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Abstract: The tremendous growth of big data analysis and IoT (Internet of Things) has made cloud 

computing an integral part of society. The prominent problem associated with data centers is the 

growing energy consumption, which results in environmental pollution. Data centers can reduce 

their carbon emissions through efficient management of server power consumption for a given 

workload. Dynamic voltage frequency scaling (DVFS) can be applied to control the operating 

frequencies of the servers based on the workloads assigned to them, as this approach has a cubic 

increment relationship with power consumption. This research work proposes two DVFS-enabled 

host selection algorithms for virtual machine (VM) placement with a cluster selection strategy, 

namely the carbon and power-efficient optimal frequency (C-PEF) algorithm and the carbon-aware 

first-fit optimal frequency (C-FFF) algorithm.The main aims of the proposed algorithms are to 

balance the load among the servers and dynamically tune the cooling load based on the current 

workload. The cluster selection strategy is based on static and dynamic power usage effectiveness 

(PUE) values and the carbon footprint rate (CFR). The cluster selection is also extended to non-DVFS 

host selection policies, namely the carbon- and power-efficient (C-PE) algorithm, carbon-aware first-

fit (C-FF) algorithm, and carbon-aware first-fit least-empty (C-FFLE) algorithm. The results show 

that C-FFF achieves 2% more power reduction than C-PEF and C-PE, and demonstrates itself as a 

power-efficient algorithm for CO2 reduction, retaining the same quality of service (QoS) as its 

counterparts with lower computational overheads. 

Keywords: cloud computing; dynamic voltage frequency scaling; virtual machine allocation; 

energy-efficient; carbon footprint rate; power usage effectiveness 

 

1. Introduction 

Datacenters are critical infrastructures that amalgamate vast computing and storage resources, 

offering online computing as and when needed. Virtualization techniques embedded in grid 

computing platforms aid data centers in providing computing resources as a service to customers [1]. 

The growing energy consumption is a significant problem in data centers. The consumption of energy 

is increasing by about 10%–12% per year [2]. Synchronized power and resource management are 

essential to assist data centers in conserving energy while providing the required quality of service 

(QoS) for hosted applications [3]. It is very much advantageous to maximize server utilization to 

lower energy consumption [4]. Virtual machine (VM) consolidation is performed to accomplish auto 
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scaling, resulting in reduced energy consumption [5,6].It is essential to maintain the maximum 

number of servers possible in a running state to satisfy service level agreements (SLAs), which 

account for more than 80% of information technology (IT) budgets. The power consumption of an 

idle server is two-thirds of its energy consumption with 100% utilization at full load [7–9]. It is 

noteworthy that idle power and dynamic power consumption utilization levels vary based on 

different power models of physical servers. The energy reduction achieved by shrinking the number 

of existing resources through VM consolidation may result in lower resource availability, 

jeopardizing the credibility of the provider. Utilization of servers at high voltage results in high 

temperatures and shorter lifetimes. Resource utilization should be optimized based on the computing 

capacities of the servers in order to reduce idle and active server power consumption [10]. 

Considering the above, minimum power consumption is achieved through optimum central 

processing unit (CPU) utilization of the servers with our proposed algorithms. 

2. Related Works 

Complications in workload allotment in servers with reduced power consumption mean that 

optimal power management is required, which is dependent on the arrival rate of the tasks and the 

processor’s power-to-frequency relationship. Thus, it is vital to perform a quantitative analysis of the 

association between dynamic voltage frequency scaling (DVFS) and power consumption to optimize 

the use of servers [11]. The worst-fit decreasing (WFD) strategy has been proposed as a load balancing 

approach for task allocation and energy consumption reduction [12], where by DVFS-based fixed 

discrete CPU utilization levels were considered and 34% power reduction was achieved [13]. A 

polynomial complexity algorithm was presented, with the assumption that the energy consumption 

of servers with lower workloads is comparably less than higher workloads [14]. When optimizing 

power consumption, most of the research work has focused on optimizing the CPU and cooling 

devices, as they are the components that consume the most power. The CPU consumes 46% and the 

cooling device consumes 15% of the total power in a data center [15]. The DVFS-based approach can 

be used when there is a lower workload and no need to run the servers at their maximum 

performance level [16–18]. The job scheduling approach was used for workload management to 

achieve maximum utilization of servers with reduced energy consumption [19–21]. Many heuristic 

methods for VM placement have been used with constrained combinatorial optimization problems 

for different objectives, such as to identify energy-efficient hosts for VMs [22–24], to reduce the 

number of migrations [25], and to increase the number of idle hosts [26,27]. In heterogeneous 

environments, heuristic techniques generally cannot guarantee optimal long-term solutions [28]. 

Reducing power consumption through the VM migration approach involves limiting the number of 

powered servers operating at highest utilization level.This approach is not energy free, rather it is 

dependent on VM size and bandwidth [29]. The energy requirement for the live migration of idle 

VMs is estimated using their proposed power model [30]. The consecutive sequential migration of 

several VMs also has an energy impact [31]. DVFS is mainly applied to non-critical workloads to 

improve energy-efficient scheduling of idle servers or light-loaded servers [32]. The genetic 

algorithm-based model was proposed for VM placement to minimize energy consumption [33]. A 

multiobjective model of the VM placement problem was proposed to maximize resource utilization 

and minimize energy consumption and network traffic, with VM placement formulated as a bin-

packing problem and the network traffic reduction formulated as a quadratic assignment problem, 

with resources constraints [34]. An optimization model with multiobjective formulation was 

considered to maximize server utilization and minimize the number of active servers with memory 

and CPU resource constraints [35]. The algorithm was designed in order to form an optimal initial 

population and to reduce the search space, and was evaluated on a small-scale data center. The author 

of [36] disagreed with the work performed in [35], insisting on the need for an exhaustive approach 

in order to arrive at an optimal solution for difficult NPproblems. Approaches for bin-packing-based 

modified best fit decreasing (BFD) placement and dynamic placement of VMs were considered to 

reduce operation costs and environmental impacts [37]. In the modified BFD approach, the VMs with 

the best utilization were placed in the physical machine (PM) with the least energy consumption. A 
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multi dimension space partition model was used to balance resource utilization and energy 

consumption. Energy efficient virtual machine placement algorithm with balanced resource 

utilization was proposed to reduce power consumption by reducing the number of PMs [38]. A multi 

objective problem was formulated to reduce energy consumption by forecasting CPU and memory 

utilization in the forthcoming slot based on the previous history [39]. The result outcomes were 

compared with a grey forecasting model. A constrained optimization problem was formulated with 

virtual machine (VM) and physical machine (PM) profiles. New heuristic information was embedded 

in an ant colony algorithm to achieve energy efficiency [40].  

A mixed-integer non-linear programming model was proposed for systematical allocation of 

workloads, considering the electricity price diversity of geo-distributed data centers and DVFS of 

servers without violating QoS requirements [41,42]. A tradeoff between energy consumption and cost 

was achieved by exploiting the electricity price, data center location, and energy source in the context 

of internet services sensitive to response time [43]. Reinforcement-learning-based resource 

management was optimized for information storage with QoS and power consumption as reward 

function [44]. The revenue from different tasks was considered as a QoS parameter and VM migration 

and network communication were considered for power consumption. Geo-distributed resource 

allocation was performed based on two heuristic force-directed load distribution (FDLD) methods, 

namely task-aware over provisioning and simple over provisioning with co-location interference, in 

order to estimate the co-location effects of different task execution rates [45]. Genetic-algorithm-based 

co-location-aware load distribution was also performed and compared with FDLD, with the result 

showing energy cost reductions with over provisioning elimination, making this an optimal choice. 

Regarding data center power efficiency measurement, PUE and carbon usage effectiveness metrics 

play vital roles. Most of the energy consumption in data centers is caused by the cooling load [46]. 

This work considers all three triangular dependent parameters, namely the power dissipation 

of the processor regarding the operating frequency, cooling device power consumption, and dynamic 

PUE. The carbon-aware power-efficient optimal frequency (C-PEF) and carbon conscious first-fit 

optimal frequency (C-FFF) algorithms proposed in this work distribute the load and maintain the 

lowest possible utilization level in all servers for the current workload. The placement algorithm 

considers the following factors: 

 Selection of data centers and clusters is performed based on the PUE and CO2 emission rate, 

aiming to reduce the overall carbon footprints of the data centers; 

 Load balancing is done by identifying a feasible server with a minimal operating frequency for 

the current workload with the required quality of service, aiming to reduce hot spots in CPU 

heat dissipation, which have a direct impact on hardware lifetime and performance; 

 The impacts of static and dynamic power usage effectiveness (PUE) on placement decisions are 

analyzed, along with cooling load power impacts. 

The rest of this paper is organized as follows. In Section 1, the general facts about power 

consumption in data centers are outlined. Section 2 surveys several closely associated research 

approaches related to this work. Sections 3 and 4 detail the system models and the research problem 

formulation. Subsequently, Section 5 elaborates on the algorithms proposed in this research work for 

solving the formulated stochastic problem. Then, the experimental set-up is presented in Section 6. 

Section 7 presents the simulation results and discussions about the significance of load balancing 

using the optimal frequency and the dynamic cooling load. Finally, Section 8presentsthe findings of 

this research work.  
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3. System Overview 

3.1. Power Model 

The power consumption of the processor is directly proportional to the frequency. Hardware-

based solutions to the problem of power consumption have reached a saturation point. The energy 

efficiency of multi core systems is entirely dependent on the workload. Cores that have no activity 

will experience static power loss, which is directly related to the supply voltage. Running a core at 

maximal workload means it will use the highest frequency and voltage, resulting in high power 

consumption. By distributing the workload among the processors, the work is completed in the same 

amount of time with less power consumption. In multi core systems, the only way to address this 

problem is to maintain the optimal CPU frequency with the minimum energy consumption ratio by 

distributing the workload. Operating the processor at minimum frequency is a sensible and more 

reasonable model for achieving minimum power requirements. There is a collective impact on P-

states and workload activity on processor temperature [47]. A linear relationship exists between 

power consumption and the temperature of a processor in a well-cooled environment. DVFS is used 

to scale the supply voltage and frequency to prevent power wastage [48]. As DVFS has a direct 

influence on the power consumption and temperature, it can be used as a workable thermal and 

power control mechanism. 

3.2.System Model 

Figure 1 presents the overall system model. The description and functionalities of every 

component are detailed below: 

 Resource Management System: The resource management system contains information about 

the cluster list, PUE, CFR, total utility power, current IT load, and other metadata information 

related to the data centers. 

 Management Node (MN): The Resource Allocation Management (RAM) algorithm is a 

daemon that is executed in the management node. It is updated with the cluster list, host list, 

PUE, carbon footprint rate, and other information related to the clusters in the data center. It 

activates the scheduling algorithm for VM-to-PM mapping and the resource deallocation 

algorithm to perform resource recovery, and updates target virtual machine queue 

(TargetVMQ) with VM-to-PM mapping information. 

 Cluster Manager (CM): A node in the cluster is nominated as the head node to function as the 

cluster manager. The overall utilization of the cluster, number of machines in on and off states, 

maximum and minimum utilization, number of VMs operating in the cluster, and power 

consumption are maintained by the cluster manager and updated by the management node.  

 Physical Machine Manager (PMM): The PM details related to available memory and CPU 

capacity, current operating frequency, power consumption, percentage of CPU utilization, 

number of active VMs, and other PM-related information are maintained by the PMM and 

updated by the CM in the head node. 

 Virtual Machine Manager (VMM): The VMM is a daemon that is executed in each PM. It is 

responsible for maintaining the VMs executing in PM. VM resource utilization, percentage of 

CPU time utilized, submission time, placement time, active and idle states, remaining 

execution time, power consumption, and other VM details are maintained by the VMM. 
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Figure 1. System model. 

4. Problem Formulation 

The VM request is in the form of a triplet (f, r, e), where f ϵ F represents the reserved frequency,  

r ϵ R represents the resource requirement, and e ϵ I represents the execution interval. Consider M 

heterogeneous servers, with each containing discrete frequencies (f0, f1, f2, f3, f4,…fk) with utilization  

(U0, U1, U2, U3…, Uk),where U0= 0% (idle), Uk= 100%, and fixed dynamic power consumption (P0,P1, 

P2 P3 P4…, Pk). Here, U0 is considered as the idle state, with power consumption P0. Let S = {S1, S2, 

S3….SM} represent M servers for each Sj, where jε [1,M]with utilization (Uj,0, Uj,1, Uj,2, Uj,3…, Uj,k), and 

power consumption (Pj,0, Pj,1, Pj,2, Pj,3, Pj,4…, Pj,k) can be characterized as a triplet (CUj, CPj, Cj); where 

CUj is the current utilization of server Sj, CPj is the power consumption of server Sj with utilization 

state CUj, and Cj is the total processing capacity of Sj. 

The relation R between the jth PM and ith VM indicates whether VMi is placed in PMj, as below: 

��,� = �
1   ��� �� ��������� �� ���

0               ��ℎ������
� (1) 

The service level agreement (SLA) is measured using the ratio of virtual machine  acceptance 

(RVA), calculated as: 

��� (�) =  �(�)/� (2) 

Where N represents the total number of VM requests submitted and T(R) represents the total number 

of VM requests accepted and mapped to available PMs. This is derived as: 
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�(�) = � � ��,�

�

���

�

���

 (3) 

4.1. Objective Function 

4.1.1. Server Power 

The VM request of the ith VM in request Queue (ReqQ), (fi, ri, ei), remains constant throughout 

the execution. Here, ei is the total number of intervals reserved by the VM for the resource (fi×ri). The 

power consumption of the jth physical machine with utilization Ul at time t is represented as 

��,�(�)and derived as: 

��,�(�) = �
(CU�(t)) – (��,�)

(��,���) − (��,�)
× ����,���� − ���,��� + ���,��� (4) 

where Uj,l˂ CUj(t) ˂ Uj,l+1, 0 ≤ l ≤ k, where l represents the operating frequency, CUj(t) is the current 

utilization of the jth server at time t, and k is the number of discrete frequencies. The energy 

consumption of the jth PM with utilization u within interval [0, I] can be calculated as: 

� � ��,�

�

���

�

�

(�)�� (5) 

The total energy consumption of the M number of PMs within a reservation interval [0, I] can be 

calculated as: 

� � � ��,�

�

���

�

�

(�)��

�

���

 (6) 

4.1.2. Cooling Power 

The cooling device power consumption contributes to the maximum electricity consumption of 

the data center. Dynamic tuning of the cooling load based on the current workload may help reduce 

power consumption in data centers, which will have a direct impact on the PUE. The cooling power 

cannot be ignored, as it prevents service disruption caused by the heat generated by servers [49]. To 

analyze the power consumption of a cooling device, standard computer room air conditioning 

(CRAC) units are considered in this work. The power consumption of the chiller does not change 

much with regard to the outside air temperature or IT load [50]. The coefficient of performance (CoP) 

is the measure used to compute the efficiency of the cooling unit to determine its cooling load. The 

CoP is the ratio (d/w) of heat removed (for server load d) to the quantity of work (w) needed to remove 

the heat. A larger CoP indicates better efficiency, meaning less work is required to remove a greater 

amount of heat. The CoP of the CRAC unit is a changeable value that increases in proportion to the 

increase of the supply air temperature in the CRAC unit [51].  

The total carbon footprint (TCF) generated at time t, including overhead power, is formulated 

as: 

���(�) =  �(���� × �(����,� ×

��

���

���

���

���,�)) (7) 

where tdc ,tc, M and N represent the numbers of data centers, clusters, machines, and requests, 

respectively. The overall energy consumption of all servers in a cluster (PSc) within the interval [0, T], 

partitioned as a sequence of reservation intervals (ri) in the form of (tri, tri+1] (ri ϵ {0,1,…ri-1 }), is 

formulated as: 
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��� = � � �× ��,�(����) × (

�

���

����

���

���� − ��)

�

���

 (8) 

The CoP for the CRAC unit can be modeled as in [52]: 

��� = �0.0068����
� + 0.0008���� + 0.458 � (9) 

where Tsup = (current_temperature - safe_temperature) 

The PUE of the data center can be calculated as: 

���� = �
����� �������� �����

�� �����
� (10) 

Total facility Power� = �� ���

��

���

+ � ���

��

���

� (11) 

�� ������ = � ���

��

���

 (12) 

The total overhead power (OP) of a cluster (c) is calculated as: 

��� = �
���

���
� (13) 

The objective function TCF(t) is subject several limitations. The total number of VMs allocated 

to a machine should not exceed the servers computing (U) and memory capacity (mem), as follows: 

� ��,�
�

�

���

≤  ���
���.��� (14) 

� ��,�
���

�

���

≤  ���
���.��� (15) 

The relation R between VMs and PMs is many-to-one, meaning R⊆N×M if: 

∀ i � � &∀ j, k � � ∶ (�, �)�� ∧ (�, �)�� ⇒ � = � (16) 

The total energy (eng) consumed is supposed to be within the limit of the available brown energy 

(B) at the data center, as follows: 

� ��,�
���

�

���

≤ ����� ��������� �  (17) 

The total brown energy consumed is supposed to be within the limits of the cloud provider’s 

agreed upon grid electricity consumption (G): 

����� ��������� � ≤ ����� �������� � (18) 

5. Evaluated Algorithms 

5.1. RAMAlgorithm 

The high-level design of the resource allocation management (RAM) algorithm executed in the 

management node is presented in algorithm 1. The functionality of algorithm 1 can be grouped into 

two sections. In section 1, lines 2–4 perform VM-to-PM mapping using the placement algorithm. In 

section 2, lines 5 and 6 perform resource deallocation for every interval.  
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Algorithm 1: High-level overview of the algorithm approach 

Input: Hostlist,  VM instancelist 

Output: TargetVMQ 

1 for  interval  do 

2         ReqQ←Get VMs from VM instance list; 

3         HostQ←Get Hosts from HostList; 

4           TargetVMQ←Call placement algorithm (presented in Section 5.2–5.6); 

5         if interval >min-exe-time then 

6                  Completedlist←Get VMs with active time completion from TargetVMQ; 

7               for completedlistdo 

8                      Deallocate resources associated with the VM; 

9     Endfor 

10  Endif 

11 Endfor 

12 Return Target VMQ. 

5.2. Carbon- and Power-Efficient Optimal Frequency VM Placement (C-PEF) 

The C-PEF algorithmic approach is detailed in algorithm 2. The proposed strategy allocates the 

new VMs to feasible servers, ensuring:(i)carbon-efficient clusters based on the PUE and carbon 

footprint rate (CFR);(ii) the power-efficient optimal operating frequency of servers; and(iii) a 

minimum increase in overall power after allocation. 

    Algorithm 2: CPEF Carbon and Power-Efficient Optimal Frequency VM Placement  

Input: Clusterlist, Hostlist, ReqQ 
Output: TargetVMQ 

1  while VM in ReqQ do 
2      Totclusterlist ← Get the clusters from the Clusterlist of all datacenters; 
3        sort the clusters  in Totclusterlist in ascending  order of (PUE*CFR) using  Equation (7); 
4        For  cluster  in Totclusterlist do 
5               Mhostlist ← Get the Hostlist from cluster; 
6               For  freq in freqstep  do 
7                      For  host in Mhostlist  do 
8                               maxu ← Get utilization equivalent to using Equation  (4); 
9                            cur  uti ← Get current utilization using Equation (4); 

10                              rem uti ← maxu-cur-uti; 
11                            if   feasible-host for VM  then 
12                                   P1 ← Get dynamic power of the host using Equation (4); 
13                                   P2 ← Get dynamic power of the host with VM placement using Equation (4); 
14                                ∆P ← P2-P1; 
15                                   R1 ← Get minimum remaining task execution time; 
16                                    ∆R ← Execution time of VM -R1; 
17                                   Selected- H ost · add(host); 

 

18                      if Selected  H ost≠ NULL then 
19                                 Sort the Selected  H ost in non decreasing order of ∆P ; 
20                            choosy  host ← Get the host from Selected  Host with positive ∆R; 
21                            Selected   H ost ← Get the difference between Selected-H ost and choosy-host; 
22                            S exp pow ← Selected  H ost[first] · P2 × Execution time of VM ; 
23                            For  choosy host  do 
24                                   Pow1 ←Get the total dynamic power without the task corresponding to R1 and 
                                                         with placement of VM ; 
                                    C-exp-Pow ← P2 × R1 + Pow1 × ∆R; 

25                            Sort  choosy host in non decreasing  order  on C-exp-Pow; 
26                                Desthost ← Get host corresponding to minimum of S exp pow and C-exp-P ow; 
27                            T argetVMQ · add(V M, Desthost); 
28                            Skip  freq,  cluster, and go to VM  loop 

 
    29  Return TargetVMQ; 
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The aim of the C-PEF algorithm is to distribute the load within the cluster. Each server is set to 

its minimum utilization level. The utilization level is increased gradually when the VM allocation is 

not feasible at the current utilization level. The greedy selection of the destination hosts for the VMs 

among the feasible hosts is based on a minimum increase in overall power consumption at the current 

utilization level. The utilization of each node is reduced to an extent by distributing the load without 

performance compromise to avoid hotspots due to CPU turbulence. Each node is utilized at the 

required minimum utilization level as much as possible. Algorithm 2 receives the Clusterlist of all 

data centers, the Hostlist of each cluster, and the VM resource request through ReqQ. Lines 2 and 3 

consolidate the entire cluster list into the Totclusterlist. The algorithm considers the carbon footprint 

rate (CFR) and power usage effectiveness (PUE) for cluster selection and sorts the Totclusterlist in 

ascending order based on PUE × CFR. The greedy search, considering power limited to the current 

utilization level, is performed in line 6 of algorithm 2. The feasible host system with nominal 

operating frequency for VM placement is identified as the SelectedHost. The difference in dynamic 

power before and after VM placement, ΔP, is calculated in line 14 of algorithm 2. The power 

consumption P2 is not constant throughout the execution of the VM, as it depends on the next 

incoming and outgoing tasks of the machine to which it is allocated. As the incoming task is not 

known in advance, the known details of outgoing tasks based on the remaining execution time and 

utilization level are used effectively to predict the dynamic power. This approach has an impact if 

there is a time gap between the first request submission and the next. 

The destination host (Desthost) is identified based on the new VM(NVM) execution time and the 

next outgoing task’s remaining execution time in lines 21–33 in algorithm 2. Figure 2 

diagrammatically elucidates lines 21–23 with an example. Assume M1, M2, M3, M4, and M5 are 

machines in the SelectedHost. The execution time of the NVM is assumed to be 8 units. In each 

machine, P1 is the current dynamic power of the machine, P2 is the dynamic power after the NVM 

has been placed and R1 represents the remaining execution time interval of each task running in the 

machine at time to. The hosts are sorted based on ΔP. The SelectedHosts are {M4,M3,M2,M5,M1}. The 

number of tasks with the minimum remaining execution time (R1) at time toin M1 is 4(Task2), for M2 

is 9(Task2),for M3 is 5(Task1), forM4 is 3(Task1), and for M5 is 2(Task1). Here, the execution time of 

NVM–R1 (ΔR) forM1 is 4, for M2 is (−1), for M3is3, for M4is5, and for M5is6. M2 has a greater minimum 

remaining execution time than the NVM execution time, so the selectedhost= {M4}, while all others are 

considered as “choosyhosts”. Pow1 represents the assumed dynamic power after the completion of the 

task with the minimum remaining execution time. Based on C-Exp-Pow, M3 is chosen as the Desthost, 

irrespective of M4, which has the minimum ΔP.  

The time complexity of algorithm 2 can be analyzed by considering n VM requests in ReqQ. The 

sort function inline 3 with c clusters takes O(c log(c)) times. Considering f frequency levels, line 8–17 

and line 25–27 with m number of hosts take O (m) times. The sort function in lines 21 and 29 takes O 

(mlog(m)) times. The algorithm complexity is derived as O (n (clog(c) + cf (m + m log m + m+ m log 

m))).The final complexity is O(ncfmlog(m))).  
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Figure 2. Host selection policy for carbon- and power-efficient optimal frequency(C-PEF). 
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For n VM requests, m number of hosts, f frequency levels, and c number of clusters, the complexity 

of the algorithm is derived as O(nfmclog(c)).  

5.4. Carbon- and Power-Efficient VM Placement (C-PE) 

The cluster selection is the same as with C-FFF, meaning it is based on PUE and CFR. The 

standard power-efficient algorithm does consider the DVFS and remaining execution time for 

outgoing tasks for VM allocation [25]. In this work, the C-PE LGORITHM performs cluster selection 

similarly to C-PEF and C-FFF, but differs in its host selection policy. The aim of the C-PE algorithm 

is to find a feasible host for a VM, considering the maximum utilization level. The host selection is 

based on a minimum increase in overall power consumption (i.e., minimum ΔP). The Selected Hosts 

are sorted based on estimated ΔP (line 14of C-PEF). The destination host is selected as in algorithm 

2, with maximum utilization. The algorithm complexity with n VM requests, c clusters, and m nodes 

is derived as O(n(clog(c)+c(m+mlog(m)+m))). The final complexity is expressed as O(ncmlog(m)). 
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5.5. Carbon-Aware First-Fit Least-Empty VM Placement (C-FFLE) 

This approach performs data center and cluster selections similarly to C-PEF, C-FFF, and C-PE, 

but differs in terms of its host selection policy. The C-FFLE algorithm considers the carbon footprint 

rate (CFR) and power usage effectiveness (PUE) for cluster selection and sorts the Totclusterlist in 

ascending order based on PUE×CFR. The host selection is based on the first-fit strategy, whereby the 

hosts are ordered based on the least available resources. This approach does not perform any greedy 

searching for minimum power heuristic methods; instead, it uses VM best-fit heuristic methods based 

on resource requirements for node selection. 

 

Algorithm 3: C-FFF Carbon-Aware First-Fit Least-Empty VM Placement 

Input: Clusterlist, Hostlist, ReqQ 

Output: TargetVMQ 

1 while VM in ReqQ do 

2   Totclusterlist ←Get the clusters from the Clusterlist of all datacenters; 

3   sort the clusters in Totclusterlist in ascending order of (PUE*CFR) using Equation (7); 

4    For cluster in Totclusterlist do 

5      Mhostlist ←Get the Hostlist from cluster; 

6      For freq in freqstep do 

7        For host in Mhostlist do 

8           maxu ← Get utilization of freq using Equation 4 with freq as l; 

9           cur-uti ←Get current utilization of the host using Equation (4); 

10          rem-uti ←maxu - cur-uti; 

11           if feasible host for VM  then 

12            TargetVMQ •add(VM, host); 

14             Break host, freq and cluster loop and go to 1 ; 

16Return TargetVMQ.  

5.6.Carbon-Aware First-Fit VM Placement (C-FF) 

The cluster selection by the C-FF algorithm is similar to C-PEF,C-FFF,C-FFLE, and C-PE 

algorithms, but differs in terms of the host selection policy. The algorithm considers the carbon 

footprint rate (CFR) and power usage effectiveness (PUE) for data center selection and sorts the 

Totclusterlist in ascending order based on PUE×CFR. It uses first-fit heuristic methods for host 

selection. 

6. Experimental Environment and Assumptions 

Considering the expense and time incurred in the evaluation of large-scale experiments in real 

time, Matlab software is used to simulate the environment. Each reservation interval is assumed to 

have duration of 300 seconds. The input request is accepted at the beginning of each reservation cycle. 

A data center with heterogeneous systems with different power models capable of provisioning 

multiple VMs is considered. The virtual resource size is not known and the VM request has no 

limitations. The VM is assumed to be active throughout the execution time. All the tasks are 

considered to be CPU-intensive. The power consumption of a task is measured by its CPU utilization, 

as this is considered to consume a significant fraction of energy. All the machines are assumed to be 

in an off state when not in use. The VM’s resource requirements are assumed to be constant 

throughout the reservation interval. The data center’s safe operating temperature is considered to be 

23 °C. The peak IT load (server only) power estimation for the data center is 52 kW for the physical 

machine specifications given in Table 1 [53].The data center is assumed to have a floor space of 

approximately 500 square feet. The total electricity power requirement is calculated as 124 kW 

(including cooling and lighting load). The CPU power consumption for all servers should not exceed 
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17.3kW. The cooling load concerning CPU utilization is limited to 12.11 kW [54]. The data centers are 

assumed to be powered only by grid energy sources. 

Table 1. Physical machine characteristics [25]. 

Machines 
Frequency(

GHz) 

No. of 

Cores 

Power 

Model 

Memory(

GB) 

Storage 

(GB) 

Network 

Bandwidth 

(Mbps) 

M1 2 2 1 16 2000 1000 

M2 4 4 1 32 6000 1000 

M3 4 8 2 32 7000 2000 

M4 8 8 2 64 7000 4000 

M5 16 8 2 128 9000 4000 

6.1 Physical Machine and VM Reservation Modeling 

Table 1 shows model of physical machines with varying power models to simulate heterogeneity 

and configurations of heterogeneous systems taken from the SPEC power benchmark [55] used in the 

simulation. Table 2 presents the power consumption, with equal CPU utilization distribution ranging 

from 0% to 100%. The power calculation for the periods in between intervals is estimated based on 

Equation (4). For example, the power consumption with 13% CPU utilization for power model 1 is 

between 10% and 20%,while the resulting power is 64.14 W based on ((13%−10%)/(20%−10%) 

×(66−63)) + 63 with reference to Table 2. 

Table 2. Power (in watts) model of physical machines (PMs) [25]. 

Power Model Idle 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

1 60 63 66.8 71.3 76.8 83.2 90.7 100 111.5 125.4 140.7 

2 41.6 46.7 52.3 57.9 65.4 73 80.7 89.5 99.6 105 113 

To evaluate the proposed algorithms, 4 small-scale data centers with 100 heterogeneous systems 

are used to model infrastructure-as-a-service(IaaS).The VM characteristics for elastic compute units 

(ECU) shown in Table 3 are used to model the virtual machine reservations. Each data center is 

assumed to have 2 clusters with varying values for carbon footprint rates. The carbon footprint rates 

of clusters and PUE values of data centers are considered based on [55,56], as presented in Table 4. 

The workload is generated based on the Lublin–Feitelson model [57]. By taking advantage of the 

arrival rate, gamma, and hyper-gamma Lublin parameters, the bag-of-tasks and web requests are 

generated, which have long and short holding times, respectively, as compared to the VM types given 

in Table 3 (shown in Figures 3 and 4). Figure 3 depicts the variation in the numbers of requests in 

each reservation cycle. Figure 4 presents the total number of CPU utilization requests received from 

the VMs concerning different reservation cycles.  

Table 3. Virtual machine request types [25]. 

Name ECU 
Core 

Speed(GHz) 
Memory(MB) Storage(GB) 

Network 

Band 

Width(Mbps) 

Probability 

M1.small 1 1 1740 160 500 0.25-BT 

M1.large 2 4 7680 850 500 
0.25-

BT/0.12-WR 

M1.xlarge 4 8 15,360 1000 1000 0.08-WR 

M2xlarge 2 6.5 17,510 1000 1000 0.12-WR 

M22.xlarge 4 13 35,020 1000 1000 0.08-WR 

C1.median 2 5 1740 500 500 0.1-BT 
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Table 4. Datacenter features [25].  

Data Center 
Carbon Footprint Rate 

(CFR) in Tons/MWh 
PUE 

DC1 0.124, 0.147 1.56 

DC2 0.350, 0.658 1.7 

DC3 0.466, 0.782 1.9 

DC4 0.678, 0.730 2.1 

 

Figure 3. VM Request arrival 

 

Figure 4. Processor demand at different intervals 

7. Results and Discussions 

The workload data described above are used to evaluate the proposed VM placement algorithms 

C-PEF and C-FFF against C-PE, C-FF, and C-FFLE approaches. The C-FFLE algorithm is used to show 

the impact on power consumption when only resource usage is considered as a parameter in the 

heuristic approach. The C-FF is the first-fit placement algorithm, which is used for initial placement 

for all algorithms in this work. The other algorithms improve the placement strategy for power 

reduction as an extension of C-FF. In this work, along with initial placement, C-FF is used separately 

to model the worst possible power consumption. Naturally, the C-FFLE and C-FF algorithms will 

have worse performance than the power management algorithms. The C-PE algorithm is considered 

as a fair measure to evaluate power management approaches. 
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 Reduction in Overall Carbon Footprint 

The reduction of grid energy consumption in datacenters is considered as a crucial metric for 

carbon footprint reduction. Equation (7) formulates the total carbon footprint emission of data 

centers.  

 The ratio of VM acceptance (RVA) 

The RVA is considered as a measure of service level agreement (SLA). The RVA is the ratio 

between the number of VM requests placed and the number of requests submitted. 

7.1. Scenario-I: Energy-Efficient Mapping of VMs to PMs with StaticPUE 

The VM placement algorithms are evaluated based on the reduction of the carbon footprint with 

static PUE, as shown in Table 4. Figure 5 and Table 5 present the number of active PMs for the same 

utilization level, with 100% RVA for all algorithms. In order to interpret the number of active PMs 

shown in Table 5, this has to be compared with the minimum and maximum utilization levels given 

in Table 6 for each interval. In C-PE, for 10% utilization, the number of active PMs is 36 with a 

minimum utilization 50% and the number of PMs with 100% utilization is 23. These numbers are far 

greater than C-FFF and C-PEF, for which the number of active PMs is 17, with minimum utilization 

ranging between 25% and 40.6%. The C-PE placement strategy utilizes a lower number of PMs with 

the maximum utilization possible for the current workload, but the C-FFF and C-PEF algorithms 

utilize the maximum number of PMs with the minimum possible utilization level and a lower number 

of fully utilized PMs. The results show that distribution of the load among the servers using DVFS 

with C-FFF and C-PE algorithms limits the percentage of load received at each interval. This approach 

does not lead to optimal results with very low loads. The minimum load required for best result 

depends on the machine configuration and power model. According to our specifications, repeated 

execution with different VM requests shows that20% is the minimum load. For the C-PEF algorithm, 

the optimal load requirement is less than C-FFF, because in spite of DVFS, it uses the greedy 

approach, which limits load distribution. It can be noticed that the C-FF algorithm achieves a 

significant improvement over C-FFLE, displaying a trade-off between effective resource utilization 

and power consumption. The utilization results presented in Table 6 prove the above algorithm 

strategies. Figure 6 a, b and Table 5 illustrates the power consumption for all algorithms at 100% RVA 

for the first 8 intervals, the power consumption of the C-PEF algorithm is 3.79% lower than for C-

FFF, while the power consumption for C-FFF is 2.26% lower than C-PE, 21.75% lower than C-FFLE, 

and 12.08% lower than C-FF. Based on the cumulative carbon footprint depicted in Figure 6b, which 

is equivalent to the power given in Table 5, the C-PEF reduces the carbon footprint to 4.09%, while 

C-PE, C-FFLE, and C-FF reduce the carbon footprint to 3.35%, 38.8%, and 17.6%, respectively. Based 

on Figure 7a and Table 7, the total power consumed by the servers using the C-PEF placement 

algorithm is reduced by 1.61%. The C-FFF algorithm reduces power consumption by2.16%, 13.54%, 

2.77% when compared to C-PE, C-FFLE, and C-FF, respectively. Based on Figure 7b and Table 7, the 

C-PEF placement algorithm’s carbon emission is 1.64% less than C-FFF. The C-FFF placement 

algorithm consumes 2%, 15%, and 2.8% less power than C-PE, C-FFLE, and C-FF, respectively. 

Table 5. Power consumption for 100% ratio of VM acceptance (RVA). 

Interval 

(300 s) 

Active 

VMs 

Power Consumption (kW) Total Active PMs  Total CPU 

Utilization 

% 
C-PEF C-PE C-FFF C-FFLE C-FF C-PEF C-PE C-FFF C-FFLE C-FF 

1 64 1512.53 1436.84 1626.45 2070.33 1954.24 50 36 56 60 56 10.94 

2 123 2596.98 2624.79 2879.36 3624.09 3185.06 89 74 98 106 91 20.90 

3 181 3646.54 4106.17 4003.47 5360.29 4935.64 111 116 123 151 136 29.34 

4 237 4997.41 5505.73 5272.04 6951.47 6278.71 141 152 153 196 172 38.46 

5 288 6228.52 6717.20 6270.41 8246.13 7189.17 175 186 175 231 199 47.02 

6 334 7056.55 7453.36 7207.61 9257.91 8179.25 198 208 203 258 227 54.36 

7 381 8010.12 8428.66 8295.90 10295.59 9043.74 227 238 238 289 252 63.09 

8 420 8770.99 9264.71 8951.71 11077.27 9856.81 253 262 258 312 276 69.76 
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Table 6. Processor utilization for 100% RVA. 

Reservation 

Interval 

Minimum CPU Utilization % 
Number of Hosts with 100% CPU 

Utilization 

C-PEF C-PE C-FFF C-FFLE C-FF C-PEF C-PE C-FFF C-FFLE C-FF 

1 40.625 50 25 50 50 17 23 17 35 33 

2 31.25 62.5 25 50 62.5 19 42 27 62 56 

3 40.625 50 40.625 62.5 62.5 56 75 64 96 91 

4 62.5 62.5 40.625 50 62.5 91 101 94 127 118 

5 62.5 50 50 50 62.5 113 121 117 152 138 

6 50 40.625 40.625 62.5 62.5 125 146 135 173 159 

7 62.5 62.5 40.625 50 40.625 142 162 153 188 172 

8 31.25 62.5 31.25 40.625 62.5 156 176 164 204 189 

Table 7. Power and carbon footprint for different VM placement algorithms. 

Placement 

Algorithm 
Power (kW) 

Carbon 

Footprint(Tons) 
Number of VMs Placed 

C-FFF 676,296.2775 48.72382575 1634 

C-PE 691,256.2894 49.87335009 1611 

C-PEF 665,341.0031 48.28496006 1623 

C-FFLE 782,225.6419 59.79732901 1622 

C-FF 695,623.92 50.4902789 1598 

 

Figure 5. Active PMs with 100% RVA (first 8 reservation cycles). 
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(a) 

(b) 

Figure 6. (a)Power consumption and (b) carbon footprint of all algorithms with 100% RVA. 

(a) 

(b) 

Figure 7. (a)Power consumption and (b) carbon footprint comparisons of all algorithms. 
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In Table 5, the carbon footprint values for C-FFF and C-PEF are about 2.30% and 3.18% lower 

than for C-PE, respectively, with an increased RVA of 1.2%. C-FFLE and C-FF algorithms have 19.89% 

and 1.23% greater carbon footprints than C-PE, respectively. Table 8 depicts the substantial 

improvement in VM request acceptance for C-PEF and C-FFF algorithms compared with other 

heuristic approaches with different numbers of VM requests. The C-FFF and C-PEF algorithms have 

approximately 1% higher RVA percentage than other counterparts. The statistical analysis presented 

in Table 9 supports the fact that the C-FFLE algorithm, which is based on resource utilization, 

operates with maximum utilization compared to other approaches. The C-FFF, C-PE, and C-PEF 

algorithms have approximately 1% variation in maximum CPU utilization rates, with similar average 

utilization rates. With regard to power, the C-PEF placement algorithm’s power consumption is 

1.64% less than C-FFF. C-FFF consumes 2%, 15%, and 2.8% less power than C-PE, C-FFLE, and C-FF, 

respectively. 

Table 8. RVA for all VM placement algorithms. 

RVA% Under Different VM Requests 

Algorithm 481 910 1276 1591 1861 2000 

C-FFF 100 88.68132 81.5047 81.58391 81.30038 81.7909 

C-PE 100 87.03297 80.17241 80.32684 80.06448 80.5903 

C-PEF 100 88.35165 81.03448 81.01823 80.65556 81.14057 

C-FFLE 100 87.25275 80.721 81.26964 80.60183 81.14057 

C-FF 100 87.03297 80.01567 80.01257 79.36593 79.93997 

Table 9. Statistical analysis of different VM placement algorithms. 

 C-FFF C-PE C-PEF C-FFLE C-FF 

Metric 
% CPU 

Utilization 

Power 

(kW) 

% CPU 

Utilization 

Power 

(kW) 

% CPU 

Utilization 

Power 

(kW) 

% CPU 

Utilization 

Power 

(kW) 

% CPU 

Utilization 

Power 

(kW) 

Min 0.1471 1626 0.1471 1437 0.1471 1513 0.1471 2070 0.1471 1954 

Max 89.12 6.76×105  90.04 6.91×105 88.38 6.65×105 92.46 7.82×105 89.87 6.96×105 

Mean 48.6 4.49×105 48.91 4.58×105 47.82 4.42×105 50.46 5.17×105 48.97 4.64×105 

The results in Figure 8a,b were obtained by varying the system load with respect to the number 

of requests in order to measure the power consumption of different algorithms for a single interval 

with a common initial state. This was done so as to rank the performance of the algorithms from 

lowest to highest in terms of CPU utilization. Figure 8a displays the power consumption values for 

all the algorithms, with CPU utilization rates ranging between 40% and 90%. It can be noticed that 

the C-PEF algorithm shows significant performance improvement between 40%and 85% utilization. 

Figure 8b presents the carbon footprint values for all of the algorithms for utilization rates above 85%. 

Above 90% utilization, C-PEF and C-FFF are in close proximity to each other. 
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(a) 

(b) 

Figure 8. (a) Power consumption values with low utilization. (b) Carbon footprint values with high 

utilization. C-PEF and C-FFF are compared with other algorithms in terms of CPU utilization. 

Figures 9 and 10 present the amounts of carbon and power consumed by different power-

efficient VM placement algorithms. C-PEF and C-FFF algorithms consume more power initially at 

lower loads than C-PE, which distributes the loads among all the servers. C-FFLE and C-FF 

algorithms consume more power as they do not utilize power-efficient allocation. The non-

parametric Mann–Whitney U test and Wilcoxon rank sum test are utilized to test whether there is a 

noteworthy difference in the results obtained. Based on the abovementioned non-parametric tests on 

two samples for C-PEF with C-PE, C-FFLE, and C-FF, the p-values obtained are less than 0.0001. 

Therefore, it can be concluded that DVFS-aware scheduling (C-PEF and C-FFF) makes a significant 

difference compared with standard power-aware scheduling(C-PE) and other heuristic approaches 

interms of energy consumption. The difference between the two DVFS-aware algorithms, C-PEF and 

C-FFF, is not substantial (p-value of0.76 > 0.05). 
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Figure 9. Carbon footprint. 

 

Figure 10. Power consumption. 

7.2. Scenario-II: Energy-Efficient Mapping of VMs to PMs with DynamicPUE 

The power usage effectiveness is the metric used to analyze the efficiency of a datacenter. This 

is the ratio between the total energy requirements of a data center (total facility power) and the power 

consumed by IT devices. In total, 60% of the energy consumption is due to cooling device power 

consumption, which has a direct impact on PUE. The proposed power-aware algorithms C-FFF and 

C-PEF, along with the standard C-PE algorithm, are considered in scenario II to analyze the impact 

of dynamic PUE on carbon footprint values, based on Equation (11). Table 10 presents the power 

consumption and carbon footprint values observed with dynamic PUE under the same workload 

used for the observed values in Table 5 for fair comparison. Dynamic PUE reduces the carbon 

footprint by approximately 50%, as shown in Table 10. The RVA percentages for C-FFF and C-PE 

displayed in Table 11 show a slight dip at the beginning and then a significant increase of 1%. Table 

12 shows the overall statistics for CPU utilization and power consumption related to dynamic PUE. 

The values in Table 10 confirm the impact of dynamic PUE. The power consumption of the C-PE 

algorithm is reduced by approximately 55% compared to static PUE. The power consumption for the 

mean CPU utilization presented in Tables 9 and 12 reveals the impact of dynamic PUE on power 

reduction. C-FFF, C-PE, and C-PEF algorithms achieve approximately 14%, 9%, and 15% greater 

reductions than static PUE. The results support the approach of energy reduction by dynamically 

adjusting the cooling device load based on the active power consumption of the server for the current 

workload.  

Table 10.  Power and carbon footprint with dynamic power usage effectiveness (PUE). 

 

Placement 

Algorithm 
Power(kW) 

Carbon 

Footprint 

(Tons) 

Number of VMs Placed 

C-PEF 564,350.9 23.631227 1617 

C-PE 628,328.4 24.191322 1636 

C-FFF 582,335.1 24.35445 1641 

Table 11. RVA % with dynamic PUE. 

RVA% with Different VM Requests 

Algorithm 481 910 1276 1591 1861 2000 

C-PEF 98.96 87.14 81.42 80.95 80.65 80.89 
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Table 12. Statistical analysis with dynamic PUE.  

 C-FFF C-PE C-PEF 

Metric 
%CPU 

Utilization 

Power 

(kW) 

%CPU 

Utilization 

Power 

(kW) 

%CPU 

Utilization 

Power 

(kW) 

Min 0.1471 1029 0.1471 644.5 0.1471 969 

Max 88.94 5.823×105 89.67 6.283×105 86.69 5.644×105 

Mean 48.33 3.854×105 48.48 4.156×105 46.25 3.74×105 

Let n, f, m, and c represent the number of VM requests, the fixed DVFS levels, the number of 

nodes, and number of clusters, respectively. The complexity of the C-PE algorithm is expressed by 

O(ncmlog(m)). Its complexity is dominated by mlog(m). The complexity of the proposed C-PEF 

algorithm is expressed by O(nfcmlog(m)).The C-PEF complexity is f times that of C-PE. The complexity 

of the C-FFF algorithm O(nfmclog(c)) is dominated by f (fixed frequency level) and clogc. As the 

number of nodes (m) in the data center increases, the complexity of the C-PE dominates the overhead 

caused by the constant f in C-FFF. The proposed C-FFF algorithm with complexity O(nfmclog(c)) 

performs load balancing, while maintaining a better tradeoff between utilization and power 

consumption than the standard C-PE algorithm with complexity O(ncmlog(m)). 

8. Conclusions 

Energy consumption and carbon footprint problems in data centers are handled using different 

VM placement algorithms with static and dynamic PUE. The data center energy efficiency metric 

PUE and carbon usage effectiveness are used as important measures for data center selection. The 

proposed C-FFF and C-PEF placement algorithms perform placement decisions by maintaining the 

optimal p-state of the servers. In C-PEF, host selection is based on the power-efficient optimal p-state 

of the servers. In C-FFF, the host selection is based on the optimal p-state of the servers. Both C-FFF 

and C-PE are compared with a standard power-efficient algorithm (C-PE), where the host selection 

is based on the highest power-efficient p-state of the servers. Different VM types with varying 

execution times and arrival rates are used to simulate the system load. The resulting outcomes for 

scenario I reveal that C-FFF can reduce the carbon footprint by a minimum of 2% more than C-PE, C-

FFLE, and C-FF. The experimental results illustrate the importance of considering the DVFS of the 

servers, along with PUE and carbon release of clusters in data centers. The results for the algorithms 

in scenario II emphasize the impact of dynamic PUE on the carbon footprints. The C-FF algorithm 

shows significant improvement over C-FFLE in power reduction, displaying a trade-off between 

effective resource utilization and power consumption. Among the three power-aware algorithms, C-

PEF and C-PE have additional computational overhead due to greedy search function. The results 

support the fact that C-FFF balances computational overhead and utilization, and stands in between 

C-PEF and C-PE with some degree of minimum resource request constraint.. In conclusion, C-FFF is 

a power-efficient algorithm for VM placement with reduced computational overhead. The 

formulations presented in this work open new and challenging areas of further research relating to 

renewable energy sources.  
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