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Abstract: This study aims to suggest a rational analysis method for a track ballast–wheel interaction
that could be further developed to model the interaction in a train-derailment event, based on
the discrete-element method (DEM). Track ballast is filled with gravel to form the trackbed.
Although finite-element analysis (FEA) is widely applied in structural analysis, track ballast cannot
be analyzed using conventional FEA because this approach does not allow separation of elements
that share nodes. The DEM has been developed to analyze the dynamic behavior of separable objects,
assuming that the objects are rigid. Therefore, track ballast can be modeled as separable rigid pieces
of gravel, and its dynamic behavior can be analyzed using a rational contact model. In this study,
a rational numerical strategy for track ballast–wheel interaction was investigated using the DEM
approach. The suggested analysis method was validated through comparison with the experimental
results of a drop test. In addition, case studies were conducted to investigate the effects of the
contact-model parameters on the simulation result.
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1. Introduction

Derailment of a rapidly moving train may lead to fatal consequences, thus such accidents should
be prevented through effective means, such as derailment-prevention devices and structures. In Europe
and in Japan, Korea, and several other countries, effective derailment-prevention methodologies
have been studied and developed, such as derailment-containment walls [1–4]. In addition to the
fundamental prevention concepts, these studies have suggested design methods and provisions for the
walls. Recently, a new type of structural system for derailment-containment prevention (DCP), which is
constructed between the rails, has been developed in Korea [4], as shown in Figure 1. The concrete
structural member is located between rails to restrict the horizontal movement of derailed train.
To design the structural member and to validate its performance as a DCP system, the structural
responses of the member under contact, and the impact forces induced by a derailed train, should be
investigated by rational procedures.

Through simulations and experiments, the performance of the newly proposed system has
been verified, and an appropriate design procedure for this system has been suggested [1,4].
However, the prevention performance has been investigated only for concrete track ballast, even though
in several cases, the track ballast can be constructed as a gravel track bed. This indicates that,
apart from concrete ballast, the DCP systems should be additionally examined for train derailment
over a gravel ballast.
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Figure 1. Overview of the derailment-containment prevention (DCP) wall developed in Korea [1]. 

Through simulations and experiments, the performance of the newly proposed system has been 
verified, and an appropriate design procedure for this system has been suggested [1,4]. However, the 
prevention performance has been investigated only for concrete track ballast, even though in several 
cases, the track ballast can be constructed as a gravel track bed. This indicates that, apart from 
concrete ballast, the DCP systems should be additionally examined for train derailment over a gravel 
ballast. 

As mentioned before, in several cases, the track ballast comprises pieces of gravel of irregular 
shapes, which form the track bed, as shown in Figure 2. When a train is derailed, the wheel of the 
derailed train will contact the ballast, and the interaction between the gravel pieces and the contacted 
wheel will affect the subsequent behavior of the derailed train. Therefore, for designing, verifying, 
and optimizing rational DCP systems with gravel ballast systems, this interaction should be analyzed 
to investigate the behavior of the derailed train after it contacts the ballast. 
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Figure 2. Conventional track ballast (ballast for rapid trains in Korea): (a) track ballast; (b) pieces of 
gravel for the ballast. 
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Figure 1. Overview of the derailment-containment prevention (DCP) wall developed in Korea [1].

As mentioned before, in several cases, the track ballast comprises pieces of gravel of irregular
shapes, which form the track bed, as shown in Figure 2. When a train is derailed, the wheel of the
derailed train will contact the ballast, and the interaction between the gravel pieces and the contacted
wheel will affect the subsequent behavior of the derailed train. Therefore, for designing, verifying,
and optimizing rational DCP systems with gravel ballast systems, this interaction should be analyzed
to investigate the behavior of the derailed train after it contacts the ballast.
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Figure 2. Conventional track ballast (ballast for rapid trains in Korea): (a) track ballast; (b) pieces of
gravel for the ballast.

For the modeling and simulation of the track ballast, the finite-element method (FEM) has been
widely used because of its reliability and convenience. By using the conventional FEM approach,
the ballast is modeled as shell or solid elements, with material properties equivalent to those of
gravel layers in the two-or three-dimensional domain, respectively. Even when appropriate material
models are applied, there is a limitation regarding the interaction between the gravel pieces in contact.
The gravel pieces can be in contact or separate from each other. However, if the gravel layer is
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modeled using the conventional FEM, the interaction characteristics cannot be effectively considered
because this approach does not allow the separation of elements that share nodes and exhibit a very
large deformation. To rationally design the DCP, the post-behavior of the derailed train should be
analyzed first to evaluate the required physical quantities, including the impact load on the DCP
structural members due to the derailed train. When the train is derailed over gravel ballast, it can be
assumed that the interaction between the ballast and train, which is induced by the contact between
the gravel and the wheel of the bogie, directly affects the subsequent behavior of the derailed train.
Therefore, rational numerical modeling and simulation methods for the ballast should be studied to
perform the post-behavioral analysis of a train derailed over gravel ballast.

As mentioned earlier, the track ballast has been modeled based on FEM approaches. Paderno [5]
studied the long-term settlement characteristics and the effect of the tamping process on the dynamic
behavior of the ballast, using FEM approaches. In that study, the ballast was modeled as shell elements,
and the equivalent material properties, such as internal friction angle, dilation angle, and cohesion,
which had been evaluated through a simple experiment, were applied using the Mohr–Coulomb plastic
model. Although this approach could be applied in ballast modeling for relatively small-deformation
problems, it still has limitations with respect to directly considering the interactions between the pieces
of gravel in contact, especially the interlocking effect between these pieces. Zhou et al. [6] studied
methodologies for analyzing the ultimate lateral pressure of penetrated pile in undrained clay based
on FEM. Although the approach can be applied for relatively large deformable soil layers, separation of
the gravels cannot be simulated by the approach.

Ahmadi and Eskandari [7,8] suggested the vibration analysis method of a rigid circular disk
embedded in a transversely isotropic solid. Eskandrai et al. [9] studied the closed-form solution for
lateral translation of an inextensible circular membrane embedded in a transversely isotropic half-space.
However, there are still limitations for considering the time-varying change of the geotechnical
properties of the ballast due to the applied forces.

To overcome these limitations, other approaches have been studied based on the discrete-element
method (DEM). Using DEM, each piece of gravel can be modeled as an individual object with efficient
calculation; therefore, the interaction between the gravel elements in the ballast, including slip,
separation, and re-attachment, can be analyzed. Zhou et al. [10] performed a DEM-based
analytical study to simulate the effect of the tamping process on the compactness of track ballast.
Mahmoud et al. [11] studied a simulation method for the permanent settlement of track ballast due
to cyclic loading, based on the DEM approach. Kim et al. [12] investigated the influencing factors in
ballast settlement using a DEM simulation. Furthermore, Pi et al. [13] studied the relation between the
geogrid rib size and the particle size distribution of ballast materials using a DEM simulation.

When DEM approaches are used, the modeling method used for the gravel, including the shape
and initial positions of the gravel pieces, is important. Thakur et al. [14] studied a modeling method for
arbitrarily shaped gravel pieces using a clump of circles in 2D for DEM simulation. Mollon and Zaho [15]
studied the generation and particle-packing method of sand in a DEM simulation. They suggested
a method to determine the number and initial positions of the particles to satisfy the pre-defined size
distribution, shape, and density of the sand layer. Campello and Cassares [16] also studied a method
to rapidly generate a particle layer using the DEM approach. In recent studies, the individual particles
have been modeled as sphere-type rigid bodies or clumps consisting of spheres, to ensure efficient
calculation. Nezami et al. [17] adopted a DEM simulation approach using specifically shaped objects
with fast tracking for contact between the objects, using their in-house simulation code, DBLOCK3D.
As alternatives to the conventional FEM, DEM approaches are being used to model and simulate
ballast. If a rational modeling and simulation method for track ballast is used, the simulation method
for analyzing the behavior of the derailed train can be investigated considering the interaction between
the ballast and the derailed bogie. For the simulation, DEM approaches can be effectively used.

This study aims to propose a method for modeling track ballast filled with gravel pieces and
simulating a ballast–wheel collision. Because the pieces of gravel can be separated and re-attached,
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conventional FE methods, which do not allow the separation of the elements, exhibit limitations
regarding the modeling of gravel-filled ballast. To overcome this limitation, DEM-based modeling and
simulation methods were investigated in this study. Using a DEM approach, the individual pieces of
gravel can be modeled; hence, the interactions between the pieces of gravel in contact and between the
gravel and other objects can be simulated. For a rational simulation of the ballast–wheel interaction,
appropriate modeling and simulation strategies should be adopted considering the characteristics of
the gravel used for the track ballast. To consider the interlocking of the gravel elements in contact,
a clump-type rigid object is mainly used for each piece of gravel. Whereas the gravel pieces are modeled
based on DEM, the other objects that contact and clash with the gravel layer are modeled based on
FEM to calculate and consider the energy absorption of the deformable bodies. Thus, a DEM–FEM
combined simulation method is adopted in this research.

An experiment was conducted to examine the behavior of a freely dropped object that clashes with
the gravel layer. To validate the simulation method, the motions of the dropped weight, obtained using
both the experiment and the simulation, were directly compared. In addition, case studies were
conducted to investigate the effects of the parameters of the gravel–gravel and gravel–object contact
models on the simulation results for the ballast–wheel interaction.

2. Theoretical Background for Ballast Modeling and Analysis

Several researchers have modeled ballast using the FEM with shell and solid elements for two-
and three-dimensional analyses, respectively. In such studies, the equivalent soil properties, such as
elastic modulus, Poisson’s ratio, internal friction angle, dilation angle, and cohesion, should be defined
using appropriate material models such as the Mohr–Coulomb model. Thus, the equivalent material
properties should be evaluated for modeling track ballast filled with irregular pieces of gravel.

Although the FEM has been widely used in numerical simulations of various structural and
geotechnical engineering problems, it has significant limitations regarding the modeling and simulation
of the behaviors of a track ballast filled with gravel, because of the fundamental assumptions of the
method. Using the FEM approach, the interlocking and separation of the gravel pieces cannot be
directly considered because the conventional FEM does not allow the separation of elements attached
to each other. Specifically, the collision between the ballast and the wheel of a derailed train cannot be
rationally simulated using conventional FE approaches because of this limitation. Thus, the ballast
should be modeled using another approach.

The DEM is one of the alternative solutions for modeling track ballast. Using the DEM
approach, each piece of gravel can be modeled as an individual object that does not share nodes.
Thus, all the pieces of gravel in contact can be detached and re-attached after their positions are
updated. Therefore, the limitation of the FE approach can be overcome using the DEM. Based on the
advantages of the DEM approach, an appropriate simulation strategy for modeling gravel ballast and
simulating ballast–wheel collisions is suggested in this study.

2.1. DEM Analysis

In a DEM analysis, the individual objects are modeled as rigid bodies. The simplest way to model
gravel is to use spherical rigid bodies. For modeling gravel pieces as simple rigid bodies, an appropriate
contact model should be used to consider the elasticity of the actual object. Hence, after modeling the
rigid bodies using the contact model between them, the analysis can be conducted. The analysis is
performed based on Newton’s second law. Hence, the increments in the velocity and displacement of
the individual bodies due to the applied loads are determined by calculating their acceleration. Figure 3
shows the general procedure of the DEM analysis based on an explicit structural dynamic analysis.
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dynamic analysis.

At the preparation stage, the initial positions and velocities of the rigid bodies are defined.
Because all the objects are considered as individual rigid bodies, initial overlapping between contacted
objects is not allowed. Therefore, if the initial position of each object is defined, the initial analysis
should be conducted to determine the appropriate position without any overlapping. To avoid the
initial analysis and define the appropriate initial positions of the objects, a numerical method such as
particle packing can be used. The details of particle packing are described in the next section.

Once the initial conditions are defined, including the initial positions, velocities, and boundary
conditions of the domain, the dynamic analysis can be conducted to obtain the dynamic structural
responses of all the objects, including the rigid bodies and deformable structural members, in the
model. Again, the DEM analysis is suitable for dynamic problems because the displacement increments
are calculated by integrating the acceleration increments. As shown in Figure 2, the collision between
individual bodies is verified to determine whether the contact force and torque should be calculated or
not. If the force and torque of the object are not calculated, the acceleration increment of the object is
calculated using the force and moment determined at the previous time step. If the force and torque
have to be calculated, the forces are calculated based on the pre-defined contact model. Various contact
models exist for DEM analysis. Among these, the Hertz-based model was used in this study because
the model can be effectively applied for considering contact behaviors of elastic bodies modelled as
rigid spherical bodies. The applied contact model is shown in Figure 4.
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Using the contact model, the elastic behavior of the object can be taken into account, even though
the objects are modeled as rigid bodies for numerical simplicity. Thus, the stiffness for normal contact is
estimated considering the elastic modulus and the size of the objects in contact. In addition, the friction
between the objects in contact is considered as a tangential contact force. Once the friction coefficient
for the objects in contact is defined, the friction force can be calculated because the normal force has
been calculated. In this simulation, a simple linear friction model was applied. Consequently, all the
force components required for defining the motion equation of each object, including inertia and
damping forces, were calculated and considered. The normal contact force Fn between two spherical
particles in contact can be calculated using the Hertz solution, as shown in Equation (1):

Fn =
4
3

E∗
√

R
√
δ3, (1)

where R = R1R2
R1+R2

; 1
E∗ =

1−v2
1

E1
+

1−v2
2

E2
; Ei is the Young’s modulus of particle i; vi is the Poisson’s ratio of

particle i; and δ is the normal overlap between two spherical particles in contact.
As shown in Equation (1), evaluation of δ is very important because it determines the contact

force Fn. In the simulation, δwas evaluated as the approach distance between remote points on the
contacting spheres in every time increment during explicit dynamic analysis.

The tangent contact force Ft can be calculated using the pre-defined friction coefficient µ, while the
damping forces FD

n and FD
t can be calculated using the pre-defined damping coefficients Cn and

Ct, respectively.
As mentioned previously, a rational definition of the initial position of the objects is important.

Particle packing is one of the useful methods for modeling a layer filled with rigid particles. In this
study, a random particle-packing method was primarily used to model the track ballast filled with
irregularly sized gravel pieces. Figure 5 presents the general procedure of the packing method.
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2.2. Korean Regulations for Size Distribution of Ballast Gravel

In Korea, the size distribution of the gravel for track ballast is determined according to the
specifications for railroad equipment [18]. Table 1 shows the details of the size distribution of the
gravel for track ballast presented by the regulation.

Table 1. Size distribution of the gravel for track ballast used in Korea [18].

Size (mm) 10 22.4 31.5 40 50 63

% passed by sieve analysis - 0–5 5–35 30–65 60–100 100
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The procedure shown in Figure 5 is followed using the given number of particles.
Thus, this procedure can be performed to determine the maximum radius of each particle for
the given boundary with the given number of particles. To achieve the required size distribution for the
gravel layer, the procedure shown in Figure 5 should be revised. First, the number of particles should
be treated as one of the variables to be determined via the optimization process. Therefore, the variables
to be found are the number of particles and the size and initial location of each particle. The boundary
is considered as the dimensions of the target layer to be formed. The object functions to be minimized
are defined by calculating the overlapping length and void of the layer. Figure 6 shows the revised
process for the close packing.

The revised procedure can be successfully performed based on the genetic algorithm, which is
a powerful optimization algorithm. Using this procedure, close packing of the particles can be obtained
considering the given size distribution.
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3. Strategy and Validation of Numerical Implementation

3.1. Simulation Strategy for Ballast–Wheel Collision

Ballast–wheel collisions were analyzed to trace the path of a derailed train and investigate
the effects of the ballast on the energy absorption under various conditions, including the ballast
condition and kinetic characteristics of the derailed train. To investigate the behaviors, the change
in the position, forces, and energies of the clashing objects should be simulated in the time domain.
Therefore, a DEM–FEM combined simulation should be conducted, wherein the ballast is modeled
using a DEM approach, and the colliding object is modeled using a FEM approach. Figure 7 shows the
procedure for the simulation of the ballast–wheel collision.
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Figure 9 shows the numerical model for simulating the drop-test with the same geometric
conditions. As shown in the figure, the gravel layer was modeled based on DEM, while the weight
was modeled using FEM. In this simulation, the gravel was modeled as simple rigid sphere clumps.
Thus, there was a limitation regarding the interlocking effect between the arbitrarily shaped pieces
of gravel. This could be one of the sources of the difference between the results from the experiment
and the test. Following the procedure shown in Figure 7, explicit dynamic analyses were conducted,
and the motion of the dropped weight was obtained. In addition, after the simulation, the penetration
depth and the motion of the dropped weight were observed for comparison with the result from
the drop test. The DEM–FEM simulation was conducted using ABAQUS V6.17 [19]. The particle
packing was performed using a MATLAB-based in-house code, following the procedure shown in
Figure 5. After modeling, the explicit dynamic analyses were conducted. The initial time step was
set as 1.0 E−5 s, and the total simulation time was 1.5 s. After simulation of the drop test, the vertical
motion and final penetration depth of the weight were evaluated and compared with those obtained
from the experiment.
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Figure 9. DEM–FEM simulation of the drop tests: (a) dropping the weight; (b) penetration after
collision; (c) weight stopped; (d) interrupted gravel layer due to penetration.

Figures 10 and 11 show the comparison between the motions of the weights, obtained from the
drop test and the simulation. In the simulation, different friction coefficients for the gravel pieces in
contact were applied to verify the effect of friction between the gravel pieces. Although the curves
are not perfectly fitted, the suggested method can be adopted for the simulation of ballast–wheel
interactions because the tendencies of the motion of the weights are similar. From the curves, we can
select the time for the first contact between the dropped weight and the gravel layer, following which,
the velocities and changes in displacement of the weight can be directly compared. As shown in the
figures, the curves of the velocity and displacement of the weights obtained from the tests and the
simulation are similar, including the magnitudes and the time required for full penetration.
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Figure 10. Comparison between the motions of the dropped weight, obtained from tests and simulations
(dropped from 0.5 m height): (a) acceleration; (b) velocity; (c) displacement.

The displacement curves obtained from the postprocessing of the test, shown in Figure 9c,
reveal significant rebounding after full penetration. However, this is not the actual situation; it
originated from the cumulative error of the numerical integration. To verify further, the penetration
depth after the test was compared with that after the simulation.

As shown in Table 2, the penetration depths measured from the tests and simulations were very
similar. The simulation results clearly show that the penetration depth is affected by the applied friction
coefficient between the pieces of gravel. Friction is one of the influencing factors in the interlocking
between the pieces of gravel in contact. It can be expected that large friction induces extensive
interlocking between the gravels. The physical mechanism is clearly expressed in the simulation
results. The test results are not well-matched with each other because tamping was not performed after
creating the layer. If tamping had been conducted, the layers would have had very similar properties.
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Figure 11. Comparison between the motions of the dropped weight, obtained from tests and simulations
(dropped from 1.0 m height): (a) acceleration; (b) velocity; (c) displacement.
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Table 2. Comparison between penetration depths.

Test Simulation

Test-1 Test-2 Average Friction = 0.5 Friction = 0.7
0.5-m drop height 0.33 0.24 0.28 0.35 0.26
1.0-m drop height 0.46 0.35 0.41 0.47 0.38

4. Case Study: Effects of Contact Model Parameters on Simulation Results

4.1. Effect of Friction between Gravel Pieces

In this section, the effect of the friction between the pieces of gravel on the simulation results is
described in detail. In the case study, a friction coefficient of 0.4–0.7 was applied in the contact model
of the gravel and, then, the motion of the penetrating weight and the friction-energy absorption were
numerically compared to investigate the interlocking due to the applied friction coefficients.

As shown in Figure 12, the friction between the pieces of gravel significantly affects the motion of
the weight after the impact. The equivalent geotechnical properties of the gravel layer are determined
by the effect of interlocking between the contacted gravel pieces. Based on the simulation results,
it can be concluded that the considered friction coefficient between the pieces of gravel governs the
geotechnical properties of the gravel ballast, including the rigidity of the layer.

Figure 13 shows the energy dissipation due to friction in the different gravel layers with different
friction coefficients between the gravel pieces. As shown in the figure, the energy dissipation due
to friction decreases as the friction coefficient increases. This clearly proves that the layer would
be stiffened owing to the considerable interlocking effect induced when a larger friction coefficient
between the pieces of gravel is applied. Thus, the friction coefficient between the gravel pieces is one
of the most influential factors for the simulation.
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Figure 12. Vertical motion of weights clashing with gravel layers for different friction coefficients
between the gravel pieces (friction coefficient between a gravel piece and the weight = 0.6): (a)
acceleration; (b) velocity; (c) displacement.
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Figure 13. Comparison of friction energy dissipation with different friction coefficients between
pieces of gravel: (a) variation; (b) change of maximum friction dissipation owing to the considered
friction coefficient.

4.2. Effect of Friction between Gravel and Dropped Weight

In addition to the gravel pieces in contact, the friction between the gravel and the object may be
one of the influential factors for the simulation result. To investigate the effect of this factor on the
result, a case study considering various friction coefficients between the gravel and the weight was
conducted. For the parametric study, a friction coefficient of 0.4–0.7 was applied to the DEM–FEM
model, with a friction coefficient of 0.5 between the gravel pieces. Figure 14 shows the vertical motion
of the weights dropped from a height of 0.5 m.
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Figure 14. Vertical motion of weights clashing with gravel layers for different friction coefficients
between the gravel and the weight (friction coefficient between gravel pieces = 0.5): (a) acceleration;
(b) velocity; (c) displacement.

According to the simulation results, the friction between the gravel and the weight mainly affects
the vertical motion of the penetrating weight. Although the fluctuation patterns of the acceleration are
different for different friction coefficients, the vertical velocity and vertical displacement do not differ
significantly. Specifically, the time-series vertical displacement and penetration depth appear to be
affected by the friction coefficient when coefficients smaller than 0.5 are applied. This indicates that
the dynamic behavior of the weight used for the drop test is mainly affected by the characteristics of
the gravel layer. As shown in Figure 15, the friction-energy dissipation converges to a constant value
as the considered friction coefficient increases. According to the simulation, the friction between the
disk-type steel object and the gravel for the track ballast should be larger than 0.5.
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Figure 15. Comparison of friction-energy dissipation for different friction coefficients between the
gravel and the weight.

5. Conclusions

In this study, a rational modeling method and an analysis for gravel-filled track ballast were
investigated to simulate track-derailed train interaction. Because of the characteristics of the track
ballast, a DEM-based modeling and analysis strategy was used for modeling the ballast. Once the
track ballast was modeled with numerous rigid particles, the interaction between the track ballast and
objects of any shape could be simulated.

• Based on the DEM approach, each piece of gravel is modeled as a rigid body to ensure an efficient
simulation. To consider the elasticity of the gravel and the friction effects between the gravel pieces
in contact, an appropriate contact model should be applied. In this study, the Hertz–Mindlin
contact model was applied to consider the normal and tangential contact forces and the friction
force. The nonlinear normal and tangential stiffnesses were estimated using the equation of the
contact model considering the size, elastic modulus, and Poisson’s ratio of the gravel. Apart from
the contact between the pieces of gravel, a contact model between the gravel and contacted objects
was also used along with the Hertz–Mindlin model.

• To validate the simulation method, a drop test was conducted, and the experiment was reproduced
via a DEM-based simulation. The comparison results, including vertical acceleration, velocity,
displacement, and the penetration depth of the freely dropped weights, exhibit very good
agreement. Therefore, the feasibility and rationality of the simulation method was verified.

• The effects of the applied friction coefficient on the interaction between the gravel layer and
the clashing object were studied. According to the results, the friction coefficient between the
contacted gravel pieces significantly affects the geotechnical properties of the layer filled with
gravel. The coefficient governs the interlocking effect in the gravel layer and, thus, this coefficient
also affects the rigidity of the layer.

• The friction coefficient between the gravel and the object does not significantly affect the interaction
between the layer and the clashing object. According to the simulation, the results converge
when a coefficient over 0.5 is applied. In addition, based on both the experiment and simulation,
a coefficient of 0.5 for the track ballast–steel wheel contact is appropriate.

Although the simulation results agree well with the test results, limitations still exist to be
improved for simulation of derailed train-track ballast interaction as below:
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• The effect of the shapes of different pieces of gravel could not be considered because simple rigid
sphere clumps were used.

• To simulate derailed train-track ballast interaction, the collision cases which induce the shearing
motion of the gravel of track as well as vertical motion should be further validated.

• For real track ballasts tamping effect should be taken into account.
• Further study is needed to find the rational range of friction coefficients between irregular gravels

for real ballast track.
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