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Abstract: Despite global efforts to contain tuberculosis (TB), the disease remains a leading cause of
morbidity and mortality worldwide, further exacerbated by the increased resistance to antibiotics
displayed by the tubercle bacillus Mycobacterium tuberculosis. In order to treat drug-resistant TB,
alternative or complementary approaches to standard anti-TB regimens are being explored. An area
of active research is represented by host-directed therapies which aim to modulate the host immune
response by mitigating inflammation and by promoting the antimicrobial activity of immune cells.
Additionally, compounds that reduce the virulence of M. tuberculosis, for instance by targeting the
major virulence factor ESX-1, are being given increased attention by the TB research community.
This review article summarizes the current state of the art in the development of these emerging
therapies against TB.
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1. Introduction

Mycobacterium tuberculosis, the etiological agent of human tuberculosis (TB), is thought to latently
infect approximately one fourth of the world’s population and is responsible for over one million deaths
every year [1], thus representing the leading cause of mortality by an infectious disease worldwide.
Immunodeficiency caused by HIV [2] and co-morbidities like diabetes [3] constitute additional risk
factors for the development of active TB disease.

The current anti-TB therapy consists of a combination of four antibiotics (rifampicin, isoniazid,
pyrazinamide and ethambutol) that must be administered for at least 6 months in case of drug-sensitive
pulmonary TB infection [4]. However, M. tuberculosis displays increased resistance to first-line drugs,
which has resulted in multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB cases [5].
Second-line treatment regimens are therefore employed but require longer duration to be effective and
are associated with severe side effects that frequently decrease patient compliance [6].

To address the increasing need for new and potent therapeutic options against TB, alternative
approaches are being explored. These include host-directed therapy (HDT) and anti-virulence
compounds. Within the first choice, a number of molecules that reduce inflammation, modulate
autophagy and potentiate the immune response are currently in preclinical and in clinical trials. On the
other hand, drugs that affect M. tuberculosis ability to infect and kill host cells represent a promising
complement to standard antibiotic treatment.
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Here we review the current state of research in the areas of HDT and anti-virulence drugs as
complementary approaches to TB therapy.

2. Host Directed Therapy

2.1. Promoting Phagosome Maturation and Enhancing Autophagy

Autophagy is a natural process which protects cells against unfolded proteins and potentially
dangerous aggregates, viral and bacterial infections. By means of autophagy, macrophages deliver
toxic macromolecules, organelles and phagocytosed pathogens to lysosomes for degradation [7].
Modulating autophagy in order to promote bacterial killing represents one example of HDT against
TB infection. This statement is supported by studies conducted by Gutierrez and co-workers who
reported that stimulation of autophagy in macrophages promotes phago-lysosome maturation and
impacts mycobacterial survival [8]. More recent investigations revealed increased susceptibility to
TB in mice defective in autophagy pathways [9] and a positive interplay between autophagy and
interferon-gamma (IFN-γ) in TB patients [10].

2.1.1. mTOR Inhibition

The best described autophagy inducer is rapamycin (sirolimus), used in patients who underwent
organ transplantation [11]. Rapamycin, a macrolide produced by Streptomyces hygroscopicus and
originally discovered on Easter Island (Rapa Nui for the inhabitants, hence the name given to the
compound), inhibits TOR, the Target Of Rapamycin [12]. The mammalian Target of Rapamycin mTOR
is a negative regulator of autophagy [13]. Its clinical use in infectious diseases is restricted due to
its broadly immunosuppressive effects. In addition, rapamycin is metabolized by CYP3A4 [14], a
hepatic enzyme induced by the first-line TB drug rifampicin, thus hampering its exploitation as HDT
in TB patients. However, other molecules capable of inducing autophagy have been discovered and
are now under development. Among these, vadimezan [15], Tat-beclin 1 fusion peptide [16], the
calcium-channel blocker verapamil [17] and the rapamycin analogue everolimus [18]. In particular,
verapamil was shown to be efficacious when combined with rifampicin and with the recently approved
medication bedaquiline in mouse models of infection, where it increased the bioavailability of the
antibiotic [19–21]. On the other hand, everolimus, an anti-cancer agent, may be repurposed as an anti-TB
HDT therapeutic capable of inhibiting mTOR although, as with rapamycin, immunosuppression [22]
and toxicity [23] may represent issues in the clinical development as an anti-TB drug.

2.1.2. Metformin

One of the most promising drugs that promotes autophagy is currently used for treatment of
type 2 diabetes: metformin [24]. This compound is characterized by a good safety profile, activates
5′-adenosine monophosphate-activated protein kinase (AMPK), induces production of mitochondrial
reactive oxygen species (mROS), which are deleterious to M. tuberculosis and was found to reduce
the severity of TB disease in humans [25]. Despite these promising data, combination therapies
which involved metformin in mice had contradictory results. While in one case metformin enhanced
the activity of isoniazid and ethionamide [25], in another one it did not improve the efficacy of the
combined first-line drugs [26]. Recent retrospective studies reported a protective effect for metformin
against reactivation of latent TB in diabetic patients [27–29]. Phase II clinical trials have been initiated
(Table 1).

Activity of the major virulence factor ESX-1 can be blocked by compounds BBH7 and BTP15.
While BBH7 hinders the secretion mechanism by inducing zinc stress, BTP15 was shown to act by
downregulating expression of the espA-espC-espD operon upon interaction with MprB. The secreted
proteins MptpB, SapM and Zmp1, which prevent phagosomal maturation, can be directly targeted
extracellularly by their respective inhibitors. The dedicated secretion systems for these three proteins
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are not described yet. Gene expression of PhoP-dependent virulence genes can be controlled by PhoP
inhibitors which prevent binding of PhoP to specific promoter regions, thus affecting transcription.

2.1.3. Imatinib and Other Tyrosine Kinase Inhibitors

A key feature of M. tuberculosis is represented by its ability to inhibit phago-lysosome fusion,
and thus potentially limit the efficacy of the autophagy process, thanks to the presence of specific
virulence factors like lipoarabinomannan in the cell wall [30], the ESX-1 secretion system [31,32] and
other key components such as the Eis protein which modulates autophagy and inflammation and
suppresses host innate immune responses [33]. This inhibitory effect can be overcome by tyrosine
kinase inhibitors, such as imatinib and the second-generation inhibitors nilotinib and dasatinib, which
target the BCR-ABL fusion protein and are used for treating chronic myeloid leukemia [34]. Different
studies explored the effect of imatinib on M. tuberculosis-infected macrophages and revealed that it
increases acidification of lysosomes thereby halting bacterial multiplication [35]. Moreover, imatinib
was shown to reduce the number of granulomatous lesions in mice and to act synergistically with
first-line anti-TB drug rifampicin [36].

2.1.4. Statins

Statins, i.e., agents that lower cholesterol through inhibition of the biosynthetic pathway, also
impact autophagy [37]. Given the relevance of cholesterol in M. tuberculosis persistence [38], statins
have received considerable attention. Indeed, in addition to their cholesterol-lowering effect, statins
decrease lipid body biogenesis and limit M. tuberculosis survival [39]. Additionally, it was discovered
that atorvarstatin potentiates the effect of rifampin in M. leprae infection of the mouse footpad [40].
These substances are currently investigated in clinical trials (Table 1).

2.2. Vitamin D and the Induction of Anti-Microbial Peptides

Anti-microbial peptides like cathelicidins are components of the innate immune system whose
synthesis is induced by mycobacterial ligands through binding to Toll-like receptors (TLRs), especially
TLR2 and TLR9 [41]. Cathelicidin LL37 represents a major example of this class of molecules, is
expressed by neutrophils and macrophages and participates in anti-TB defense through pore-forming
capability in the bacterial membranes [42,43].

It has been shown that vitamin D promotes synthesis and release of LL37 [44], which in turn
helps in autophagy [45,46]. Moreover, vitamin D enhances the ability of monocytes to respond to
interferon gamma (IFN-γ) [47]. Various clinical trials which included vitamin D in addition to the
standard regimen have been performed, sometimes with variable results [48–50]. It seems evident
that key issues for successful use of vitamin D in TB therapy are proper dosing and possibly also
genetic background and comorbidities of the patient. A recently published study by Aibana and
co-workers suggested that vitamin D deficiency is associated with increased probability of developing
TB in HIV-positive people [51]. However, further investigations are needed to clarify whether vitamin
D supplementation might play a significant role in reducing the risk of TB.

Another vitamin whose antitubercular effects have been evaluated is vitamin A, which limits M.
tuberculosis replication in macrophages by promoting acidification [52,53]. However, while studies
in rats showed a beneficial impact of vitamin A supplementation [54], the same was not observed in
humans [55,56].

Regulation of anti-microbial peptide expression is also controlled by histone deacetylase inhibitors
(for instance 4-phenylbutyrate) through epigenetic mechanisms [57,58]. In the context of M. tuberculosis
infection of human macrophages, it was demonstrated that phenylbutyrate, alone or in combination
with vitamin D3, was able to counteract the suppressive effect of the bacilli on LL-37 expression, thus
promoting autophagy [59].

In addition to cathelicidins, another group of anti-microbial peptides plays an important role in
anti-TB mechanisms. These are defensins. Defensins are arginine-rich, cationic peptides resistant to
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proteolysis. They are usually stored in the granules and in the lysosomes of innate immune cells, such
as neutrophils, and are released upon pathogen invasion [60]. M. tuberculosis stimulates production
of beta defensin-2 (HBD-2), which reduces bacterial multiplication and has a chemotactic effect [61].
Despite these features, exploitation of HBD-2 in HDT against TB is far from clinical use, due to high
costs and poor stability in vivo [62]. Clinical trials where these compounds are being investigated are
listed in Table 1.

2.3. IFN-γ and IL-2 as Adjunct Therapy

Production of anti-microbial peptides and other antimicrobial activities exerted by macrophages
are stimulated by a panel of cytokines that include TNF (Tumor Necrosis Factor), IFN-γ and interleukin
1 (IL-1). While IFN-γ plays its major role in promoting autophagy and phagosome maturation, TNF
increases IFN-γ responsiveness and IL-1 counteracts the detrimental effects of Type I IFN in TB [63].
HDT against TB infection includes IFN-γ and modulators of TNF, which will be discussed later in this
review. Concerning IFN-γ, it was demonstrated that its administration to TB patients via the aerosol
route is well-tolerated and reduces time to sputum conversion while improving lung repair after the
disease [64–66]. However, the role of IFN-γ in controlling TB is still under debate, as reported in a
study by Sakai and co-workers, who showed that contribution of CD4-T cell derived IFN-γ is limited
and, even worse, sometimes detrimental [67]. Another clinical study, where IL-2 was added during the
first month of anti-TB treatment resulted in no benefit [68], thus questioning the relevance of adding
cytokines to the existing therapy. Possible side effects and treatment costs should also be considered
when exploring the administration of cytokines to TB patients.

2.4. Inhibition of M. tuberculosis Induced Inflammation and Host Cell Death

2.4.1. The Role of Corticosteroids in TB Treatment

It sounds counterintuitive to address the problem of active TB with anti-inflammatory drugs.
However, for some clinical manifestations of the diseases, reduction of inflammation by using adjunctive
corticosteroids has already become a well-established and lifesaving treatment approach. Addition of
dexamethasone or prednisolone, two potent corticosteroids, to the antibiotic regimen for treatment of
TB meningitis improves survival and is considered as a valid therapeutic approach for TB affecting
the central nervous system (CNS) [69], although care should be taken since individual responses to
steroid treatment might differ. Several studies have tried to improve the outcome of pulmonary TB by
lowering the inflammatory response using high doses of corticosteroids in combination with antibiotics.
While it was found that this therapy leads to faster resolution of symptoms and lesions in radiographic
examinations and a more rapid discharge from hospitals, a statistically significant survival benefit
could not be shown (Table 1) [70–72]. In addition, high dose corticosteroids may result in serious side
effects such as diabetes and psychiatric symptoms. Today, corticosteroids remain the treatment of
choice in specific clinical situations such as CNS TB or hyperinflammatory syndromes e.g., the immune
reconstitution inflammatory syndrome (IRIS) in HIV/TB co-infected patients. Investigations at the
molecular level proved that dysregulation of inflammasome signaling and of secretion of various
cytokines, including IL-1γ, was associated with TB-IRIS in patients infected by HIV [73,74], thus
supporting the inclusion of corticosteroids in the treatment of TB patients at risk of developing IRIS [75].
Despite these evidences, a broader application of the drugs in TB treatment is currently not justified.
However, clinical studies as well as ex vivo and in vivo experiments performed with these substances
indicate that a more specific or tailored modification of the TB inflammatory response may provide
a suitable approach to improve patient outcomes. Understanding the exact mechanism of action of
corticosteroids in TB may help overcome this hurdle. Corticosteroids are broadly immunosuppressive
drugs with multiple modulatory effects on leukocytes once bound to the main target, the corticosteroid
receptor. Downstream effects include repression of pro-inflammatory transcriptional regulators like
NF-κB as well as impaired release of cytokines such as TNFα and IL-1 [76]. In addition, corticosteroids
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such as dexamethasone seem to have an M. tuberculosis specific inhibitory effect on necrotic host
cell death in vitro [77]. This effect seems to depend on inhibition of p38 MAP kinase which impairs
mitochondrial membrane stability upon infection with M. tuberculosis. p38 MAP kinase is activated
during M. tuberculosis infection in vitro and in vivo and represents a possible host directed target with
several clinically tested small molecule inhibitors available for repurposing.

2.4.2. Non-Steroidal Anti-Inflammatory Drugs (NSAID) and Leukotriene Inhibitors

A series of mouse studies have shown beneficial effects of non-steroidal anti-inflammatory drugs
(NSAIDS) such as aspirin, diclofenac and ibuprofen when used alone or in combination with common
antibiotics in M. tuberculosis-infected mice. The main mechanism of action seems to be inhibition of
prostaglandin synthesis via inhibition of cyclooxygenase 1 and 2. Prostaglandins are known drivers of
tissue damaging inflammation. It is important to note that diclofenac was shown to possess growth
inhibitory effects on the bacterium itself in addition to its anti-inflammatory properties. The substances
have been extensively discussed elsewhere [78]. NSAID Clinical trials initiated recently are listed
in Table 1. Another category of anti-inflammatory drugs is represented by leukotriene receptor
antagonists, such as zafirlukast, which was reported to have anti-mycobacterial activity in vitro and
cause alterations in the transcription profile in M. tuberculosis [79]. The potential of these drugs in
HDT against TB deserves deeper investigation given the role for leukotriene A(4) hydrolase (LTA4H)
demonstrated by Tobin and colleagues in animal models of infection [80,81].

2.4.3. Necrosis

Necrotic host cell death is a highly dynamic research field increasingly linked to the release of
pro-inflammatory cytokines. A better understanding of the mechanisms of M. tuberculosis induced
cell death may provide additional starting points for HDTs. Most studies have been focusing on
cell death in macrophages, however, necrosis of other cell types such as neutrophils seems to play
a pivotal and additive role in M. tuberculosis pathogenicity. M. tuberculosis released by necrotic
neutrophils displays improved survival and growth once phagocytosed by adjacent macrophages [82].
Neutrophil necrotic cell death is driven by reactive oxygen species (ROS) which can be abrogated by
ROS inhibitors. In addition, ROS and nitric oxide (NO) have been found to show antimicrobial activity
and to modulate neutrophil recruitment to the granuloma [83]. While ROS seems to increase cytokine
production and to inhibit inflammasome activation, NO shows a regulatory effect on macrophages
with increased expression of hypoxia-inducible factor 1 alpha (HIF-1α) and repression of nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) [84,85]. A recent study highlights a role for
ferroptotic cell death in TB. Ferroptosis is a type of regulated necrosis induced by accumulation of
free iron and toxic lipid peroxides which seems to be mediated by decreased levels of glutathione
peroxidase-4 (Gpx4) upon M. tuberculosis infection in vitro. Intraperitoneal treatment of M. tuberculosis
infected mice with ferrostatin, a ferroptosis inhibitor resulted in reduced lung pathology and decreased
bacterial load [86]. In addition to ferroptosis, efferocytosis (the physiological process of removing
apoptotic cells by macrophages) is an anti-bacterial mechanism that seems to play a relevant role
in TB as well [87]. Indeed, efferocytosis of apoptotic neutrophils was shown to improve control of
M. tuberculosis in an in vitro model of HIV-M. tuberculosis macrophage co-infection [88,89].

2.4.4. TNF and TNF-Mediated Signaling

Further downstream of intracellular mediators or regulators of cell death, inflammation and
cytokine release, there are more direct targets amenable to therapeutic interventions. These include the
cytokines themselves. Biologicals targeting TNFα such as infliximab and adalimumab (monoclonal
antibodies) or etanercept (TNF receptor fusion protein) may be used to limit exacerbated pathology
and improve antibiotic activity. These substances are restricted for use in combination with antibiotics
(adjuvant treatment) since TNFα is essential for protective immunity and granuloma integrity.
Monotherapy with infliximab and other anti-TNF antibodies led to reactivation of latent TB [90].
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However, when combined with anti-TB drugs, TNF neutralization enhanced M. tuberculosis clearance
and reduced lung pathology [91]. A clinical study performed with adjuvant etanercept in patients
with pulmonary TB and HIV showed a trend towards improved outcome when the TNF blocker was
added to the antibiotic regimen [92].

TNF signaling is also the main target of other HDT candidates such as thalidomide, phosphodiesterase
inhibitors or Janus kinase (JAK) inhibitors. Thalidomide has potent anti-inflammatory properties which led
to successful application of the drug in cases where anti-TB or HIV treatment triggered hyperinflammatory
syndromes such as paradoxical reactions or immune reconstitution syndrome (IRIS). A general application
for adjuvant treatment approaches may be hampered due to side effects as seen in a study performed
with children suffering from TB meningitis [93]. Phosphodiesterase (PDE) inhibitors seem to be more
promising for broad application in TB patients. PDEs degrade cyclic AMP (cAMP), a second messenger
negatively regulating TNF levels. Decreased levels of cAMP stimulate TNFα secretion, thus making PDE
inhibitors interesting HDT targets. Among the five PDE subtypes, targeting PDE4 seems to be the most
promising option in TB with adjuvant use of inhibitors leading to improved outcome in several animal
models [94,95]. A phase II clinical trial with the PDE4 inhibitor CC-11050 is ongoing (Table 1).

2.4.5. Targeting Matrix Metalloproteinases for Improved Tissue Repair

Imbalanced inflammation eventually results in host tissue destruction, cavitation and dissemination
of bacteria. A main driver of these end-stage events are matrix metalloproteinases (MMP) [96]. Once
released from activated or necrotic cells, these zinc dependent proteases cleave the extracellular matrix,
mostly collagen, and inhibition with small molecules should restrict tissue damage and exacerbation of
the disease. Several in vitro and ex vivo studies identified elevated MMP levels in M. tuberculosis infected
cells or tissue indicating that these enzymes are engaged [96]. In particular, Andrade and colleagues [97]
evaluated the interplay between the levels of MMP and heme oxygenase-1 (HO) and discovered that the
abundance of these two markers in plasma correlates with different inflammatory profiles and clinical
presentations of TB. To date, the only FDA approved MMP inhibitor is doxycycline, an antibiotic with a
dual mechanism of action targeting primarily MMP1 and MMP9. The drug suppressed MMP1 and 9
activities in M. tuberculosis infected primary human macrophages [98]. In the same study, doxycycline
treatment of M. tuberculosis-infected guinea pigs led to reduction of the lung bacterial load compared
to untreated animals. However, it is important to note that the substance shows a significant growth
inhibitory effect on M. tuberculosis in broth (MIC 2.5 µg/mL) making it difficult to differentiate between
selective host directed and antibacterial effects in these experiments. Experiments with more selective
MMP inhibitors such as marimastat (BB-2516), a collagen peptidomimetic broad spectrum MMP inhibitor,
showed adjuvant activity in M. tuberculosis-infected mice when combined with isoniazid or rifampicin [99].
In contrast to doxycycline, monotherapy with marimastat had no effect on lung bacterial burden [99].
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Table 1. Candidate compounds for host-directed therapy (HDT) against tuberculosis (TB).

HDT Effect Compound Target or Mode of Action Notes Clinical Trials
(ClinicalTrials.gov) References

Promote phagosome maturation
and enhance autophagy

Rapamycin (sirolimus) Inhibition of mTOR Metabolized by CYP3A4 – [11–14]

Everolimus Inhibition of mTOR,
rapamycin analogue Anti-cancer agent NCT02968927 [18,22,23]

Metformin Activates AMPK Used to treat diabetes Phase 2 studies planned
CTRI/2018/01/011176 [25]

Imatinib Inhibition of BCR-ABL
tyrosine kinase Used to treat leukaemia NCT03891901 [35,36]

Statins Inhibition of cholesterol
biosynthetic pathway

Cholesterol is relevant in
M. tuberculosis persistence

NCT03882177
NCT03456102
NCT04147286

[37,40]

Induce anti-microbial peptides

Vitamin D Promotes synthesis of
cathelicidin LL37

Variable results in clinical
trials

NCT00918086
NCT01722396
NCT01130311
NCT01244204
NCT00677339
NCT01698476
NCT01137370

(all completed)

[44,47–50]

Vitamin A Promotes acidification of
phagosome

Inconsistent results in rats
and humans

NCT00057434
(completed) [52–56]

4-phenylbutyrate Inhibition of histone
deacetylase Promotes autophagy

NCT01580007
NCT01698476

(all completed)
[57–59]

Beta defensin 2 (HBD-2) Reduces M. tuberculosis
multiplication

High costs and poor
stability – [60–62]

ClinicalTrials.gov
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Table 1. Cont.

HDT Effect Compound Target or Mode of Action Notes Clinical Trials
(ClinicalTrials.gov) References

Adjunct cytokine therapy

Interferon gamma (IFN-γ) Promotes autophagy and
phagosome maturation

Reduces time to sputum
conversion

NCT00201123
NCT00001407

(all completed)
[63–66]

Interleukin 2 (IL-2) Enhances cell-mediated
response to infection

Contrasting results in
clinical trials NCT03069534 [63,68]

Reduce inflammation/Inhibit
necrotic cell death

Corticosteroids Multiple
anti-inflammatory effects

Standard of care for CNS
TB. Other forms of TB may

require high doses for
beneficial effects leading
to unwanted side effects

Multiple clinical trials. See
meta-analysis in Critchley

et al. 2013 and 2014
[69–72]

P38 MAPK inhibitors
Protect cells from

mitochondria-induced
necrosis

[77]

Ferrostatin Decrease of glutathione
peroxidase-4 (Gpx4) levels

Mouse study showing
beneficial effect [86]

Infliximab, adalimumab,
etanercept Inhibition of TNFα

Restricted for use in
combination with

antibiotics
[90–92]

CC-11050 Phosphodiesterase (PDE)
inhibition NCT02968927 [94,95]

Doxycycline, marimastat
(BB-2516)

Inhibition of matrix
metalloproteinases

Doxycycline shows
growth inhibition of M.

tuberculosis, effects
probably not purely host

directed

NCT02774993 [99]

NSAID: aspirin,
ibuprofen, diclofenac,

etoricoxib, indomethacin

Cyclooxygenase 1 and/or
2 inhibition

NCT02781909
NCT02602509
NCT02503839

[78]

ClinicalTrials.gov
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3. Targeting Bacterial Virulence

3.1. The ESX-1 Secretion System

Lately, the interest in finding novel lead compounds, which prevent infection and dissemination
by inhibiting bacterial virulence factors, has increased. These anti-virulence molecules target one or
more proteins in the virulence machinery with one prominent example being the ESX-1 secretion
system as ESX-1 deletion mutants show strongly attenuated phenotypes in vitro and in vivo [100].
ESX-1 is a type VII secretion system essential for host cell infection, bacterial spread and macrophage
escape but not for bacterial growth in axenic cultures [101]. In a whole-cell-based phenotypic screening
assay selecting for compounds that abrogate ESX-1 dependent host cell death, the two ESX-1 inhibitors
BTP15 and BBH7 have been found and characterized [102]. BTP15 inhibits the histidine kinase MprB
that regulates ESX-1 via the espA-espC-espD operon. BBH7 on the other hand disturbs metal-ion
homeostasis leading to zinc stress and thus hindering secretion of ESX-1 substrates such as EsxA
and EsxB (Figure 1). These inhibitors can also be used to abrogate ESX-1 dependent activation of
the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS), a main driver of type I interferon (IFN)
secretion, thus nicely linking anti-virulence drugs to modulation of the inflammatory response [103].Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 19 
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3.2. PhoPR Inhibitors

The PhoPR two-component system plays a central role in regulating the expression of several
proteins relevant for virulence of M. tuberculosis as mutants deficient in the effector response regulator
PhoP show attenuated growth in infected THP-1 cells and in mice [104]. A microarray-based
transcriptional profiling study of M. tuberculosis strain H37Rv revealed 110 genes that have been
differently expressed in PhoP-deficient mutants [105]. This attenuated strain harbors a single nucleotide
polymorphism (S219L) in the DNA-binding domain of PhoP resulting in a reduced DNA-binding
capacity [105]. Further studies revealed that PhoP is involved in regulating ESX-1 and in biosynthesis
of cell wall components such as sulfolipids, polyacyltrehaloses and diacyltrehaloses [106–108]. Two
different approaches identified inhibitors of the PhoPR regulon.
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3.2.1. Ethoxzolamide

Using a pH-inducible fluorescence reporter system Johnson et al. phenotypically screened for
inhibitors of the PhoPR regulon (Figure 1). This screening discovered the carbonic anhydrase inhibitor
ethoxzolamide, which inhibits PhoPR while not reducing mycobacterial growth in vitro. Chromatin
immunoprecipitation followed by deep sequencing (ChIP-seq) of compound-exposed M. tuberculosis
cultivated in medium at pH 5.7 showed downregulation of several PhoPR regulated genes involved in
lipid synthesis, carbon metabolism and virulence. In addition, the presence of ethoxzolamide did not
modulate the expression levels of PhoP itself indicating that the substance acts as a direct inhibitor of
the core PhoPR regulon [109].

3.2.2. Inhibitors of the PhoP-DNA Complex

Three active compounds (NCGC00093547, NCGC00244580 and NCGC00161636) that directly bind
to PhoP and therefore inhibit PhoP-DNA interactions were found in a screening assay based on Foster
resonance energy transfer (FRET). For this screening a DNA-Protein complex of Cy3-labeled DNA
and Cy5-labeled PhoP protein was exposed to compounds of interest. Inhibitors of this DNA-Protein
complex led to dissociation and consequently to a reduced FRET signal [110]. Direct binding of
inhibitors to PhoP was confirmed by thermal shift assays in which target-bound inhibitors stabilize the
protein and increase the melting temperature, which can be quantified using the fluorescence signal of
fluorophore-protein complexes. Compounds NCGC00093547 and NCGC00161636 increased PhoP
melting temperature by 14 ◦C and 18 ◦C with an IC50 of 15.6 and 15.5 µM, respectively. Data on in vivo
or ex vivo activity of these compounds is not available yet.

3.3. Phagosomal Regulation/Hindering Intracellular Survival

3.3.1. MptpB Inhibitors

The M. tuberculosis protein-tyrosine-phosphatase B (MptpB) is another putative target for
anti-virulence compounds (Figure 1). This kinase is secreted into the cytoplasm of host macrophages
allowing for inhibition outside the thick and difficult to overcome mycobacterial cell wall [111].
The function of MptpB is not fully described yet, but the protein has been reported to be necessary
for bacterial survival in guinea pigs [112]. So far, it was shown that MptpB dephosphorylates host
phosphotyrosine substrates, phosphoserine/threonine substrates and phosphoinositides, with the latter
being essential for host macrophage maturation [113].

Several isoxazole-based molecules were created to block the primary and secondary
phosphate-binding pockets of MptpB followed by phenotypic testing for activity. In these ex vivo
assays, the compounds led to a reduction of mycobacterial burden in macrophages (J774 and THP-1)
and in a guinea pig model, without affecting extracellular growth in broth. Additionally, attenuated
growth of MDR strains of M. tuberculosis in the presence of compound 13 was shown in macrophages.
In addition, this inhibitor caused increased sensitivity of a BCG strain to rifampicin and isoniazid
in an ex vivo macrophage infection experiment [114]. A similar effect has not been published for
M. tuberculosis yet.

3.3.2. SapM Inhibitors

Another virulence factor that affects phagocytosis and phagosome formation is the secreted
acid phosphatase M (SapM) (Figure 1). SapM shows activity as a monoester alkaline phosphatase
and targets two phosphoinositides (PI(4,5)P2 and PI3P) important for phagosome maturation [115].
In inhibition studies, it was shown that 2-phospho-L-ascorbic acid interferes with SapM activity
without attenuating extracellular bacterial growth. At 4 mM, this drug could reduce intracellular
growth of M. tuberculosis by 39% [116].
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3.3.3. Zmp1 Inhibitors

Although its role is not fully understood yet, Zmp1 is involved in mycobacterial pathogenicity
as it inhibits the inflammasome and therefore prevents phagosome maturation (Figure 1) [117]. Zinc
peptidases like Zmp1 are often inhibited by molecules with specific zinc binding groups (ZBG)
like 8-hydroxyquinolines. 8-hydroxyquinolines are already in use as metal-interacting structures in
pharmacological applications [118]. Based on this, Vickers et al. synthesized compounds consisting
of an 8-hydroxyquinoline ring and a hydroxamate moiety and isosteric analogues of these. One
8-hydroxyquinoline-2-hydroxamate derivative showed a reduction in colony forming units (CFU) in
infected J774 mouse macrophages while no extracellular, anti-mycobacterial activity was observed.
Treatment of infected human monocyte-derived macrophages with this substance led to a decrease in
bacterial burden in a dose-dependent matter. In in-vitro inhibition assays the compound inhibited
Zmp1 with an IC50 of 0.011 µM [119].

3.4. Stress Associated Approaches

DosRST Signaling

M. tuberculosis exploits its two-component system DosRST to establish a dormant state of
nonreplicating persistence (NRP) [120]. As dosRST mutants show attenuated growth in animal
models, including nonhuman primates and guinea pigs, DosRST might be a potential target to reduce
mycobacterial virulence [121]. When investigating compounds for their effect on the DosRST system,
Zheng et al. identified two candidates (HC104A and HC106A) which interact with distinct members of
the two-component system and decrease production of hypoxia-induced triacylglycerol by around
50% during NRP [122]. In a hypoxic shift-down model using a DosR-dependent fluorescent strain
CDC1551(hspX’::GFP) HC106A was found to affect M. tuberculosis survival during NRP. HC104A on
the other hand did not attenuate growth in this setting. The in vivo relevance for these interesting
findings still needs to be established in a suitable animal model.

4. Conclusions

Several HDT approaches are currently being tested in a number of preclinical and clinical trials
as adjuvants complementing conventional anti-TB treatment. Clinical trial results provided in the
near future will present an important milestone for the implementation of HDT in routine clinical
use. While representing a promising therapeutic approach in theory, most compounds targeting
mycobacterial virulence factors lack in vivo proof of principle data.
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