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Abstract: Globally, more and more attention has been paid to the integrity of Girth Welds (GW)
of oil and gas pipelines due to their failures with high consequences. A primary concern is that
defects originate during field construction but over time may be subject to external loads due to earth
movement. GW defects in newly built pipelines are also assumed to exist but would be much smaller
in size, and more difficult to detect, which motivated the investigation into minimum defect detection
capabilities of the inspection technologies. This study presents the evaluation results of UltraScan™
Circumferential Crack-Like Detection (USCCD) technology for oil pipeline GW inspection, based upon
the pull test and in field data from Inline Inspection (ILI) of pipeline by PetroChina Pipeline Company
(PPC) using GE PII (General Electric Company, Pipeline Integrity Inspection) 32” UltraScan™ CCD
Tool. The performance of USCCD is given according to the ILI data, pull test results and dig NDE
(Non-Destructive Examination). It can be concluded that crack-like defects with clear edges can be
detected during ultrasonic propagation; however, the irregular shape of weld makes the inspection
more difficult. It is still a challenge to identify the type of defects, and depth sizing can only be
classified not quantified, which would require more excavations. However, this technology is feasible
for the alternative technology of GW defect inspection.

Keywords: girth weld; defect; UltraScan Circumferential Crack-Like Detection; pull-through
test; excavation

1. Introduction

Girth Welds (GWs) of oil and gas pipelines are more and more concerning because of frequent
failures and the accompanying high consequences [1]. They are always the weak points of the
pipelines due to the field joining and worsened laying locations because of limited right-of-way. GW
defects of newly built pipelines are much narrower, which challenges the traditional ILI technologies
and analyzing methods when detecting, and are more dangerous because of higher diameters and
pressures [2,3].

As conventional MFL (Magnetic Flux Leakage) is universally used in the industry and qualitatively
known to be sensitive to volumetric metal loss [4–6], ultrasonic crack detection is a superior method
for cracks and crack-like defects, because it is more sensitive to defect edges that are close to each
other [7–10]. The objective of this test was to evaluate and quantify the performance for UltraScan
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Circumferential Crack-Like Detection (USCCD) technology, based upon the pull test and in field data
by PetroChina Pipeline Company (PPC) using GE PII 32” UltraScan™ CCD Tool.

2. Setup and Execution of Pull Tests

2.1. Ultrasonic Measurement Tool

The UltraScan™ CCD pipeline inspection tool consists of several vehicles connected by linkage
towbars as shown in Figure 1.
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Figure 1. UltraScan™ CCD Inspection Tool.

The electronics vehicle contains the ultrasound instrumentation units. Each of these units collects
and processes data from ultrasound sensors acting as both transmitters and receivers. The ultrasound
signals received are amplified, digitized and stored.

The inspection itself is accommodated by a high-density ring of ultrasonic sensors on a specially
designed highly flexible polyurethane sensor carrier which guides the sensors along the pipe wall at a
constant distance and orientation to the pipe wall.

The sensor carrier is designed such that the entire pipe circumference is redundantly inspected in
a single run. For 32” pipe diameters, 512 sensors are mounted on 16 skids that are used for the crack
detection with 240 sensors inspecting in upstream and 240 in downstream direction. This configuration
results in a distance between sensors in circumferential direction of approximately 10 mm which
provides a sufficient overlap of neighboring ultrasonic sensor tracks. This design ensures that signal
reflectors are detected redundantly and can be distinguished from possible geometrical indications.
Additionally, each of the 16 skids features two perpendicular ultrasonic sensors to provide a measure
of the spool’s wall thickness and localize the position of indications found with respect to the typical
pipeline features as reliably as possible.

2.2. Description of Test Coupons Used

A variety of internal and external artificial defects (see Figure 2 and Appendix A) were
manufactured by EDM (Electrical Discharge Machining) into the coupons (see Figure 3), located
both upstream and downstream of the GWs’ surface (at weld), as well as in the center of the GWs’
surface (in weld), in order to test the inspection performance for sensitivity and repeatability. Test pipe is
of X65 steel with outside diameter of 813 mm. Altogether 12 coupons were manufactured. Nominal Wall
Thickness (WT) is 14.5 mm for all spools, apart from one spool which was 12.5 mm for WT change.
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Figure 3. Circumferential crack-like pieces.

2.3. Description of Pull Testing

Diagrams of the pull test facility are shown in Figure 4. The Inline Inspection (ILI) tool is placed
in the launch tray in full operation mode and connected with the pulling rope. The liquid level is
high enough to ensure that the interior of the test pipe is completely filled with water. A series of
10 pull-throughs was executed to validate repeatability and reproducibility at the speed of approximately
0.1 m/s~0.5 m/s. Pictures of the facility are shown in Figure 5.
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91.4% of the maximum amplitude ranges are within the 2 dB range. This shows a good
reproducibility of the measurements. The standard deviation is within a 1 dB range in 93.2% of
the cases and confirms the reproducibility of the data.

3. USCCD Pull Test Results for GW Circumferential Crack-Like Defects

3.1. POD (Probability of Detection) and POI (Probability of Identification)

For determination of POD, 102 defects with open width of 0.8mm were taken into account. The test
defects were categorized with respect to their position relative to the weld into two groups: defects in
weld and those at weld. It was observed that the defect signals in weld and at weld show a different
behavior regarding their amplitudes. This behavior was considered in the derivation of the depth sizing
models for the different defect groups, respectively. Therefore, the POD, POI and sizing accuracies are
calculated individually for each group of defects.

From the 36 defects present in weld, 35 were detected, which corresponds to a detection rate of
97%. For the defects present at weld, the detection rate is 92% (61 defects were detected from 66).
See Table 1.

Table 1. Probability of Detection (POD) summary of test results of Girth Weld (GW) crack-like defects.

Defect Group Total # of Defects # of Defects Detected POD POD Interval @95% Confidence Level

Defect in weld 36 35 97.2% 85–99%
Defect at weld 66 61 92.4% 82–99%

Total 102 96 94.1% 84–99%

All of the six defects that were missed are 1 mm deep, in which four are external. Hence,
shallow cracks are more difficult to detect by USCCD. Because of the irregular shape of weld, external
defects at weld tend to be a little more difficult to figure out.

At this stage of development, reliable guidelines for circumferential crack detection are not
established to the extent to be able to distinguish between different types of defects in the pipeline (i.e.,
cracks and notches have similar reflection characteristics). Therefore, a “linear indication” was defined
as a reportable defect type for circumferential crack detection.

All detected defects were classified as linear indications. The radial position (interior or exterior)
was correctly classified for all defects detected in the test data.

3.1.1. Depth Sizing Accuracy

Depth of defects can be reported only in two classes: <2.5 mm and ≥2.5 mm. For defects ≥1 mm
(axial opening) × 40 mm (circ.) in the GW, all of which are made as external, the depth estimation
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accuracies were achieved as listed in Table 2. For defects ≥1 mm (axial opening) × 40 mm (circ.) at the
GW, the depth estimation accuracies were achieved as listed in Table 3. As the data analysis shows, all
of the defects of 4 mm depth can be correctly classified in depth class ≥2.5 mm; while most defects of 1
and 2 mm deep were overestimated, especially for those in welds.

Table 2. Depth sizing accuracy of defects in weld.

Total # of
Defects

# of Test Defects with
Depth <2.5 mm

# of Defects with
Depth ≥2.5 mm

Correctly Classified in
Depth Class <2.5 mm

Correctly Classified in
Depth Class ≥2.5 mm

in weld ext. 35 23 12 0 12
in weld int. - - - - -

Total 35 23 12 0 12
Defect group # of correct depth sizing rate of correct depth sizing
in weld ext. 12 34.3%
in weld int. - -

Total 12 34.3%

Table 3. Depth sizing accuracy of defects at weld.

Total # of
Defects

# of Test Defects with
Depth <2.5 mm

# of Defects with
Depth ≥2.5 mm

Correctly Classified in
Depth Class <2.5 mm

Correctly Classified in
Depth Class ≥2.5 mm

at weld ext. 33 21 12 4 12
at weld int. 28 18 10 8 10

Total 61 39 22 12 22
Defect group # of correct depth sizing rate of correct depth sizing
at weld ext. 16 48.5%
at weld int. 18 64.3%

Total 34 55.7%

3.1.2. Length Sizing Accuracy

For defects in the GW, the following length estimation accuracies were achieved (Table 4).
For defects at the GW, the following length estimation accuracies were achieved (Table 5). There is no
big difference between these two groups. However, group of in weld shows more stable accuracy.

Table 4. Length sizing accuracy of defects in weld.

Total # of
Defects

within ±15 mm Tolerance within ±18 mm Tolerance

# Rate of Correct
Length Sizing

Certainty Interval @
95% Confidence Level # Rate of Correct

Length Sizing
Certainty Interval @

95% Confidence Level

in weld,
ext. & int. 35 32 91.4% 76–98% 32 91.4% 76–98%

Table 5. Length sizing accuracy of defects at weld.

Total # of
Defects

within ±15 mm Tolerance within ±18 mm Tolerance

# Rate of Correct
Length Sizing

Certainty Interval @
95% Confidence Level # Rate of Correct

Length Sizing
Certainty Interval @

95% Confidence Level

at weld,
ext. & int. 61 54 88.5% 76–96% 60 98.4% 90–100%

4. Real Operational Run & Excavation Results and Analysis

Thirty-two-inch crude oil pipeline was inspected by the UltraScan™ CCD inspection tool of PII
Pipeline Solutions. The analysis team prepared the first five inspection sheets that were considered to
contain the most significant indications found in the ILI data during the course of ILI data analysis and
needed excavations to help improving analysis of the UltraScan™ CCD ILI data. The reported external
defects were found to be in all weld repairs during the first five excavations, as shown in Table 6 and
Figures 6–12.
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Table 6. Excavation results of the first five digs.

GW
Feature Type Orientation [o’clock] Depth

[mm] Length [mm] Method

Field ILI Field ILI Field ILI Field ILI Field

7050

Repair Welding

External
Linear Indication

2:00–3:00 2:45 >2.5 60 91 Visual
Repair Welding 6:00–7:00 70 Visual

Linear
Imperfection
(undercut)

2:00–5:00 0.6 392 TOFD

Inclusion 0:00–2:00 TOFD

Inclusion 1:00–2:00 12.4
direct ultrasonic

wave pulse
reflection

Lack of Fusion 2:00–4:00 14.2~14.9 360
direct ultrasonic

wave pulse
reflection

18540
Repair Welding

External
Linear Indication

5:00–7:00 6:25 >2.5 260 108 Visual
Linear

imperfection 7:00–8:00 0.8 186 TOFD

Linear
imperfection 11:00–12:00 0.4 135 TOFD

18560

Repair Welding

External
Linear Indication

4:00–5:00 3:25 >2.5 205 192 Visual
Linear

imperfection 5:00–7:00 1.4 510 TOFD

Linear
imperfection 9:00–10:00 0.6 150 TOFD

Linear 4:00–5:00 13-14 90
direct ultrasonic

wave pulse
reflection

Linear 6:00 13 110
direct ultrasonic

wave pulse
reflection

Linear 10:00–11:00 14 110
direct ultrasonic

wave pulse
reflection

18590
Repair Welding

External
Linear Indication

4:00 4:15 >2.5 200 174 Visual
Linear

imperfection 4:30 0.8 46 TOFD

Linear
imperfection 6:00–7:30 1.7 312 TOFD

26220
Repair Welding

External
Linear Indication

2:00~4:00 4:30 <2.5 230 133 Visual
Repair Welding 6:00~7:00 70 Visual

Undercut 4:00–5:00 40 TOFD
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PPC identified that internal defects are of priority interest. Another two locations, GW 10340 and
GW 27640 were selected for excavation. Additionally, PPC also selected a base material feature in GW
17720 for excavation (see Figure 13). For these three dig results are shown in Table 7. Picture of gouge
in GW 17720 base metal is shown in Figure 14.
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PPC carried out two further dig verifications on reported “linear indications” with NDE results
shown in Table 7.

Table 7. Excavation results of the second five digs.

GW
Feature Type Orientation [o’clock] Depth [mm] Length [mm]

Field ILI Field ILI Field ILI Field ILI

10340 Mid-wall
inclusion

Internal
Linear Indication 11:16 3.3 <2.5 420 300

17720 External gouge External
Linear Indication 11:14 2.5 >2.5 120 81

27640 Nothing found Internal
Linear Indication 4:56 >2.5 74

66850
Inclusion External

Linear Indication
7:00

6:58 <2.5
17

64Indent in weld cap 6:20–9:15 1.6 630

67020

Indent in weld cap
External

Linear Indication

6:00–7:10

6:46

1.0

>2.5

220

103
Indent in weld cap 7:45–9:00 1.3 260

Misalignment Full circle
Dressing 6:20 1.0 40

The primary observations and learnings resulted from the comparison of dig verifications (NDE
results) and UltraScan™CCD data focused on distinguishing features between the internal and external
surfaces as a result of the high number of external weld-related anomalies identified.

For features on the external surface, the UltraScan™ CCD signals from the external features in the
inspection data would not be distinguished from the signals received from the weld repairs as based
on the rules derived from pull-throughs. Five areas were excavated for external linear indications
and all were confirmed as weld repairs. Without a significant number of verified external cracks, no
distinction can be made in the analysis of UltraScan™ CCD inspection data between weld repairs and
linear indications or other weld defects (including but not limited to lack of fusion or metal loss of
welding cap).

For features on the internal surface, the characteristic of UltraScan™ CCD weld reflection signals
in the inspection data was also different from the weld reflection signals obtained from pull-throughs.
The weld reflections in the pipeline are very heterogeneous with large variations in signal amplitude
and weld geometry.

Various efforts were made to find particularities in the signals that could give hints to internal weld
features. Two digs were initiated, one successful (GW 10340), one with nothing found (GW 27640).

The review of all 10 verified features reported as linear indications in the UltraScan™ CCD
inspection resulted in the following:
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(1) Five features were found to be weld repairs;
(2) One feature was found to be a linear imperfection (inclusion);
(3) One feature was found to be an inclusion;
(4) One feature was found to be a scratch;
(5) One feature was found to be an indent of the weld cap;
(6) One feature was not found in the field.

The analysis of UltraScan™ CCD tool data for the 32” pipeline and the review of the NDE field
excavation data lead to the conclusion that there are still some uncertainties in the discrimination
between reportable and non-reportable features.

Possible ways to improve the tool performance shall be assessed, and would require
additional excavations.

5. Conclusions

The conclusions made, arising from the pull testing program and the inspection performance of
the UltraScan™ CCD inspection system, were:

Crack-like defects can be detected as the clear edges can be found during ultrasonic propagation;
however, shallow edges are easily to be missed.

The achieved POI includes the possibility to recognize linear indications as well as to classify the
correct radial position of the defects. It was not investigated whether the type of defect (including
crack-like, metal loss, weld geometry etc.) can be distinguished from the linear indication.

So far, the defect depth can only be classified and cannot be quantified for the defects in and at
the weld. All of the defects with depths of ≥2.5 mm can be correctly classified; while most shallow
ones were overestimated, especially for those in welds. The dynamic behavior of the sensor carrier
potentially had an effect on the test data and the depth estimation. Furthermore, the different weld
geometry led to lift-off in the tests. Therefore, the depth sizing specification might be compromised.

Real run inspection data analysis is more difficult than pull test, which shows lower accuracy.
Possible reasons may include: much more irregular shape of weld, tool running speed, environment
impact on tool dynamic performance, etc. Possible ways to improve the tool performance shall be
assessed, and would require additional excavations.
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Appendix A

Table A1. Parameters of defects with detected results.

No. Length
[mm]

Width
[mm]

Depth
[mm]

Relative
Position

Radial
Position

Coupon
No. Comment Detected

P1 40 0.8 1 at gw ext 1 USCCD *
P2 40 0.8 2 at gw ext 1 USCCD *
P3 40 0.8 4 at gw ext 1 USCCD
P4 40 0.8 1 in gw ext 1 USCCD *
P5 40 0.8 2 in gw ext 1 USCCD *
P6 40 0.8 4 in gw ext 1 USCCD
P7 40 0.8 1 at gw int 1
P8 40 0.8 2 at gw int 1 USCCD
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Table A1. Cont.

No. Length
[mm]

Width
[mm]

Depth
[mm]

Relative
Position

Radial
Position

Coupon
No. Comment Detected

P9 40 0.8 4 at gw int 1 USCCD
P10 50 0.8 1 at gw ext 2 USCCD *
P11 50 0.8 2 at gw ext 2 USCCD *
P12 50 0.8 4 at gw ext 2 USCCD
P13 50 0.8 1 in gw ext 2 USCCD *
P14 50 0.8 2 in gw ext 2 USCCD *
P15 50 0.8 4 in gw ext 2 USCCD
P16 50 0.8 1 at gw int 2
P17 50 0.8 2 at gw int 2 USCCD *
P18 50 0.8 4 at gw int 2 USCCD
P19 40 0.8 1 at gw ext 3 2 mm misalign
P20 40 0.8 2 at gw ext 3 2 mm misalign USCCD *
P21 40 0.8 4 at gw ext 3 2 mm misalign USCCD
P22 40 0.8 1 in gw ext 3 2 mm misalign USCCD *
P23 40 0.8 2 in gw ext 3 2 mm misalign USCCD *
P24 40 0.8 4 in gw ext 3 2 mm misalign USCCD
P25 40 0.8 1 at gw int 3 2 mm misalign USCCD *
P26 40 0.8 2 at gw int 3 2 mm misalign USCCD *
P27 40 0.8 4 at gw int 3 2 mm misalign USCCD
P28 50 0.8 1 at gw ext 4 2 mm misalign USCCD
P29 50 0.8 2 at gw ext 4 2 mm misalign USCCD *
P30 50 0.8 4 at gw ext 4 2 mm misalign USCCD
P31 50 0.8 1 in gw ext 4 2 mm misalign USCCD *
P32 50 0.8 2 in gw ext 4 2 mm misalign USCCD *
P33 50 0.8 4 in gw ext 4 2 mm misalign USCCD
P34 50 0.8 1 at gw int 4 2 mm misalign USCCD
P35 50 0.8 2 at gw int 4 2 mm misalign USCCD *
P36 50 0.8 4 at gw int 4 2 mm misalign USCCD
P37 40 0.8 1 at gw ext 5 4 mm misalign USCCD *
P38 40 0.8 2 at gw ext 5 4 mm misalign USCCD *
P39 40 0.8 4 at gw ext 5 4 mm misalign USCCD
P40 40 0.8 1 in gw ext 5 4 mm misalign USCCD *
P41 40 0.8 2 in gw ext 5 4 mm misalign USCCD *
P42 40 0.8 4 in gw ext 5 4 mm misalign USCCD
P43 40 0.8 1 at gw int 5 4 mm misalign USCCD *
P44 40 0.8 2 at gw int 5 4 mm misalign USCCD
P45 40 0.8 4 at gw int 5 4 mm misalign USCCD
P46 50 0.8 1 at gw ext 6 4 mm misalign
P47 50 0.8 2 at gw ext 6 4 mm misalign USCCD *
P48 50 0.8 4 at gw ext 6 4 mm misalign USCCD
P49 50 0.8 1 in gw ext 6 4 mm misalign
P50 50 0.8 2 in gw ext 6 4 mm misalign USCCD *
P51 50 0.8 4 in gw ext 6 4 mm misalign USCCD
P52 50 0.8 1 at gw int 6 4 mm misalign USCCD *
P53 50 0.8 2 at gw int 6 4 mm misalign USCCD *
P54 50 0.8 4 at gw int 6 4 mm misalign USCCD
P55 40 0.8 1 at gw ext 7 2mm weld bead USCCD
P56 40 0.8 2 at gw ext 7 2mm weld bead USCCD *
P57 40 0.8 4 at gw ext 7 2mm weld bead USCCD
P58 40 0.8 1 in gw ext 7 2mm weld bead USCCD *
P59 40 0.8 2 in gw ext 7 2mm weld bead USCCD *
P60 40 0.8 4 in gw ext 7 2mm weld bead USCCD
P61 40 0.8 1 at gw int 7 2mm weld bead USCCD
P62 40 0.8 2 at gw int 7 2mm weld bead USCCD
P63 40 0.8 4 at gw int 7 2mm weld bead USCCD
P64 50 0.8 1 at gw ext 8 2mm weld bead
P65 50 0.8 2 at gw ext 8 2mm weld bead USCCD *
P66 50 0.8 4 at gw ext 8 2mm weld bead USCCD
P67 50 0.8 1 in gw ext 8 2mm weld bead USCCD *
P68 50 0.8 2 in gw ext 8 2mm weld bead USCCD *
P69 50 0.8 4 in gw ext 8 2mm weld bead USCCD
P70 50 0.8 1 at gw int 8 2mm weld bead USCCD *
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Table A1. Cont.

No. Length
[mm]

Width
[mm]

Depth
[mm]

Relative
Position

Radial
Position

Coupon
No. Comment Detected

P71 50 0.8 2 at gw int 8 2mm weld bead USCCD *
P72 50 0.8 4 at gw int 8 2mm weld bead USCCD
P73 40 0.8 1 at gw ext 9 5mm weld bead USCCD
P74 40 0.8 2 at gw ext 9 5mm weld bead USCCD *
P75 40 0.8 4 at gw ext 9 5mm weld bead USCCD
P76 40 0.8 1 in gw ext 9 5mm weld bead USCCD *
P77 40 0.8 2 in gw ext 9 5mm weld bead USCCD *
P78 40 0.8 4 in gw ext 9 5mm weld bead USCCD
P79 40 0.8 1 at gw int 9 5mm weld bead USCCD
P80 40 0.8 2 at gw int 9 5mm weld bead USCCD
P81 40 0.8 4 at gw int 9 5mm weld bead USCCD
P82 50 0.8 1 at gw ext 10 5mm weld bead USCCD
P83 50 0.8 2 at gw ext 10 5mm weld bead USCCD *
P84 50 0.8 4 at gw ext 10 5mm weld bead USCCD
P85 50 0.8 1 in gw ext 10 5mm weld bead USCCD *
P86 50 0.8 2 in gw ext 10 5mm weld bead USCCD *
P87 50 0.8 4 in gw ext 10 5mm weld bead USCCD
P88 50 0.8 1 at gw int 10 5mm weld bead USCCD
P89 50 0.8 2 at gw int 10 5mm weld bead USCCD *
P90 50 0.8 4 at gw int 10 5mm weld bead USCCD
P91 40 0.8 1 at gw ext 11 wt-change USCCD *
P92 40 0.8 2 at gw ext 11 wt-change USCCD *
P93 40 0.8 4 at gw ext 11 wt-change USCCD
P94 40 0.8 1 in gw ext 11 wt-change USCCD *
P95 40 0.8 2 in gw ext 11 wt-change USCCD *
P96 40 0.8 4 in gw ext 11 wt-change USCCD
P97 50 0.8 1 at gw ext 12 wt-change USCCD *
P98 50 0.8 2 at gw ext 12 wt-change USCCD *
P99 50 0.8 4 at gw ext 12 wt-change USCCD

P100 50 0.8 1 in gw ext 12 wt-change USCCD *
P101 50 0.8 2 in gw ext 12 wt-change USCCD *
P102 50 0.8 4 in gw ext 12 wt-change USCCD
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