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Abstract: Wind turbines are under continuous development for large-scale deployment and
oceanization, leading to the requirement of longer blades. The economic losses caused by blade
replacement and shutdown have increased. The downtime caused by blade issues in a wind turbine
is 8–20% of the total downtime. Many of these blade issues originate from the cracking of the blade
trailing edge. The edge is more susceptible to damage due to the complex geometry, manufacturing
technique, and operation conditions. The traditional design method and the expensive experimental
research are not suitable for the accurate damage analysis of the trailing-edge adhesive because of
simplifying assumptions and costs. This study aimed to investigate the influence of trailing-edge
structural configurations on the shear fatigue life of the trailing-edge adhesive joint using finite
element and stress transformation matrix (STM) methods. The structural configurations of the blade
trailing edge included the position of unidirectional fiber layer (UD), chamfer of bonding line,
prefabricated components, and outer over-lamination of the trailing edge. In this study, the finite
element method was used to simulate the blade structure. The shell element was used for laminates,
and the solid element was used for the trailing-edge adhesive joint. The basic shear fatigue properties
of the adhesive were obtained by standard component tests. The shear fatigue life of the blade
trailing-edge adhesive joint under given load conditions was calculated using the fatigue properties
of the adhesive and STM method. The results showed that the angle of chamfering, location of UD,
rigidity of the preform, and outer over-lamination all had an obvious influence on the fatigue damage
of trailing-edge adhesive. The findings of this study can be used to guide blade structure design and
blade production and maintenance.

Keywords: wind turbine blade; trailing edge; structural configuration; adhesive joint; shear fatigue
damage; finite element method

1. Introduction

At present, wind turbines are under continuous development for large-scale deployment and
oceanization. Blade lengths of more than 100 m and turbines of more than 12 MW were available
on the market in 2018 [1]. However, wind turbine blades had increased failure rates or decreased
reliability as simple designs with small rotor diameters progressed to more advanced technologies
with bigger rotor spans [2].

Factors such as cost and reliability should be considered in the design of longer and lighter blades.
First, the lengthening of blades increases the cost of the wind turbine itself. In addition, the cost
of blade replacement and the shutdown caused by blade damage also increase. In 2013, Sheng [3]
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reported that the downtime caused by blade damage accounted for 8–20% of the total downtime,
second only to the downtime caused by gearbox problems. About 2% of the blades need to be replaced
in their first 10 years of lifetime. In 2013, Sabbah [4] investigated 81 blades of 100 kW wind turbines
and 18 blades of 300 kW turbines, with the working life ranging between 6.5 × 107 and 1.1 × 108 cycles,
and proposed that the geometrical form and the manufacturing technique made the trailing edge of
the wind turbine blade more susceptible to damage. In 2015, Wittrup [5] announced that all rotor
blades at the Horns Rev2 wind farm in Denmark would be replaced. Most of the observed damage
was related to leading- and trailing-edge issues. Consequently, the understanding of the structural
behavior of blade trailing edge, especially the damage of trailing edge under fatigue load, needs to be
improved. Research on structural problems can improve blade design and service life, thus providing
a great cost-saving potential for blade manufacturers and operators. However, not many previous
studies were devoted to the study of the adhesive joint failure of wind turbine rotor blades.

Glass/Carbon fiber–reinforced plastics have been widely used in the manufacture of large wind
turbine blades due to its lightweight and high performance [6,7]. For most wind turbines, the composite
blades are usually manufactured in parts and then bonded with adhesives in the mold (Figure 1).
This bonding is of two main types. One of them is T-joint bonding for web and shell. The failure of
T-joints has been explored theoretically and experimentally from different points of view by many
investigators [8–15]. Wang [16] studied the damage of T-joints using finite element simulation of
a realistic part of the blade structure. The results of fatigue simulation were compared with the
experimental results of a previous study [17]. Another type of bonding is the lap bonding used to bind
the upper and lower shells in the leading and trailing edges, as shown in Figure 1. The maintenance
inspection of wind turbine blades showed that the local debonding of the blade trailing-edge shell
is a common failure mode among other types of damages [18]. The cause of trailing edge failure in
wind turbine blades is complex, and detailed information on this is limited. Philipp [19] explored a
new blade simulation method, in which the shell lamination of the blade was simulated by the shell
element, while the adhesive of the trailing edge was simulated by the solid element; the shell and
solid elements were connected by a multi-point constraint (MPC). Philipp and Martin [20] studied a
comprehensive method by considering both linear and nonlinear effects and their interaction in the
model and test structure.
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Figure 1. Schematic diagram of blade bonding: (a) blade mold in open state; (b) blade mold in a closed
state; the parts of the blade in the mold were bonded; (c) schematic diagram of a blade section, and
places of bonding are shown in the-red dotted box.
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Many achievements have been made in the research of adhesive damage analysis. In 2011,
Daniel et al. [21] studied the static and fatigue crack growth of thick adhesive joints when used to join
fiberglass laminates. In 2013, Yi Hua [22] investigated the mechanical properties of the adhesive joint
in the carbon/epoxy wind turbine blade under the combined bending, and tensile loads were studied
by the finite element method. The effects of the properties and geometric details (including fillets and
defects) of the bonding material were studied based on the interlaminar stress of the bonding layer.
In 2014, Ji and Han [23] used the finite element analysis method combined with fracture mechanics to
study the failure of the adhesive joint of the wind turbine blade. The results of a numerical calculation
based on fracture mechanics showed that, before the ultimate design state was reached, the edge of the
adhesive bond line began to break and expand gradually due to a high level of shear stress. In 2016,
Eder and Bitsche [18] investigated mainly the damage behavior of the blade trailing-edge adhesive
joint using fracture mechanics. They proposed a method based on linear fracture mechanics, which
used small-scale experimental results to predict large-scale failure.

Some experimental tests were also performed on the blade trailing edge to examine the damage of
the blade trailing edge. In 2016, Haselbac [2] studied the initiation of trailing-edge failure in full-scale
wind turbine blade test for the accurate failure analysis of the trailing edge. The test results and
simulation analysis results were compared to select the accurate simulation analysis method. Of course,
some researchers tested only the local part of the blade to study the damage of the trailing edge because
of the high cost of full-scale blade testing. In 2018, Lahuerta [24] carried out static and fatigue tests on
the blade submodel to analyze the failure and damage mechanism of the blade trailing edge. Also,
the test results were compared with the simulation results to modify the simulation analysis method.
However, the test was expensive, and the complex dynamic fatigue load could not be accurately
reproduced in the experiment.

In the traditional methods of adhesive fatigue analysis, such as design guidelines [25], the
variable-amplitude load can be converted into a constant-amplitude load by the damage equivalent
method under certain assumptions. For a given constant-amplitude dynamic load, the previous methods
can be used to accurately analyze the fatigue damage of the blade trailing-edge adhesive. However,
the wind turbine load is irregular. If, similar to the traditional design method, the variable-amplitude
load is converted into a constant-amplitude load for analysis, it may lead to the inaccuracy caused by
load simplification.

When analyzing the fatigue damage of the structural adhesive under a dynamic fatigue load, the
finite element method combined with the stress transformation matrix method (FEM-STM method) [26]
can be used to achieve the stress state of the adhesive with time without simplifying the dynamic
fatigue load. The purpose of this study was to examine the influence of trailing-edge configuration on
shear fatigue life of trailing-edge bonding using the FEM-STM method. The trailing edge had four
main structural configurations: the position of unidirectional fiber layer (UD), chamfer of bonding
line, prefabricated components, and outer over-lamination of the trailing edge. The combination of
shell and solid elements was used to build the blade models of various configurations. The shell
element simulated the laminated plate of the shell, and the solid element simulated the adhesive of the
trailing edge. Blades with 33% relative thickness were selected for the blade model. Many single-lap
standard test specimens were produced to obtain the basic shear fatigue properties of the adhesive
joint. The shear S–N curve of the adhesive was evaluated using the fatigue test equipment. The shear
fatigue life of the blade trailing-edge adhesive joint was assessed using the FEM-STM method.

2. Method

2.1. Structural Configurations and Modeling Strategies

At present, the blades are made of two upper and lower shells and multiple shear webs by bonding
using the most popular production technology of wind turbine blades. The thickness of the bonding
area of the trailing edge is not constant due to the influence of geometric factors such as airfoils and
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relative thickness. Generally, bonding is of three types to ensure that the bonding thickness of the
adhesive is controlled within a certain range. These bonding types are specified in Figure 2.
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Figure 2. Three types of tailing-edge bonding: (a) Profile of blade sections; (b) Type A: Prefabricated
flange; (c) Type B: Prefabricated filler; (d) Type C: Blind bonding.

Type A represents a case where the shell clearance of the trailing edge is large. In this case, the
prefabricated bonding flange is required to control the bonding thickness. Type C represents a case
where the shell clearance of the trailing edge is very small. In this case, adjusting the positioning of
components (trailing-edge UD and staggering of layers) is necessary to control the bonding thickness.
The shell clearance in the trailing edge of Type B is between that of Type A and Type C. The size of the
prefabricated filler and the positioning of the components need to be considered comprehensively to
control the bonding thickness in Type B. Under the same bonding width, the configurations that affect
the bonding structure are roughly divided into four parts, which are shown in Figure 3. The bracketed
content is the abbreviation of the model classification.

1. Chamfer at the beginning of bonding line (BBL)
2. The position of trailing-edge UD (PUD)
3. Whether there are prefabricated components or blind bonding (PC)
4. Whether there is outer over-lamination at the end of bonding line (OL)

The FEM method was used to simulate the bonding structure of the trailing edge so as to investigate
the influence of these four configurations on the shear fatigue damage of the adhesive. Philipp [19]
used layered shell elements to simulate the shell of the blade and the solid brick element to simulate
the adhesive.
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A section with a chord length of 3 m and a relative thickness of 33% was selected to create the
blade section model, which is shown in Figure 4.
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Figure 4. A cross-sectional view of the FEM model of the blade: (a) Local details of the trailing edge
with the shell element; (b) Local details of the trailing edge without the adhesive, and bonding flange
and shell element are shown with rendered thickness.

The section profile was obtained by interpolating NACA 63 series profiles. Figure 4a shows the
model of the blade section and mesh in the ANSYS software package. The adhesive is divided into five
layers of the solid element in the thickness direction. Figure 4b shows the shell elements, including the
rendered shell thickness, while hiding the solid elements of the adhesive, prefabricated component,
and outer over-lamination at the end of the bonding line.

Three chamfering forms were set up to study the influence of chamfering on the shear fatigue
damage of bonding, as shown in Figure 5. The influence of the prefabricated component on the adhesive
shear fatigue damage was mainly considered in two cases: prefabricated flange and prefabricated filler.
The effect of the outer over-lamination on shear fatigue was mainly investigated in two cases: outer
over-lamination and no outer over-lamination. The distance between UD and the reference line was
mainly considered to be 20, 30, and 40 mm. The average bonding width of the adhesive in all models
was consistent.
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Figure 5. Modeling strategies in the calculation: (a) Summary of four structural configurations;
(b) Chamfer was set perpendicular to the bonding surface in the benchmark model; (c) The angle
between the chamfer surface and the bonding surface of PS was obtuse; (d) The angle between the
chamfer surface and the bonding surface of PS was acute.

2.2. Fatigue Property Test and Application

The FEM-STM method for evaluating the shear fatigue properties of trailing-edge bonding was
based on the nominal stress method. A two-component adhesive, commonly used for blade adhesive
1807AB/1807AHA produced by MID (China) Ltd., was selected as the material for fatigue test to obtain
the S–N curve of the shear fatigue of the adhesive. The material test was carried out according to
ISO 9664:1993 [27], and the MTS-809 universal testing machine was used. Figure 6a shows the test
equipment and the environment.
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Figure 6. Laboratory and fracture morphology of the specimen: (a) Equipment and environment of the
laboratory; (b) Fracture morphology of one specimen.

The maximum stress level of the test included 6, 6.3, 6.6, 6.9, 7, 8, and 10 MPa. The stress
ratio was R = 0.1, and the test frequency was 30 Hz. The laboratory temperature was controlled at
23 ◦C ± 2 ◦C, and the humidity was controlled at 50% ± 5% RH. Figure 6b shows the fracture diagram
of one specimen.

The test results were plotted in the double logarithmic coordinate system. The horizontal axis
represents the number of cycles of the test, and the vertical axis represents the maximum stress of the
test, as shown in Figure 7a. A constant-amplitude life diagram based on the Goodman model is shown
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in Figure 7b. Only the constant-amplitude life diagram with a positive stress ratio was available, as the
shear stress of the adhesive did not consider the difference between positive and negative stress ratios.
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After obtaining the constant-amplitude life diagram, the expected fatigue life was calculated
using the diagram and the given mean value and amplitude of stress. However, the current
constant-amplitude life diagram was available only for R = 0.1, as shown in Figure 7b. The fatigue life
of other R values was obtained by interpolating the constant-amplitude life diagram. The interpolation
method referred to DNV-OS-C501 [28], and the specific operation flow is shown in Figure 8.
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2.3. FEM-STM Method

STM can be used to convert irregular blade time-series loads into time-series stresses based on the
linear elasticity hypothesis. Uniform cross-section FEM models were built taking the Saint-Venant’s
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principle into consideration. The model and boundary conditions are shown in Figure 9. The blue line
represents the MPC. The master node of MPC was located at the elastic center of the middle section of
the blade segment, and the load acted on the master node. One end of the segment of the blade was
connected to the slave nodes of the MPC. The boundary condition of the fixed constraint was applied
to the other end of the blade segment.
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2.4. Load Cases

Different wind speeds and cycle numbers should be assumed to calculate the blade fatigue damage
cumulatively. The Weibull distribution was used to describe the wind speed distribution. The wind
speed probability density function and cumulative distribution function could be described as follows:

f (v) =
K
C
(

v
C
)

K−1
exp[−

( v
C
)K
]
, (1)

F(v) = 1− exp[−
( v

C
)K
]
, (2)

If the wind speed was divided into intervals, the total hours of No. i interval in a year was
as follows:

Ti = 8760F(v)
∣∣∣vi+∆
vi−∆ , (3)

where ∆ is the range of intervals.
The blade loads were calculated using the GH Bladed software based on the momentum-blade

element theory widely used in aerodynamics design.
The load cases considered in the load calculation included the normal generating conditions,

power production plus occurrence of the fault, startup, normal shutdown, and parked (standstill or
idling). The total operating time of the load cases in 1 year should be 8760 h.

Figure 11a,b shows the moments and forces of the one load case. Under this normal generating
condition, the wind speed was 6 m/s and the wind turbine had no yaw angle.
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To sum up, the complete calculation process of fatigue damage of the adhesive could be described
using the following flow chart (Figure 12).
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3. Calculation Results and Discussion

3.1. Influence of Chamfer

The time-series stresses were obtained by multiplying the time-series loads with the STM of each
node. The time-series shear stress was extracted. The fatigue damage of each node was obtained
using the constant-amplitude life diagram of the material and linear damage superposition principle.
A structural configuration was selected as the benchmark model to evaluate the influence of various
structural configurations on shear fatigue. The structural configurations of the benchmark model are
shown in Table 1.

Table 1. Structural configurations of the benchmark model.

Structural Configuration Detail

Position of UD 20 mm
Whether there is outer over lamination Yes

Prefabricated component Prefabricated filler
Chamfer Straight and perpendicular to the bonding surface

The shear fatigue damage results of this model are shown in Figure 13. The horizontal axis
represents the position of elements, arranged from the leading edge to the trailing edge, and the vertical
axis represents the logarithmic expression of the damage. Figure 13 shows that the damage of the
adhesive closer to the leading edge and the damage closer to the PS were more serious.
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Figure 13. Damage results of the benchmark model: (a) Damage of the adhesive in the benchmark
model; (b) Layer number of the adhesive mesh.

The results of other structural configurations were compared with the results of the benchmark
model. The chamfered forms of each model are shown in Figure 5b–d. The model in which the angle
between the chamfer surface and the bonding surface of PS was obtuse was named BBL1. The model
in which the angle between the chamfer surface and the bonding surface of PS was acute was named
BBL2. The main difference between BBL models and the benchmark model was the chamfered forms
at the beginning of the bonding line. The other parameters were the same.

Figure 14a,b shows the damage of the BBL1 and BBL2 models, respectively. The difference between
the results of the two models was reflected mainly at the beginning position of the bonding line.
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Figure 14. Damage of two other models with different chamfers: (a) Damage of the BBL1 model;
(b) Damage of the BBL2 model.

Figure 15 shows a comparison of the damage distribution along the thickness of the three models
at the beginning of the bonding line. BBL2 had the maximum damage and BBL1 had the least damage
on the first layer. Vice versa was the case on the fifth layer. The damage near the pressure side (layer 1)
and prefabricated component (layer 5) was closely related to the angle of the chamfer. If the angle of
the chamfer near the bonding surface was acute, the damage increased. If the angle of the chamfer
near the bonding surface was obtuse, the damage reduced.
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Figure 15. The damage at beginning of bonding line.

The damage comparison results of different chamfers showed that the angle of the chamfer at the
end of the bonding line should be obtuse, whether in the production or in the maintenance of blades.
Generally speaking, the angle between the adhesive extruded naturally, and the bonding surface was
acute when the blade mold is closed. If not treated, obvious stress concentration occurs at the bonding
line, leading to high fatigue damage. One way to deal with the bonding line, which is not the only
way, is to make a scraper. The scraper with a certain shape can be made before blade production and
maintenance. After the completion of mold closing or bonding, the excess extrusion adhesive can be
scraped away using the scraper. On the one hand, the unnecessary weight in the blade can be reduced.
On the other hand, the stress concentration of the bonding line can be reduced.

3.2. Influence of the Position of UD

The structural configurations of PUD models are shown in Table 2. The main difference between
PUD and benchmark models is the position of UD. The findings are shown in Figure 16. These models
had the same lamination and structural configurations except the distance between UD and the end of
the trailing edge. The other parameters were the same.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 20 
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Table 2. Structural configurations of the PUD model.

Structural Configuration Detail

Position of UD 30 and 40mm
Presence of outer over-lamination Yes

Prefabricated component Prefabricated filler
Chamfer Straight and perpendicular to the bonding surface

The damage results of PUD models are shown in Figure 16. A comparison of the results of each
layer with those of the benchmark model is shown in Figure 17. As the UD moved toward the leading
edge, the peak and valley of the damage in the middle region of the adhesive also moved toward the
leading edge. In addition, the value of damage valley near the trailing edge appeared in the shell
area without UD and became lower when UD moved toward the leading edge. The peak value of
damage in the middle region appeared in the staggered layer region of UD. The position of the peak
value moved with the movement of UD, but the value of damage hardly changed. Another damage
valley near the leading edge appeared in the area where the total thickness of the shell was constant.
The position of the valley also moved with the movement of UD, and the value of damage valley
gradually increased with the movement of UD toward the leading edge.
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Figure 17. Damage of PUD models: (a) Damage of the PUD1 model; (b) Damage of the PUD2 model.

The analysis results in Figure 18 show that the location of UD indeed affected the damage
distribution of the adhesive at the trailing edge. However, adjusting the damaged distribution of the
trailing-edge adhesive by adjusting the position of the trailing-edge UD in the actual blade structure
design is almost impossible. First, the positioning of UD material on the trailing edge of the wind
turbine blade largely determined the edge-wise stiffness of the blade. In addition, the position of the
trailing-edge UD played a key role in controlling the clearance of the trailing edge. Therefore, the
edge-wise stiffness and clearance were the two main considerations for UD positioning of the trailing
edge in the blade structure design. The calculation results might help understand the effect of UD
positioning on shear fatigue damage of the trailing-edge adhesive.
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the laminated plate and core, while the preformed flange consisted of only the laminated plate. Figure 
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Figure 18. Comparison of the benchmark and PUD models on each layer: (a) Comparison of the results
of layer 1 in each model; (b) Comparison of the results of layer 2 in each model; (c) Comparison of the
results of layer 3 in each model; (d) Comparison of the results of layer 4 in each model; (e) Comparison
of the results of layer 5 in each model.

3.3. Influence of Prefabricated Component

The structural configurations of the PC model are shown in Table 3. The main difference between
the PC and benchmark models was that the prefabricated component of the PC model was the
prefabricated flange. The other parameters were the same. The stiffness of the prefabricated filler was
significantly greater than that of the prefabricated flange because the prefabricated filler consisted
of the laminated plate and core, while the preformed flange consisted of only the laminated plate.
Figure 19 shows the damage of the PC model and the difference between the two models.
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Table 3. Structural configurations of PC model.

Structural Configuration Detail

Position of UD 20 mm
Presence of outer over-lamination Yes

Prefabricated component Prefabricated flange
Chamfer Straight and perpendicular to the bonding surface
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Figure 19. Damage of the PC model and difference between the two models: (a) Prefabricated filler in
the benchmark model; (b) Prefabricated flange in the PC model.

A comparison of the results of each layer with those of the benchmark model is shown in Figure 20.
When the adhesive flange with smaller stiffness was used for bonding, the values of damage of the
peak and the valley were higher and lower, respectively, than those of the reference model.
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Figure 20. Comparison of the benchmark and PC models on each layer: (a) Comparison of the results
of layer 1 in each model; (b) Comparison of the results of layer 2 in each model; (c) Comparison of the
results of layer 3 in each model; (d) Comparison of the results of layer 4 in each model; (e) Comparison
of the results of layer 5 in each model.

The analysis results of the PC model showed that the stiffness of the prefabricated component had
an obvious influence on the damage distribution of the adhesive. In blade design and maintenance,
engineers always hope that the maximum damage of the adhesive will be as small as possible.
Currently, it is better to use prefabricated components with larger stiffness as much as possible under
allowable conditions.

3.4. Influence of Outer Over-Lamination

The structural configurations of the OL model are shown in Table 4. The main difference between
the PC and benchmark models was the lack of outer over-lamination in the OL model. The OL model
removed the laminate element at the end of the bonding line to simulate the case with no outer
over-lamination. Figure 21 shows the damage of the OL model.

Table 4. Structural configurations of the benchmark model.

Structural Configuration Detail

Position of UD 20 mm
Presence of outer over-lamination No

Prefabricated component Prefabricated filler
Chamfer Straight and perpendicular to the bonding surface
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Figure 21. Damage of OL models and the difference between the two models: (a) Outer over-
lamination in the benchmark model; (b) No outer over-lamination in the benchmark model. 

A comparison of the results of each layer with those of the benchmark model is shown in Figure 
22. The damage without outer over-lamination was much higher than that with outer over-
lamination. Also, the influence range occupied nearly 20% of the total bonding width. 
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Figure 21. Damage of OL models and the difference between the two models: (a) Outer over-lamination
in the benchmark model; (b) No outer over-lamination in the benchmark model.

A comparison of the results of each layer with those of the benchmark model is shown in Figure 22.
The damage without outer over-lamination was much higher than that with outer over-lamination.
Also, the influence range occupied nearly 20% of the total bonding width.
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4. Conclusions 
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Figure 22. Comparison of the benchmark and OL models on each layer: (a) Comparison of the results
of layer 1 in each model; (b) Comparison of the results of layer 2 in each model; (c) Comparison of the
results of layer 3 in each model; (d) Comparison of the results of layer 4 in each model; (e) Comparison
of the results of layer 5 in each model.

The analysis results of the OL model indicated that the outer over-lamination could significantly
reduce the damage of the adhesive near the trailing edge. Therefore, improving the damage of the
adhesive through the outer over-lamination in the structural design or blade maintenance was possible.
However, the influence range of outer over-lamination is very limited.

4. Conclusions

The influences of trailing-edge structural configurations on the shear fatigue life of the trailing-edge
adhesive joint were investigated in this study using the finite element and STM methods. The fatigue
properties of the adhesive were obtained by laboratory tests. The fatigue properties under different
stress ratios were obtained by constant-amplitude life curve interpolation. The transformation matrices
were obtained by applying a unit load to the finite element model. The software GH BLADED was
used to obtain the time-series of blade dynamic loads. Shear fatigue damage of the structural adhesive
was obtained from the stress time-series curve and constant-amplitude life curve. The four structural
configurations related to the bonding of the trailing edge had an obvious influence on the fatigue shear
life of the bonding.

• The angle of chamfer affected mainly the damage of the beginning of the bonding line. If the
angle of the chamfer near the bonding surface was acute, the damage increased. If the angle of
chamfer near the bonding surface was obtuse, the damage reduced. The results showed that a
fillet at the beginning of the bonding line in the process of blade generation is beneficial to reduce
the maximum damage. If the excess adhesive could be scraped away and a certain chamfer could
be formed in the production, it was very beneficial to the blade structure. On the one hand, the
unnecessary weight in the blade could be reduced. On the other hand, the stress concentration of
the bonding line could be reduced, thus minimizing the damage and improving the reliability of
the adhesive.

• The position of UD affected mainly the damage of the middle region of the bonding area. The peak
value of damage in the middle region changed with the movement of the UD position. The value
of the valley of the middle region moved toward the leading edge along with UD positioning, and
the value of the valley was lower as it moved toward the leading edge. However, adjusting the
damaged distribution of the trailing-edge adhesive by adjusting the position of the trailing-edge
UD in the actual blade structure design was almost impossible. The calculation results might help
understand the effect of UD positioning on shear fatigue damage of the trailing-edge adhesive.

• The stiffness of prefabricated bonding components affected the uniformity of adhesive damage.
The greater the stiffness, the more uniform the damage distribution. Therefore, in the design of
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the blade structure, the prefabricated bonding components with higher stiffness should be used if
possible, thus effectively reducing the maximum damage extreme value.

• The outer over-lamination of the end of the bonding line could effectively reduce the shear damage
of the structural adhesive and affect 20% of the bonding width. Therefore, placing the outer
over-lamination at the end of the tailing-edge bonding line after the blade was demolded and
maintained as necessary.

This study systematically explored the influence of four structural configurations related to the
trailing-edge structural adhesive on the shear fatigue damage. The findings might help engineers to
understand the mechanical behavior in the process of blade design and maintenance to a certain extent,
thus contributing to reducing the failure rate of blades and the maintenance cost of wind turbines.
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