanism was found on the equilibrium surface.

This catastrophic behavior in the friction-sliding system was proposed using a simple but highly
nonlinear spring-mass system. It implied that a real mechanical system with a highly nonlinear
geometry such as an inclined and hinged spring can have multiple equilibria. When the number of
equilibria changes with respect to system parameters, this type of catastrophic sprag-slip oscillation
can occur in the real system.
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For a friction-sliding system with kinematically variable stiffness, sprag-slip is the one potential
mechanism producing unwanted vibrations. In order to predict the sprag-type oscillation, therefore,
the kinematic variation of system stiffness should be precisely estimated during sliding. If so,
the sprag-slip oscillations can be predicted in numerical real-time simulation.

In future work, we will demonstrate and validate the sprag-slip oscillation through experiment
using the system configuration that was suggested in this analytical model.
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Appendix A

The coefficients of the equilibrium equations

c0 = d0 =
(
b2

1 + b2
2

)
σ2
− σ4 (A1)

c1 = 2b1b2µoσ+
(
σ3
− b2

1σ
)
(2 + 2β+ 2σ) +

(
σ3
− b2

2σ
)
(2α+ 2σ) (A2)

c2 = µ2
oσ

2
− 2b1b2µo(1 + β+ σ) +

(
b2

1 − σ
2
)
(1 + β+ σ)2

−(2 + 2β+ 2σ)σ2(2α+ 2σ) +
(
b2

2 − σ
2
)(
µ2

o + (α+ σ)2
) (A3)

c3 = −2µ2
oσ(1 + β+ σ) + σ(1 + β+ σ)2(2α+ 2σ)
+σ(2 + 2β+ 2σ)

(
µ2

o + (α+ σ)2
) (A4)

c4 = −(1 + β+ σ)2(α+ σ)2 (A5)

d1 = (α+ σ)
(
−2b2

4σ+ 2σ3
)
+ (β+ σ)

(
−2b2

3σ+ 2σ3
)

(A6)

d2 =
(
b2

4 − σ
2
)
(α+ σ)2

− 4σ2(α+ σ)(β+ σ) +
(
b2

3 − σ
2
)
(β+ σ)2 (A7)

d3 = 2σ(α+ σ)2(β+ σ) + 2σ(α+ σ)(β+ σ)2 (A8)

d4 = −(α+ σ)2(β+ σ)2 (A9)

where
b1 = −α cosθo − µo sinθo (A10)

b2 = −(β+ 1) sinθo − κ (A11)

b3 = −α cosθo (A12)

b4 = −β sinθo − κ (A13)
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