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Abstract: We propose a framework based on imitation learning and self-learning to enable robots
to learn, improve, and generalize motor skills. The peg-in-hole task is important in manufacturing
assembly work. Two motor skills for the peg-in-hole task are targeted: “hole search” and “peg
insertion”. The robots learn initial motor skills from human demonstrations and then improve
and/or generalize them through reinforcement learning (RL). An initial motor skill is represented
as a concatenation of the parameters of a hidden Markov model (HMM) and a dynamic movement
primitive (DMP) to classify input signals and generate motion trajectories. Reactions are classified as
familiar or unfamiliar (i.e., modeled or not modeled), and initial motor skills are improved to solve
familiar reactions and generalized to solve unfamiliar reactions. The proposed framework includes
processes, algorithms, and reward functions that can be used for various motor skill types. To evaluate
our framework, the motor skills were performed using an actual robotic arm and two reward functions
for RL. To verify the learning and improving/generalizing processes, we successfully applied our
framework to different shapes of pegs and holes. Moreover, the execution time steps and path
optimization of RL were evaluated experimentally.

Keywords: peg-in-hole task; reinforcement learning; hidden Markov model; dynamic movement
primitive; robot; motor skill

1. Introduction

In this paper, we propose a framework for learning, improving, and generalizing the motor skills
for a peg-in-hole task. Here, we define a tuple of model parameters that can perform both classification
of input signals and generation of appropriate motion trajectories as a motor skill. This task plays
an important role in assembly work and is frequently encountered in the manufacturing industry [1].
The peg-in-hole task is often performed in conditions where the exact positions/postures of a hole
or peg are unknown due to the errors in vision sensors and robot actuators. To solve this problem,
robots need to continuously perform the repetition of reaction classification and reaction generation,
while the peg and hole maintain contact until their task completion. Therefore, robots need to possess
the abilities to classify reaction force/moment types and generate their corresponding reaction motion
trajectories in real-time. In this paper, we focus on obtaining these optimal motor skills for the
peg-in-hole task.

Numerous researchers have proposed various approaches for obtaining motor skills from human
demonstrations [2–4]. This type of approach is an effective way for robots to capture the characteristics
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of motor skills. However, for acquiring complete motor skills, it has one evident limitation: it does
not ensure that robots acquire motor skills that are optimized for their goals (that is, it generally
provides near-optimal solutions) [5]. Furthermore, it is not easy for human performers to provide a
demonstration dataset that can cover all situations arising during the execution of a motor skill [6].
Nonetheless, these human demonstrations can be used as a solid starting point for robots to acquire
motor skills [7]. To obtain optimal motor skills, robots must be able to improve motor skills through
self-learning. However, this self-learning is a time-consuming and expensive process in the absence of
references. We attempt to obtain these optimal solutions with fewer trials-and-errors by providing
near-optimal solutions learned from human demonstrations. In this paper, robots improve motor
skills to optimize them—referred to as improvement—and generalize them so that they are widely
applicable—known as generalization—through self-learning.

The peg-in-hole task has also been addressed through several imitation learning studies [8,9].
However, the peg-in-hole task is not easy to learn with this method alone. The main reason is that it is
difficult for human performers to provide a complete demonstration dataset to robots, because it is
not feasible to prepare all possible reaction situations. In addition, unintended reaction information
may be included in the dataset during the demonstration process. These problems may prevent robots
from acquiring the complete motor skills. Thus, initial motor skills are learned to classify reaction
force/moment signals and generate reaction motion trajectories from human demonstrations, and their
parameters are improved and/or generalized during the iterations of the improvement/generalization
processes [10]. The motor skills learned from human demonstrations are referred to as initial motor
skills. This is because the parameters are initially used to improve and/or generalize them during
self-learning. These combination of imitation learning and self-learning allows robots to reduce
trial-and-error iterations to obtain optimal solutions for the peg-in-hole task.

The main contribution of this paper is to propose a framework that enables robots to learn,
improve, and generalize motor skills for the peg-in-hole task using a mixture of imitation learning and
self-learning. In particular, the motor skills required for dealing with a peg and hole with a specific
shape are improved so that they can be generalized to pegs and holes of other shapes. To achieve this,
the following fundamental approaches are used:

1. A general method is proposed that concatenates the parameters of two different models,
one for classification (hidden Markov models (HMMs)) and one for motion generation (dynamic
movement primitives (DMPs)), from human demonstrations. Robots are then able to select an
appropriate motor skill from a library of motor skills. This method is used to classify various types
of reaction force/moment signals and generate their corresponding reaction motion trajectories
for the peg-in-hole task.

2. The policy learning by weighting exploration with the returns (PoWER) algorithm is used in
the reinforcement learning (RL) process. Using this algorithm, the RL process improves and/or
generalizes motor skills. It not only optimizes the parameters to reduce the execution time step
and improve path of a DMP, but also re-estimates the parameters of its corresponding HMM to
improve the motor skill. Furthermore, the RL process estimates new targets and initial parameters
of new motor skills for generalization.

The studies for obtaining motor skills can be broadly divided into three types: (i) predefined
strategy; (ii) imitation learning; and (iii) RL methods. In Method (i), motor skills can be used
immediately without any training costs. However, it is not easy to manually design motor skills
and ensure their optimal solutions. Numerous researchers, such as Xu et al. [11], Park et al. [12],
Zhang et al. [13], and Jokesch et al. [14], have proposed methods for solving the peg-in-hole problem,
based on this method. These studies are not learning-based approaches; instead, they use predesigned
strategies after analyzing the peg-in-hole task. In Method (ii), those can be learned using a few human
demonstrations. However, it provides near-optimal solutions, not optimal ones. Calinon et al. [15],
Ude et al. [16], and Kyrarini et al. [17] proposed methods to obtain motor skills based on imitation
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learning. Their motor skills are modeled from human demonstration dataset. In contrast, motor skills
can be optimized based on the RL process, but a large trial-and-error iterations are required to obtain
their optimal solutions in Method (iii). Yun [18] and Inoue et al. [19] proposed methods for learning
the peg-in-hole task based on RL. Their aim was to enable robots to learn the motor skills for the
peg-in-hole task through random explorations without human demonstration.

To reduce training costs and obtain optimal solutions, many researchers have proposed ways
to combine both imitation learning and RL process. These methods are able to learn the optimal
solutions from initial motor skills learned by imitation learning through several trials-and-errors
of the RL process. Various researchers have proposed methods to use imitation learning and RL.
Kober et al. obtained DMPs based on imitation learning and improved their parameters using
RL [20]. They dealt with the tasks of placing a ball into a cup and paddling a ball. Kormushev et al.
used DMP-like dynamic models based on imitation learning and RL to enable a robot to learn and
improve a pancake-flipping task [21]. Kroemer et al. used imitation learning and RL to divide a task
into multiple phases and enable a robot to learn their transitions and motor skills [22]. The robots
performed a bimanual grasping task with contact force. Levine et al. trained a neural network using a
policy parameter optimization method—referred to as guided policy searching—to optimize the initial
model parameters [23]. They verified their method for various tasks, including the peg-in-hole task,
in virtual environments. None of these researchers considered including classification functions in their
models for multiple motor skills. They only focused on improving model parameters through imitation
learning and RL. This is slightly different from the definition of our motor skills. Moreover, they did
not explicitly consider the generalization of motor skills, or both time step and path optimization.

The remainder of this paper is organized as follows. Section 2 presents the details of the proposed
framework. We describe how we represent a parameter tuple by concatenating the parameters of
two different models for classification and motion generation. We present the slightly modified
PoWER algorithms as well as a general reward function to reduce the number of execution time steps,
optimize/generalize motion trajectories, and estimate new targets for new motor skills during the
improvement and generalization processes. Section 3 presents the experimental results obtained for
the peg-in-hole task. Furthermore, two reward functions are specified for the peg-in-hole task from the
general reward function in this section. Section 4 discusses the proposed framework and fundamental
techniques. In this section, we provide a guideline for applying our RL algorithm to other tasks. Finally,
in Section 5, we present the conclusions of this study and directions for future research.

2. Learning, Improving, and Generalizing Motor Skills Based on Imitation Learning
and Self-Learning

Figure 1 illustrates the overall process of our framework for learning, improving, and generalizing
motor skills based on a mixture of imitation learning and self-learning. The framework consists of three
processes: learning initial motor skills from human demonstrations, improving (initial) motor skills
through RL, and generalizing motor skills (i.e., adding new motor skills) through RL. Here, the RL
process is referred to as self-learning process from the viewpoint that a robot itself can determine and
perform the process of improving and generalizing motor skills. As mentioned above, a motor skill is
represented by concatenating the parameters of a HMM and a DMP. A threshold model (TM) is used
to distinguish whether they are familiar (i.e., modeled) or unfamiliar (i.e., not modeled) with respect to
existing HMMs [24]. An existing motor skill is optimized using the improvement process when its
HMM likelihood is higher than those of both the other HMMs and the TM. When the TM likelihood is
higher than the likelihood of all the other HMMs, a new motor skill is created from a similar motor
skill belonging to the HMM with the next highest likelihood. The details are presented in Section 2.2.

2.1. Learning (Initial) Motor Skills through Imitation Learning

In this process, a human provides a demonstration dataset for learning initial motor skills for
classification and motion generation; after this process, a robot can generate appropriate motion
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trajectories given its current situation. In this work, classification is also used to select a suitable motor
skill from a library. The specific motor skill obtained by the classification result is used to generate
motion trajectories.

Learning initial motor 

skills through imitation 

learning

Improving (initial) motor 

skills through self-

learning

Extract human 

demonstrations

Extract robot motion 

trajectories through self-

reproduction

Learn a parameter tuple 
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parameters of a HMM 

and a DMP

When one of the HMMs 

is the most likely, select 

its parameter tuple

Re-estimate the 

parameters of the 

corresponding DMP 

through RL
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parameters of the HMM 

from motion trajectories 

generated by the DMP

Generalizing (initial) 

motor skills through self-

learning
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RL when the TM has the 
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Learn a new HMM from 

motion trajectories 

generated by the new 

DMP

Add a motor skill with the 

new DMP and new HMM 

to the motor skill library

Figure 1. The proposed framework consists of three processes: (left) learning initial motor skills through
imitation learning; (middle) improving the (initial) motor skills through RL; and (right) generalizing
them with RL.

To achieve this, a motor skill is represented as a parameter tuple that concatenates the parameters
of a HMM and a DMP. A HMM is a model that is suitable for classifying time-varying signals.
The parameters of a HMM are defined as λ = {πi , ai j , bi}Ki,j=1, where πi , ai j , and bi denote the initial
probability distribution of the ith hidden state, the transition probability distribution from the ith
hidden state to the jth hidden state, and the observation probability distribution of ith hidden state,
respectively. In this case, the number of hidden states K is determined using the Bayesian information
criterion [25]. Moreover, parameter bi is modeled as a Gaussian mixture model to represent continuous
non-linear trajectories. The parameters of a HMM are estimated by employing the Baum–Welch
algorithm using training data {Xm

n }, with m = 1, 2, ..., M and n = 1, 2, ..., N , where M and N denote the
total number of demonstrations and the number of data points for classification, respectively [26].

A DMP is similar to a linear spring–damper system, which is dependent on the external force
term and ensures convergence to the final goal (or target) [27]. The DMP is defined as

ÛV = K(Xg −X) − DV + (Xg −X0)ζ (1)

and
τ ÛX = V, (2)

where X, V, X0, and Xg represent the position, velocity, initial position, and target position, respectively.
All these variables are multidimensional vectors. Moreover, τ, K , and D indicate the constants for
adjusting the time-scale, spring, and damping terms. The external force term ζ must be learned from
demonstration dataset, and is defined using s, which is expressed as

ζ(s) =
∑L

i=1 ωiψi(s)s∑L
i=1 ψi(s)

, (3)
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where ψi(s) = exp(−hi(s − ci)2) is a Gaussian basis function with center ci and width hi . Parameter ωi is
its weighting value. Parameter L represents the number of Gaussian basis functions. Term ζ is directly
dependent on the phase variable s, which is monotonically reduced from 1 to 0, independent of time,
and is obtained by

τ Ûs = −αs, (4)

where α is a predefined constant, and this differential equation is referred to as a canonical system.
To learn a DMP from demonstrations, the robot learns the average path of several demonstrations.
The average path X(t) is recorded and its derivatives V(t) and ÛV(t) are computed for each time step
t = 0, ..., T . Next, the canonical system s(t) is computed for an appropriately adjusted temporal scaling
parameter τ. Based on Equations (1) and (2), ζtarget(s) is computed according to

ζtarget(s) =
−K(Xg −X) + τD ÛX + τ ÜX

Xg −X0 , (5)

where X0 and Xg are set to X(0) and X(T), respectively. Estimating ζ is a linear regression problem,
which is solved by estimating ωi in Equation (3) using the errors as the training data {Xm

n },
with m = 1, 2, ..., M and n = 1, 2, ..., N , to minimize the error criterion J =

∑
s(ζtarget(s) − ζ(s))2 for

motion generation.
Finally, using these two types of parameters, the parameter tuple of an initial motor skill is

concatenated as

Θ = {λ = {πi , ai j , bi}Ki,j=1,Ω = {ωi}
L
i=1, Xg, T}, (6)

where λ and Ω indicate the parameters of a HMM and a DMP, respectively. In this tuple, the target
Xg and total length of policy T are additionally inserted to optimize/generalize the parameters of
motor skills in the RL process. As mentioned above, the parameters of the HMM are used to estimate
the likelihood under the current situation to select an appropriate DMP from a library of DMPs.
Moreover, the parameters of the DMP associated with the appropriate HMM are used to generate
motion trajectories. For reference, target Xg is provided by an external (vision) sensor at execution
time, and it tends to be expressed as relative information between a robot and a target. The DMP
generates a motion trajectory to reach target Xg during the length of policy T .

2.2. Improving and Generalizing Motor Skills through RL

The learned motor skills are improved or generalized through RL using the Algorithm 1. In this
algorithm, existing motor skills are optimized in the improvement process and new motor skills are
added to the library in the generalization process. To distinguish the improvement and generalization
processes, a TM is generated from the HMMs. This TM is used to calculate a threshold based on the
likelihood of the input signals [28,29]. As mentioned above, this is used to distinguish whether the
input signals are familiar or unfamiliar. We consider the current input signals to be unfamiliar when
the likelihood of the TM is higher than the likelihoods of all other HMMs. In contrast, the current
input signals are familiar when the likelihood of one HMM is higher than that of the TM. This TM
is created by fully connecting all hidden states in all the HMMs. Next, the observation probability
distributions of the hidden states are used without any modification, and their transition probability
distributions are uniformly assigned for all connections. The details of the TM can be found in [24].
Here, the likelihood of the TM is denoted by LTM .

In Algorithm 1, all parameters Θ of the motor skills and parameter λTM of the TM are used to
identify the improvement and generalization processes. First, the improvement process is performed
to optimize the parameters (Θ∗) of the corresponding motor skill using the iPoWER algorithm
(i.e., the PoWER algorithm for improving motor skills; Algorithm 2) when the likelihood of one HMM
is higher than those of the HMMs and TM. The iPoWER algorithm optimizes the all parameters for the
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existing motor skills except for their targets. In contrast, the generalization process is used to learn the
parameters of new motor skills using the gPoWER algorithm (i.e., the PoWER for generalizing motor
skills; Algorithm 3) when the likelihood of the TM is higher than those of all the HMMs. The gPoWER
algorithm can estimate the parameters (Θnew) of new motor skills including their new targets. Here,
new targets are the configurations of robots optimized by their reward functions. These new motor
skills are added into the library of motor skills, after which they can be improved as Θ∗new in the
improvement process according to the classification results.

Algorithm 1 Overall algorithm for improving and/or generalizing motor skills
1: Input: a set of initial parameters Θ = {Θ1,Θ2, ...,ΘN } of all motor skills and the TM λTM .
(Improvement)
2: if LTM ≤ LHMMs then
3: Using initial parameters Θi = {λi ,Ωi , Xg

i , Ti} of a motor skill belonging to the HMM with the
maximum likelihood,

4: Θ∗i = iPoWER(λi ,Ωi , Xg
i , Ti).

(Generalization)
5: else if LTM > LHMMs then
6: Using initial parameters Θi = {λi ,Ωi , Xg

i , Ti} of a motor skill belonging to the HMM with the
maximum likelihood except for the TM

7: Θnew = gPoWER(λi ,Ωi , Xg
i , Ti).

8: Add the parameters of a new motor skill with Θnew to the motor skill library.
9: end if
10: Output: the parameters Θ∗i orΘnew of the (new) motor skill as well as the parameters λ̄TM of

updated TM.

Algorithm 2 iPoWER algorithm for improving the parameters of motor skills considering execution
time step and path optimization
1: Input: initial parameters Θ0 = {λ0,Ω0, Xg, T0} of a motor skill
2: Set Θk = Θ0
3: while true do
4: Sampling: Using Ωk , Xg, and Tk , generate rollout (X) from a = (Ωk + εt )

TΨ(X, t) based on
Equation (1)

with exploration bεtci j ∼ N(0,σ2
i j) as a stochastic policy.

5: if Xt = Xg and t < Tk then
6: Set T̃ = t and collect all information (t, Xt , at , Xt+1, εt , rt+1) for t = {1, 2, ..., T̃ + 1}.
7: else if Xt = Xg and t ≥ Tk then
8: Set T̃ = Tk and collect all information (t, Xt , at , Xt+1, εt , rt+1) for t = {1, 2, ..., T̃ + 1}.
9: else
10: Discard all information (t, Xt , at , Xt+1, εt , rt+1) for t = {1, 2, ..., T̃ + 1}.
11: end if
12: Estimating: Use unbiased estimate of the value function Q̂π(X, a, t) =

∑T̃
t̃ r(Xt̃ , at̃Xt̃+1, t̃).

13: Reweighting: Reweight rollouts and discard low-reward rollouts.
14: Update the parameters of DMP using

Ωk+1 = Ωk +
〈∑T̃

t=1 εtQ
π(X, a, t)/

〈∑T̃
t=1 εtQ

π(X, a, t)
〉〉

.
15: Update the parameters λk+1 of the HMM using reaction force/moment recorded

during the motion generation a = (Ωk+1 + εt )
TΨ(X, t).

16: Update Tk+1 = T̃ .
17: if Θk+1 ≈ Θk then
18: break
19: end if
20: end while
21: Output: the optimized parameters Θ∗ = {λk+1,Ωk+1, Xg, Tk+1}.
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Algorithm 3 gPoWER algorithm for generalizing motor skills to add new motor skills and new targets
1: Input: initial parameters Θ0 = {λ0,Ω0, Xg, T0} of a motor skill
2: Set Θk = Θ0 and rmax = r(T0).
3: while true do
4: Sampling: Using Ωk , Xg, and Tk , generate rollout (X) from a = (Ωk + εt )

TΨ(X, t) based on
Equation (1)

with exploration bεtci j ∼ N(0,σ2
i j) as a stochastic policy.

5: Set T̃ = Tk + εTk with εTk = randomize(1, Tk4 ).
6: if r(t) ≥ rmax then
7: Set T̃ = argmaxt and rmax = r(t).
8: Collect all information (t, Xt , at , Xt+1, εt , rt+1) for t = {1, 2, ..., T̃ + 1}.
9: else
10: Discard all information (t, Xt , at , Xt+1, εt , rt+1) for t = {1, 2, ..., T̃ + 1}.
11: end if
12: Estimating: Use unbiased estimate of the value function Q̂π(X, a, t) =

∑T̃
t̃ r(Xt̃ , at̃Xt̃+1, t̃).

13: Reweighting: Reweight rollouts and discard low-reward rollouts.
14: Update the parameters of DMP using

Ωk+1 = Ωk +
〈∑T̃

t=1 εtQ
π(X, a, t)/

〈∑T̃
t=1 εtQ

π(X, a, t)
〉〉

.
15: Update the parameters λk+1 of the HMM using reaction force/moment recorded

during the motion generation a = (Ωk+1 + εt )
TΨ(X, t).

16: Update Tk+1 = T̃ and Xg
k+1 = X(T̃).

17: if Θk+1 ≈ Θk then
18: break
19: end if
20: end while
21: Output: the optimized parameters Θnew = {λk+1,Ωk+1, Xg

k+1, Tk+1}.

The iPoWER and gPoWER algorithms use a deterministic policy ā = ΩTΨ(X, t)with the weighting
parameters Ω and basis functions Ψ of a DMP [20]. When optimizing and generalizing a DMP,
this policy is transformed into a stochastic policy using additive exploration ε(X, t); to perform
model-free RL, we always use a policy π(at |Xt , t), which can be modified into the form a =
ΩTΨ(X, t) + ε(Ψ(X, t)). Here, ε(Ψ(X, t)) = εTt Ψ(X, t) with bεtci j ∼ N(0,σ2) is used, where σi j is a
meta-parameter of the exploration that can also be optimized in these algorithms. In the iPoWER
algorithm, the target Xg of a motor skill is used without any changes or updates. The length of a
corresponding DMP can be reduced by the stop signal tstop when Xg = Xt and t < Tk . This means that
during the RL process, robots can arrive more quickly at the target than the humans who demonstrated
the motion. Stop signal tstop is generated when the robot reaches the target within extremely small
margins |Xg ± εx | or when execution time steps reaches a pre-selected length (T + εTk ). The policy
parameters of a DMP are optimized, after which the parameters of its corresponding HMM are
re-estimated while generating the motion trajectories from the optimized DMP.

In the generalization process, the gPoWER algorithm finds a new target and the policy parameters
for achieving it. To do this, parameter T̃ is set to be the time step (arg maxt r(t)) such that the reward
value in all rollouts is higher than rmax and the new target is set to be the robot configuration in time
step X(T̃). Parameters Xg and tstop are determined by the value of rmax, which indicates the highest
reward in all rollouts and the time step in the rollout of the value of rmax. Parameters Ωnew , Xg

new ,
and Tnew are incrementally updated until the parameters converges: Θk+1 = Θk . Next, the parameters
λnew of a HMM are estimated during motion generation with Ωnew , Xg

new , and Tnew . In this algorithm,
the length of the new motor skill may be increased from the original one of the initial motor skill.
Therefore, the length of motor skill is changed using εTk while estimating the new target and the
parameters of the new motor skill. The length of the new motor skill can be optimized during the
improvement process after the generalization process is complete.
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To calculate the expected return values for the improvement and generalization processes,
a reward function should be defined. Its general equation is defined as

r(t) = exp
(
−α (Xg −X(t)) − β

(
1

Ys −Y(t)

))
, (7)

where X and Y indicate the values that can be measured from the robot and/or sensors. Here, these are
only used to represent different variables. The superscripts g and s denote the target and starting
values of each variable, which depend on the given task. Here, the term (Xg −X(t)) is used to obtain
a high return value when the robot configuration is close to the target values, and the term 1

Ys−Y(t)
is used to obtain high return value when it is far from the starting value. Parameters α and β are
constants to adjust the importance of each term. Equation (7) is designed to take the form of exp−(x);
therefore, a lower value of either term provides a higher return value. In this framework, we can easily
obtain the value of Xg that the robot must finally achieve from human demonstrations. The robot can
use the first term in Equation (7) to obtain the optimal path and optimal execution time step while
achieving the target Xg. In contrast, the robot may need to be as far from the initial value Ys as possible
depending on the given tasks. We define this case as the second term in Equation (7). Here, the initial
value Ys can be easily obtained from a robot or its sensors.

3. Experiment

3.1. Description of the Peg-in-Hole Task

To evaluate the proposed method, we applied our framework to the peg-in-hole task. This task
consists of the following two motor skills: “Hole search”—a parameter tuple that classifies the direction
of a hole and generates the motion trajectories of searching a hole based on reaction force/moment
signals in the inaccurate current positions/postures of the peg and hole—and “peg insertion”—the
parameter tuple that classifies reactions according to the directions of the hole and generates the motion
trajectories of inserting a peg into a hole. Although the “hole search” and “peg insertion” motions
can be performed using various strategies [30], humans perform the “hole search” demonstrations
by adopting a tilt-search strategy, as illustrated in Figure 2a, and they perform the “peg insertion”
demonstrations by employing a two-point contact strategy, as indicated in Figure 2b–e. In the “hole
search” motor skill, suitable tilting angles should be learned and then generated: if small tilting motion
trajectories are generated, the hole may not be found because reaction force/moment signals cannot
be measured; if large tilting motion trajectories are generated, the motion skill of “peg insertion”
may not be performed because the peg is caught in the hole even though it has been found by “hole
search” motor skill. Moreover, in the “peg insertion” motion, the robot must learn and generate
suitable insertion motion trajectories for the peg according to reaction force/moment signals measured
depending on the relative positions and directions of the hole and peg. To achieve this, it is important
to classify the relative positional and directional relationship between the peg and hole and then to
generate their appropriate motion trajectories from the selected motor skills, as shown in Figure 3.

For this purpose, the peg-in-hole task was performed using the experimental setup illustrated in
Figure 4. We used the UR3 robotic arm (developed by Universal Robots, Denmark) and the FT300 F/T
sensor, 2-finger gripper, and a wrist camera (all developed by Robotiq, Canada). We conducted the
experiments using five pegs and five holes with triangle, rectangle, pentagon, hexagon, and star shapes,
as indicated in Figure 5a–e. The clearance between the pegs and holes was approximately 200 µm.
The vision solution of the robot allows it to recognize the approximate peg and hole locations as well
as their exact shapes. However, the peg cannot simply be inserted into the hole due to errors in the
vision system of the wrist camera. The errors in the position and posture obtained in the experiments
using this vision solution were approximately 5–10 mm and between 2◦ and 3◦, respectively. Therefore,
both types of motor skills are needed to complete the peg-in-hole task despite these errors.
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Hole 

Peg 

(a) (b) (c) (d) (e) 

Contact 

Figure 2. “Hole search” and “peg insertion” motions in the peg-in-hole task: (a) tilt-search motion;
(b) single-point contact motion, which pushes on one face of the peg to make contact with the hole;
(c) two-point contact motion, which pushes two faces of the peg to make contact with the hole; (d) tilting
motion to align that the peg and hole; and (e) pushing motion to push the peg down into the hole.

(a) (b) (c) (d)

Hole

Peg Hole

Peg

Hole

Peg Hole
Peg

Figure 3. Different demonstrations according to relative positions/directions of the peg and hole: pegs
and holes at directions of: (a) 30◦; (b) 120◦; (c) 210◦; and (d) 300◦. Here, these directions represent
the relative positions of the peg relative to the hole. The black and red boxes indicate the hole and
the peg, respectively. The human needs to provide the corresponding demonstrations according to
these configurations, and the robot learns different reaction force/moment signals and reaction motion
trajectories from these demonstrations.

UR3

FT300

Wrist camera

2-Finger gripper

Figure 4. Experimental setup for peg-in-hole task.
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(a) (b) (c) (d) (e) 

Figure 5. Five pegs and five holes with: (a) rectangle; (b) hexagon; (c) pentagon; (d) triangle;
and (e) star shapes.

3.2. Reward Functions of Imitation Learning and Self-Learning in the Peg-in-Hole Task

To calculate the expected return values for the “hole search” and “peg insertion” motor skills, two
reward functions (i.e., rs for ‘’hole search” and r i for “peg insertion”) are, respectively, defined as

rs(t) = exp
(
−αFx,y,z(t) − βMx,y,z(t) − γRx,y,z(t)

)
(8)

and
r i(t) = exp

(
−αFx,y(t) − βMx,y,z(t) − γPz(t)

)
, (9)

where F, M, R, and P indicate the force, moment, rotation, and position measured from the robot,
respectively. In particular, the variables R and P represent the robot configuration measured from the
reference axis of the tool coordinate system. In addition, F is calculated by F(x,y,z)(t) = |F

g
x − Fx(t)| +

|Fg
y − Fy(t)| + |F

g
z − Fz(t)|, and M and P are calculated using equations with a similar form. In contrast,

R is calculated using R(x,y,z)(t) = 1
|Rs

x−Rx (t) |
+ 1
|Rs

y−Ry (t) |
+ 1
|Rs

z−Rz (t) |
. Here, superscripts g and s indicate

the target and starting values of each variable depending on the given task, respectively. Subscripts x,
y, and z denote the variables of each measure. Further, parameters α, β, and γ are constants, which are
used to adjust the weight of each term.

In Equation (8), the motor skills should be able to determine the minimum tilting angle needed to
quickly distinguish whether or not a hole exists. This is determined using reward function rs for the
“hole search” motor skill. Here, it increases when all axes of F(x,y,z)(t) and M(x,y,z)(t) at every time step
are closer to all targets Fg and Mg. In contrast, the position of the z-axis is incorporated as a reward
term for inserting the peg into the hole. The reward increases when the z-axis position Pz(t) at every
time step is closer to target Pg. It is possible for robots to determine the optimal motions. In these two
equations, Fg, Mg, Rs , and Pg are set to zero for the peg-in-hole task.

In the imitation learning process, human demonstrations are provided by employing a kinesthetic
teaching method. This is a method for easily and rapidly conveying the motor skills of human
performers to robots. However, it is not suitable for the peg-in-hole task, in which reaction classification
is important for achieving the goal because unintended reaction force/moment signals may be included
in human demonstrations. When reproducing unintended reaction force/moment, the robot does
not achieve the goal of the motor skill. Thus, such unintended signals should be eliminated from the
human demonstrations through robot self-reproduction. That is, the robot acquires the targets of motor
skills as well as the reward functions through this self-reproduction. Despite this self-reproduction,
robots may still not be able to obtain an optimal solution. This can be improved through RL during the
improvement process.

A demonstration dataset must be modeled to enable reaction classification and motion
generation. In this experiment, the robot should generate different motions depending on the relative
positions/directions of the peg and the hole, as indicated in Figure 5. The states of both motor skills
are defined as X = {F(x,y,z), M(x,y,z)} to enable the HMMs to classify the reaction force/moment. In the
DMPs, the state of the “hole search” motor skill is defined as X = {R(x,y,z)}, owing to the fact that a tilt
search is performed without changing the peg’s position. In contrast, the state of the “peg insertion”
motor skill is defined as X = {F(x,y,z), R(x,y,z)} to control the force and rotation. Finally, the state of the
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two reward functions for RL are defined as X = {F(x,y,z), M(x,y,z), R(x,y,z)} (to calculate Equation (8)) and
X = {F(x,y,z), M(x,y,z), Pz} (to calculate Equation (9)). The states for HMMs, DMPs, and reward functions
are summarized, as indicated in Table 1.

Table 1. States for HMMs, DMPs, and reward for RL for “hole search” and “peg insertion” motor skills.

Hole Search Peg Insertion
(Tilt Search) (Two-Point Contact)

HMMs Reaction force/moment Reaction force/moment
X = { fx , fy , fz , mx , my , mz } X = { fx , fy , fz , mx , my , mz }

DMPs Rotation (No change of position) Force, rotation
X = {rx , ry , rz } X = { fx , fy , fz , mx , my , mz }

RL Reaction force/moment and rotation Reaction force/moment and z-position
X = { fx , fy , fz , mx , my , mz , rx , ry , rz } X = { fx , fy , fz , mx , my , mz , pz }

3.3. Results

First, we performed human demonstrations on the rectangle shape (Figure 5a) to learn and acquire
the initial motor skills based on imitation learning. The different hole and peg shapes (Figure 5b–e)
were used to evaluate the generalization of the motor skills. The results of these experiments can be
confirmed from supplemental video clip. Human performers provided demonstrations for the “hole
search” and “peg insertion” demonstrations, as shown in Figure 6. Figure 7 illustrates an example
of the different demonstrations that were performed according to the initial hole and peg positions.
Figure 7a shows the initial positions of the pegs with respect to the hole, and Figure 7b shows their
clustering results. In this case, the points were clustered using the reaction force/moment measured at
the initial positions and the k-means clustering algorithm. The robot acquired four motor skills for
the “hole search” and four motor skills for the “peg insertion”. The motion trajectories of the robot
were extracted at 50 Hz using the kinesthetic teaching method, following which the training data
were acquired through self-reproduction. Eight motor skills (i.e., the parameter tuples for classifying
reaction signals and generating motion trajectories for four types of “hole search” and four types of
“peg insertion”) were learned using the training dataset. We configured the reaction classification and
motion generation processes to be independent for rational task execution in the RL implementation.
In this case, the classification of the reaction force/moment was configured to use five pairs of robot
and sensor signals, and the classification time was set to 50 Hz to ensure real-time performance.

Next, the eight initial motor skills were improved using the RL process. For self-improvement
of the “hole search” motor skills, the RL rollouts and their rewards were generated according to the
following two steps: (i) acquiring rollouts and calculating rewards in a hole-free (blocked) location;
and (ii) verifying rollouts and updating policy parameters at the hole position. The robot verified
which of the rollouts actually found the hole at its location and changed the rewards of the rollouts that
failed to find holes to zero. It then updated the policy parameters using all the rollouts. The verification
process in Step (ii) is necessary because the rollouts and their rewards are obtained at a location where
no hole exists. As mentioned in Section 2.2, the purpose of improving the “hole search” motor skill is to
enable robots to identify whether a hole is present using the tilting angle. The self-improvement of the
“peg insertion” motor skill was performed at the hole location. This process did not require a specific
verification step for the acquired rollouts because it was performed at the hole location. The robot was
able to identify the optimal path for inserting the peg into the hole within a short time.
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(a) (b) (c) (d)

Figure 6. Four peg directions of a human demonstration of the “hole search” and “peg insertion”
motor skills of the peg-in-hole task: (a) 30◦; (b) 120◦; (c) 210◦; and (d) 300◦. The upper and lower rows
illustrate the motions of “hole search” and “peg insertion”, respectively. In the upper low, the black
boxes (holes) and red lines (pegs) indicate relative postures.

(a) (b)

Figure 7. Human demonstrations and their clustered results. (a) Initial positions of the pegs (“x”
symbols) with respect to the hole. The edge of the gray box indicates the boundary between the
outside and inside of the hole. (b) Clustering results obtained by the k-means clustering algorithm
using the reaction force/moment measured at the initial positions. We performed approximately
50 demonstrations to evaluate the clustering results.

The return values increase with the number of iterations, and the number of execution time steps
are reduced when using the reward functions and the iPoWER algorithm, as indicated in Table 2. In the
“hole search” and “peg insertion” motor skills, the robot obtained the expected return value of 0.7412
during 64 steps of motion in the first iteration while it received the expected return value of 0.9611
during 9 steps of motion after 300 iterations and the expected return value of 0.6233 during 75 steps of
motion in the first iteration while it received the expected return value of 0.9249 during 10 steps of
motion after 300 iterations, respectively. This table illustrates that the reward functions and the iPoWER
algorithm were effectively designed in terms of time and path optimization. Figure 8 illustrates the
results of the iPoWER algorithm compared with the original PoWER algorithm. The iPoWER algorithm
reduces the number of robot execution time steps. Fewer execution time steps were needed when the
iPoWER algorithm were used, as indicated in Figure 8.
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Table 2. Expected returns and the number of execution time steps with respect to the number of
iterations for the peg-in-hole task.

Hole Search Peg Insertion

# of Expected # of execution # of Expected # of
Iterations Return Time Steps Iterations Return Time Steps

1 0.7412 64 1 0.6233 75
50 0.9253 17 50 0.8803 20
150 0.9479 13 150 0.9053 14
300 0.9611 9 300 0.9249 10
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(i)
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(ii)

(i)
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Figure 8. Performance with respect to two reward functions and the original PoWER and iPoWER
algorithm in the peg-in-hole task for the motor skills: (a) “hole search”; and (b) “peg insertion”.
The upper and lower rows illustrate the return values and number of execution time steps, respectively.
The red lines indicate the results using the iPoWER algorithm, and the blue lines indicate the results
using the original PoWER algorithm.

Figure 9 illustrates the RL performance of our framework for the following cases: (a) the initial
motor skill was represented by a HMM only; (b) the initial motor skill was represented by a DMP only;
and (c) the initial motor skill was represented by both a HMM and a DMP (our framework). To evaluate
Case (a), we performed RL after only learning the initial parameters λ for a HMM and target Xg from
human demonstrations. However, the initial weight parameters Ω for a DMP were randomly assigned
without imitation learning (yellow line in Figure 9). This case can classify the reaction forces/moments,
but it is impossible to generate their appropriate motion trajectories. The policy parameters of the DMP
were improved by the iPoWER algorithm (Algorithm 2). In Case (b), we performed the RL process
after only learning the initial weight parameters Ω and the initial target Xg for a DMP from human
demonstrations. Here, the initial parameters λ for a HMM were randomly assigned without imitation
learning. In this case, the policy parameters and target of the DMP as well as the parameters of the
HMM were generalized through the generalization process. Nevertheless, an unsuitable directions
was used to generalize the DMP policy parameters and target, because the parameters of the HMM
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were not properly assigned. Both Cases (a) and (b) were started with inappropriate policy parameters
and targets. Here, we confirm that the RL process of Case (b) converged more quickly than that of Case
(a), because it has the appropriate policy parameters to perform the peg-in-hole task, as illustrated by
the blue and yellow lines of Figure 9, respectively. In contrast, in Case (c), our framework converged to
the highest reward values in the fewest iterations, because it started with the parameters and target of
a suitable DMP and the parameters of a suitable HMM, as illustrated by the red line of Figure 9.

E
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d

 r
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rn

# of iterations

(a)

(b)

(c)

Figure 9. Expected returns of policy parameters with respect to number of iterations in the peg-in-hole
task: (a) (yellow line) using only a HMM (without a DMP learned from human demonstrations);
(b) (blue line) using only a DMP (without a HMM learned from human demonstrations); and (c) (red
line) using both a HMM and a DMP. The average and variances of multiple RL trials from four different
directions for the “hole search” and the “peg insertion” motor skills are shown.

Figures 10 and 11 illustrate the generalization of the motor skills learned for the rectangle shape
to other shapes. Figure 10 presents the successful cases in which the motor skills learned for the
rectangle shape could be used for other shapes without any generalization process. In contrast,
Figure 11a presents the failure cases, in which the learned motor skills could not be applied to the
other shapes. The failures usually occurred when determining the directions of holes in different
shapes. In contrast, the “peg insertion” motor skills could be used without any RL process, even for
the other shapes. The gPoWER algorithm (Algorithm 3) was used to solve this problem. Figure 11b
illustrates the successful results that new motor skills added through the RL-based generalization
process was performed.

Table 3 demonstrates the need for both the improvement and generalization processes. The initial
motor skills were converged after 35–41 iterations during the improvement process. Generalizations
of the improved motor skills converged more quickly than generalizations of the initial motor
skills. In these cases, the convergence was approximately two to three times faster. Furthermore,
the generalization of the improved motor skills was efficient even in the absence of initial motor skills
acquired from human demonstrations. These results confirm that the robot can generalize motor skills
even for unfamiliar shapes in the peg-in-hole task.
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In these experiments, we generated the stop signal when the robot did not reach its target within
Xg ± 0.001 or when the policy parameter did not converge within 300 iterations. When only the RL
process was used without the imitation learning, it did not satisfy the targets of RL process, as shown
in Figure 9c. We used several programs by modifying the open codes of DMP, HMM, and PoWER
algorithms (these open codes can be downloaded in [31–33]) developed by the python language.
In addition, the k-means and BIC algorithms performed using scikit-learn library. This library can be
downloaded in [34]. Finally, the TM was manually created based on [24]. All of these experiments
were performed on a PC (CPU: Intel i7-6700 3.40GHz, RAM: 32.0GB) with Windows 10 OS and Python
3.6 version.

“hole search”

(a) (b)

(c) (d)

“hole search”

“peg insertion”

“peg insertion”

“hole search”

“hole search”

“peg insertion”

“peg insertion”

Figure 10. Using motor skills learned from the rectangle shape for different shapes: (a) pentagon;
(b) hexagon; (c) triangle; and (d) star. These figures indicate the successful cases in which the motor
skills learned for the rectangle shape can be used for other shapes without any generalization process.

Table 3. Comparison of number of iterations used in the improvement and generalization processes.

Improvement/Generalization # of Iterations

Improvement of motor skills for the rectangle shape 35
from initial motor skills for the rectangle shape

Improvement of motor skills for the triangle shape 37
from initial motor skills for the triangle shape
Improvement of motor skills for the star shape 41

from initial motor skills for the star shape
Generalization of motor skills for the triangle shape 95

from initial motor skills for the rectangle shape
Generalization of motor skills for the triangle shape 46
from improved motor skills for the rectangle shape

Generalization of motor skills for the star shape 146
from initial motor skills for the rectangle shape

Generalization of motor skills for the triangle shape 59
from improved motor skills for the rectangle shape

(b)(a)(a) (b)

“hole search” “hole search” “hole search” “hole search”

Figure 11. Using motor skills learned from rectangle shape for different shapes of triangle and star:
(a) failure cases; and (b) the successful completion of the cases in (a).
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4. Discussion

The proposed framework for the peg-in-hole task uses a mixture of imitation learning and
RL. The peg-in-hole task requires the reaction force/moment classification and reaction motion
generation because there is error in the sensors and robot actuators. Therefore, a robot should be
able to continuously classify reactions and generate appropriate motion trajectories. To achieve this,
motor skills are represented by concatenating the model parameters for reaction classification and
motion generation. In general, a HMM and a DMP exhibit superior capabilities for time-varying
classification and motion generation, respectively, as mentioned in [35]. Therefore, we used both
models to consider their advantages in this framework. We refer to these concatenated parameter
tuples as motor skills. We can use only HMMs or only DMPs for classification and motion generation,
but they perform worse than the combination of HMMs and DMPs (refer Figure 9).

The proposed framework was evaluated for the peg-in-hole task; however, it can be used
for various robotic tasks. The algorithms presented in Algorithms 1–3 are task-independent and
can be used without modification to improve and generalize the motor skills required for such
tasks. In the algorithms, only two elements need to be prepared for various tasks: (i) the reward
functions; and (ii) human demonstrations. Designing the reward functions is the most important
and difficult process in RL design. The target configurations of robots and/or objects obtained by
human demonstrations can be useful in designing reward functions. It is also necessary to acquire the
initial parameters of the motor skills (that is, the parameters of the HMMs and DMPs) from the human
demonstrations of a target task. The robot can acquire the initial parameters of the motor skill when at
least one demonstration has been performed [36]. Thereafter, it can use the proposed algorithms to
create various motor skills that are automatically optimized by the improvement and generalization
processes. After these two elements have been provided, the robot can obtain motor skills for which the
number of execution time step and path have been optimized over several iterations. For example, this
framework can also be considered for the use in a variety of industrial applications such as polishing,
machine tending, soldering, painting, cutting, grinding, deburring, and inspection. First, humans
provide human demonstrations to a robot. Next, the robot learns initial motor skills and collects the
parameters of Xg and Ys for reward functions from human demonstrations. Here, their motor skills
and the parameters of Xg and Ys can be modeled and extracted using various types of information (e.g.,
joints, positions, postures, velocities, forces, and/or torques) from human demonstrations depending
on the purpose of motor skills. Finally, the robot can optimize or generalize motor skills through the
improvement/generalization processes. However, it is necessary to determine the information to be
modeled or used through human demonstrations in this process. The automation of this capability is
not considered in this paper and it should be done with human.

In general, a robot needs to perform a sequence of some motor skills to perform its task. In other
words, motor skills must be selected from a library of multiple ones. However, many researchers
have focused on dealing with a single motor skill [37–40]. They suggested the ways to improve the
performance of a motor skill. In addition, they did not consider the generalization of reusing the learned
motor skills for other similar tasks (e.g., from the “rectangle” to the “triangle” peg-in-hole motor skills).
In contrast, our proposed framework was able to handle the library of multiple motor skills based on
the concatenated parameters. Furthermore, Algorithms 1–3 provide a way to improve existing motor
skills (optimizing paths and reducing execution time steps) as well as add new motor skills.

In the human demonstrations, we adopted a tilt search and two-point contact strategies for
the “hole search” and “peg insertion”. This is because humans tend to accomplish the peg-in-hole
task by tilting a peg into a hole, as analyzed in [30]. The authors of [30] also determined the most
appropriate tilting angle for inserting the peg. In this study, a suitable tilting angle was learned for
the tilt search through RL. Moreover, our aim was to predict and select appropriate motor skills from
current reaction signals using learned motor skills. In contrast, it is difficult to use reaction classification
with different peg-in-hole task strategies, such as the spiral path and spray paint strategies, because of
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the uncertainties of the initial positions/poses of holes and pegs. These strategies tend to generate
motions according to a set of predefined rules without any classification process.

The reward functions include the terms of the force, moment, z-axis robot position, xyz robot
rotation, and time step. Meta-parameters α, β, and γ control the weights of the terms individually
because they deal with different information types (see Equations (8) and (9)). We can change the
importance of each term in the reward function by adjusting these meta-parameters. We assigned
the largest weighting values to the force/moment terms and the z-position term in the “hole search”
and the “peg insertion” motor skills, respectively. In other words, it makes sense to assign weighting
values depending on terms that have a significant impact on the success of the task.

5. Conclusions and Future Work

We propose a framework for learning, improving, and generalizing the “hole search” and
“peg insertion” motor skills for the peg-in-hole task. In this framework, motor skills are acquired
using a mixture of imitation learning and RL. Reaction classification and motion generation are
required in the peg-in-hole task owing to errors in the sensors and actuators. The robot learns
the initial motor skills for classifying the reactions and generating the appropriate trajectories from
human demonstrations. We designed a motor skill parameter tuple by concatenating the HMM
parameters for reaction classification and the DMP parameters for motion generation. The initial motor
skills learned using imitation learning are improved and generalized by means of RL. These motor
skills are either improved for familiar reaction signals or generalized for unfamiliar reaction signals.
We distinguish the improvement and generalization processes as follows: improvement updates the
policy parameters using the RL process without changing the target of its DMP, whereas generalization
adds new parameter tuples after modifying and updating the policy parameters and target of a DMP.
These processes are determined by the HMMs and TM. The generalization process is selected when the
likelihood of the TM is higher than those of all other HMMs, and the improvement process is selected
when the likelihood of one of the HMMs is higher than that of the TM.

We evaluated these processes by applying them to different peg and hole shapes. The “hole
search” and “peg insertion” motor skills learned for the rectangle shape were generalized for triangle,
pentagon, hexagon, and star shapes. These algorithm and reward functions improved the paths of the
initial motor skills and optimized them to reduce the number of execution time steps.

In the future, we will analyze the manner in which various humans perform peg-in-hole tasks and
compare the reward functions with those learned through inverse RL to enable interpretation. We will
verify our framework by means of industrial applications and various other robotic tasks. In addition,
we will propose a method to determine the information to be noted in the human demonstrations and
use them in modeling motor skills and reward functions.
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