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Abstract: Terahertz coded-aperture imaging (TCAI) has many advantages such as forward-looking
imaging, staring imaging and low cost and so forth. However, it is difficult to resolve the target under
low signal-to-noise ratio (SNR) and the imaging process is time-consuming. Here, we provide an
efficient solution to tackle this problem. A convolution neural network (CNN) is leveraged to develop
an off-line end to end imaging network whose structure is highly parallel and free of iterations.
And it can just act as a general and powerful mapping function. Once the network is well trained and
adopted for TCAI signal processing, the target of interest can be recovered immediately from echo
signal. Also, the method to generate training data is shown, and we find that the imaging network
trained with simulation data is of good robustness against noise and model errors. The feasibility
of the proposed approach is verified by simulation experiments and the results show that it has a
competitive performance with the state-of-the-art algorithms.

Keywords: terahertz; coded-aperture imaging; convolution neural network (CNN); fast image
reconstruction

1. Introduction

Since the terahertz wave (0.1–10 THz) lies between the visible and microwave frequencies,
it has stronger penetration capability than light and higher resolution than microwave, allowing for
visualization of hidden objects at the millimeter level. Moreover, it does little harm to the human
body compared to X-rays. Therefore, THz technology has attracted increasing attention, and the
generation and detection of THz have also been extensively researched utilizing various approaches.
Generation by nonlinear optical effects such as optical parametric oscillation [1] and detection by GaSe
electro-optic sensors [2] are one of the typical approaches. Solid-state electronic devices [3] and a low-
temperature-grown GaAs photoconductive antenna gated [4] are also used as emitters and detectors.
In order to overcome the limitations of THz band, some practical methods have been proposed [5,6].
With the development of THz technology and radar imaging technology, great progress has been
made in various industries and research fields. A graphene-based THz ring resonator is considered a
potential application for label-free sensing [7]. The application of THz wave in modulation technology
was also reported [8]. For nondestructive detection, a millimeter wave radar imaging method based
on synthetic aperture radar was presented [9]. In addition, THz radar imaging technology is attractive
for security screening [10,11].

As a promising THz radar imaging technology, Terahertz coded-aperture imaging (TCAI), is
derived from optical coded-aperture imaging [12] and radar coincidence imaging [13], it utilizes an
aperture coded antenna [14] to generate a spatiotemporal independent wave distribution. By modeling
the imaging system, the matrix-imaging equation can be established. And the target of interest
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is reconstructed through computational imaging [15] method. TCAI has many advantages such
as high resolution, all-time functionality, low complexity, and low cost and so forth. Besides,
the forward-looking and staring imaging capability can be obtained without relying on any relative
motion between imaging platform and target, which is different from synthetic aperture radar [16].
As a result, the TCAI technique has a potential application in security screening, battlefield
reconnaissance, nondestructive detection and so on.

In recent years, many methods and systems have been proposed that promote the development
of TCAI. The authors of Reference [17] designed a single-pixel pulsed terahertz camera, which utilizes
random patterns for imaging and the theory of compression sensing (CS) [18] to solve the imaging
equation. In 2013, metamaterial apertures that support custom-designed complex measurement modes
were introduced into microwave imaging, which avoids mechanical scanning [15]. Xu et al. utilized
randomly programmable metasurface to solve the inverse-scattering problem in the single-sensor
imaging [19]. Furthermore, the matrix-imaging equation based on the theory of physical optics
was derived and high-resolution TCAI was achieved [20]. Besides, the Bayesian estimation [21]
and sparsity-driven methods [22] have greatly inspired TCAI research. Although these methods
and systems are effective, there are still some great challenges in TCAI. First, the accuracy of system
modeling cannot easily be guaranteed whether it is based on the time-delay signal model [23] or Fresnel
diffraction theory [20], and some errors are introduced into the reference signal matrix, which leads to
the ability to solve the target scattering coefficient is poor at low SNR. Second, the iterative algorithms
are used to reconstruct the target, which are too time-consuming to high frame rate imaging, and they
are not quite stable and robust to modeling errors and noise. Considering the importance of these
problems in practical applications, a fast TCAI method needs to be devised.

Deep learning (DL) has greatly inspired the research in object detection, image classification,
signal processing, and among many others. For the inverse problem community, learning-based
methods have been successfully employed in multiple scattering media imaging [24], holographic image
reconstruction [25], lensless computational imaging [26], computational ghost imaging [27,28] and so
forth, but they usually take a lot of effort to collect data set, which is not easily affordable. To reduce the
cost of training, some researchers have proposed training imaging network with simulation data set. In
References [29] and [30], the practically usable networks that were trained using simulation data set show
competitive imaging performance in real-world scenarios, and the simulation results of Reference [31]
also demonstrate the effectiveness using simulation data set to train the network. Thus, we investigated
the TCAI based on DL to tackle a series of problems mentioned above. In this paper, we design an end
to end neural network, which is trained with simulation data. Once trained, the target of interest can be
restored instantly by inputting echo signal into the imaging network, and the simulation experiment also
proves that the imaging quality at low SNR superior to state-of-the-art iterative approaches for TCAI.

2. Method

2.1. Signal Model and Learning-Based Approach

For the convenience, we take TCAI model based on single input single output technology
as an example. The schematic diagram is shown in Figure 1 and it mainly contains a controlling
and processing terminal, transmitter module, transmitter, coded aperture, receiver module, receiver.
The transmitting module includes mixer and frequency multiplier, and the receiving module includes
low noise amplifier and mixer. The THz wave transmitted from the transmitter, and then it propagates
to the coded aperture. The coded aperture, controlled by the controlling and processing terminal,
randomly or pseudo-randomly modulates the amplitude or phase of incident THz wave to produce a
spatiotemporal-independent radiation field in the imaging plane, which is divided into M grid-cells.
After being reflected from the imaging area, the pseudo-random signal is collected by receiver and
then sent to the controlling and processing terminal for reconstruction the target.
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Figure 1. Schematic of Terahertz coded-aperture imaging (TCAI) system.

Suppose the transmitter emits a THz linear frequency modulation signal, the reference signal of
the m-th grid cell at time tn can be deduced as

S (tn, m) =
Q

∑
q=1

A exp
[

j2π

(
fc

(
tn −

r
c

)
+

K
2

(
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r
c

)2
)]

exp(jϕtn ,q), (1)

where A is the amplitude, fc is the center frequency, K is the chirp rate, c is the speed of light,
r represents the signal propagation distance, Q stands for the number of transmitting element of the
coded aperture, ϕtn ,q is the random phase modulation factor for the q-th coding aperture element at
time tn . Then, the echo signal at time tn is expressed as

Sb (tn) =
M

∑
m=1

βmS(tn, m), (2)

where βm stands for the scattering coefficient corresponding to the m-th grid cell. Based on the time
discretion of Equation (2), the matrix-imaging formula can be written as
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...

Sb(tN)

=


S(t1, 1) S(t1, 2) · · · S(t1, M)

S(t2, 1) S(t2, 2) · · · S(t2, M)
...

... · · ·
...

S(tN , 1) S(tN , 2) · · · S(tN , M)

 ·
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βM
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ω1

ω2
...
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 , (3)

where ω = {ωn}n=N
n=1 is the additive measurement noise, Sb = {Sb(tn)}n=N

n=1 is echo signal vector.
The reference signal matrix is

S =


S(t1, 1) S(t1, 2) · · · S(t1, M)

S(t2, 1) S(t2, 2) · · · S(t2, M)
...

... · · ·
...

S(tN , 1) S(tN , 2) · · · S(tN , M)

 . (4)

The row vector and column vector of S are the time-domain samples at {tn}n=N
n=1 and the spatial-domain

samples at {m}m=M
m=1 , respectively.
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For the previous TCAI [23,32], the compressed sensing [18] recovery algorithms are the standard
method to solve β and the imaging problem is treated as an optimization problem after obtaining the
evaluation of S ∼

β = arg min ψ
β
(β) s.t. ‖Sb − Sβ‖2

2 < σ2, (5)

where ‖Sb − Sβ‖2
2 is the fitting error, σ2 is usually the variance of ω and ψ represents the prior

information on β. Typically, ψ(β) = ‖β‖1, where ‖·‖1 is L1 Norm that is used to constrain the imaging
domain. For the solving (5), a large number of iterations are usually required which essentially limit
the imaging speed. However, the method we presented breaks the bottleneck, it uses neural network to
approximate function g so that target scattering coefficient can be estimated directly from echo signal.

∧
β = gΘ (Sb) , (6)

where Θ is the set of all possible parameters. Here they can be learned from a training set each of
which pairs up a known original target βd and the corresponding echo signal Sd

b , where d = 1, 2, . . . , D,
enumerates the total D different training data pairs. Thus, this parametric reconstruction process can
be expressed as

glearn = arg min
gθ ,θ∈Θ

D

∑
d=1

L
(

βd, gθ

(
Sd

b

))
, (7)

where gθ(·) stands for the target of recovery from the imaging network under parameter θ, L(·) is the
loss function.

As can be seen from Equation (4), the large-scale reference-signal matrix creates a heavy
computational burden. Due to the short wavelength and precise resolving ability of THz waves,
the imaging area is divided into smaller grids, which means that the more the number of elements in
M and the more complicated calculation of reference-signal matrix. As a result, it is time-consuming
to solve the target scattering coefficient through the algorithms consist of iterative-based processes as
shown in Equation (5). Therefore, it is very necessary to use the parameter reconstruction algorithm as
shown in shown Equation (6) to achieve fast TCAI. In contrast, the proposed approach is in significant
ways different. It does not need some time-consuming operations like previous imaging technique.
Instead, it demands plenty of data set which includes the groundtruth image and corresponding echo
signal and spends some time in training network, but these can be done in advance. Once the training
procedure is completed, the designed imaging network can blindly reconstruct target from echo signal.

2.2. Network Structure and Data Generation

Recently, convolution neural networks (CNN) have been extended and applied to solve inverse
problems. The theoretical motivations for using CNNs as the learning architecture and the design
strategies of CNN-based imaging framework have been discussed [33]. Moreover, the relationship
between CNN and iterative optimization algorithms has also been surveyed [34]. Motivated by this
research, we propose a neural network for fast TCAI which includes the nonlinear part of the encoded
information and the linear part of the decoded information. Figure 2 shows the schematic diagram
of the network architecture. We suppose that the input of the network is the echo signal with the
length of (H ×W) × 1. It is down-sampled by ×1, ×2, creating two flow structure, with spatial
dimensions of H ×W, H/2×W/2, respectively. And the output is the expected target with different
scales. The number of feature maps in each layer is 16. After the down-sample, the two tensors flow
to the residue blocks, which is constructed by two convolutional layers with batch normalization
and two rectified linear units (ReLU), that is, ReLU(x) = max(0, x). And a shortcut is utilized
between the block’s input and output, as indicated by the red arrows, which mitigates the divergent
gradient problem and accelerates the convergence of the deep neural network. Following residue
block, the spatial dimensions of this feature map from H/2×W/2 to H ×W via up-sampling block,
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each block includes one convolutional layer with batch normalization, a ReLU operation and one
up-sampling layer that facilitates super-resolution. Finally, the fusion tensor can be obtained by a
connection operation in third-dimension of the output tensor of each flow structure. Here, all nonlinear
operations are completed, and the low-level and high-level semantic features are learned from the echo
signal. For the linear part, which is made up of convolutional layers, it can transform these extracted
features into the output in imaging domain. It is important to note that some tricks are adopted to
reduce network parameters and achieve cross-channel information interaction. In testing, to avoid
over-fitting, the neurons are randomly ignored.
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Figure 2. The developed neural network for TCAI.

In the developed network, the spatial correlations between convolution layers can be modeled as

vx,y
i,j = ∑

r

P−1

∑
p=0

B−1

∑
b=0

wp,b
i,j,rvx+p,y+b

i−1,r , (8)

where r stands for the number of channels in i-1 layer, P and B are the size of the weight matrix, that is,
convolutional kernels. In i-th convolutional layer, vx,y

i,j is the value of x, y-th pixel in the j-th feature

map and wp,b
i,j,r is the weight of p, b-th position in the j-th convolutional kernels. These parameters are

included in Θ, and they can be optimized by minimizing the loss function of the predicted target and
the original target

L =

D∗

∑
d=1

∥∥∥gθ(Sd
b)− βd

∥∥∥2

2

numel(βd)D∗
, (9)

where ‖·‖2 refers to L2 Norm, numel(·) indicates the quantity of pixels in the original target,
and D∗ = 8 is the mini-batch size in the stochastic gradient descent (SGD) method [35]. And the Adam
optimizer [36] was adopted to optimize imaging parameters.

As mentioned above, the training of an imaging network usually requires a large amount of the
original target and corresponding echo signal. For the generation of the original target data set, we
first randomly generate the number of scattering points and their positions on the 60× 60 imaging
plane, which is designed to imitate real-target cases and guarantee the diversity and richness of the
target. Then the scattering coefficients are generated randomly. Subsequently, the corresponding
echo data set can be obtained by Equation (3), each of which is N = 3600 in length. In particular,
the white Gaussian noise is added to the echo signal to acquire the data set with noise. Eventually,
we generated two different data sets, one set of which corresponds to data without noise and another
with SNR = 5 dB. Each data set containing D = 50, 000 training pairs (Sd

b , βd)D
d=1. One tenth of this is

used as a verification set and the rest as a training set. In the quantitative analysis, the testing data are
generated in the same way as the training data.
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3. Results

In this section, the feasibility of the DL based approach is verified by numerical experiments.
Parameters in the imaging experiment are given in Table 1. The frequency range of the THz signal is
from 330 GHz to 350 GHz. The 1-bit transmission-type coded aperture has 60× 60 elements that are
employed to modulate the phase of the transmitted signal by 00 or 1800. The imaging area is divided
into M = 60× 60, and it is easy to calculate that the pixel interval is no larger than 0.005 m. The size
of the target (T) is expressed as the number of non-zero scattering coefficients in imaging area [37],
the ratio between T and M is considered the complexity of the target. Also, it is easy to know from the
table that the spatial dimension of S is 3600× 3600, which creates high imaging complexity. In practice,
the scale of S may be larger and this calculation is more complicated. Therefore, it is necessary to use a
neural network to model S implicitly.

The network is implemented in Python version 3.6 using DL frameworsorFlow version 1.8 and
trained on a desktop computer with GPU NVIDIA 2080 and the CUDA edition is 9.0. The training took
approximately 10 h, which is time-consuming but this procedure can be done in advance. Once trained,
the target of interest can be restored instantly by inputting echo signal into the imaging network.
The Adam optimization algorithm is employed to optimize weights, and the initial learning is 10−3

which decays with the factor of 0.98 after each epoch. The batch size is 8 and the training lasts for
500 epochs. Two typical reconstruction algorithms for TCAI, the Sparse Bayesian Learning (SBL)
algorithm and TVAL3 algorithm, were chosen to compete with the presented approach. To analyze the
imaging performance of various algorithms, the Mean Square Error (MSE) is used as the quantitative
index. In this paper, these test targets are composed of scattering points, and the corresponding
scattering coefficients are a random value between zero and unity. All reconstruction results and MSE
calculations were done on the computer with Inter Xeon Silver 4116 CPU except as specifically stated,
and each MSE represents the average results 100 Monte Carlo trials and the shape of the target changes
randomly in each trial.

Table 1. Parameters Used in the TCAI Simulation Experiment.

Parameters Values

Center frequency fc 340 GHz
Bandwidth 20 GHz

Imaging distance 2 m
Size of coded aperture ∆b 0.3 m × 0.3 m
Size of imaging plane ∆s 0.3 m × 0.3 m

Number of time sampling N 3600
Number of coded aperture elements 60× 60

Number of grid cells in the imaging plane 60× 60
The distance between coded aperture and receiver 0.15 m

The distance between coded aperture and transmitter 1 m

To investigate the validity of the imaging network, we first carried out simulation experiments
at various targets and the results with SNR = 20 dB are shown Figure 3, and the ratio between
the target size and the number of grid cells is T/M = 11/3600, T/M =17/120, T/M =431/3600,
T/M =731/3600, T/M =71/200, T/M =37/60, respectively. It can be seen that the target can be
successfully reconstructed whether it is made up of unit ideal point scatters or multi-value point
scatters. For further investigating the imaging performance of the proposed method, the SBL
algorithm [38] and TVAL3 algorithm [39] were implemented as comparisons. Figure 4 shows the
reconstruction results of the “smile” whose scattering coefficients of all the point scatters are a random
value between zero and unity. One can clearly see that the object can be recovered from the echo signal
through the deep network-based algorithm as low as SNR = −5 dB, despite the reconstruction results
apparently being distorted and having many spurious scatterers just like other methods. However,
the imaging quality gradually enhanced with the increase of SNR. Compared with SBL algorithm
under all SNR levels, the proposed algorithm provides higher resolution results in which the scattering
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intensity more authentically and the target outline is clearer. For TVAL3 algorithm, the target can
be perfectly reconstructed when the SNR is larger than 15 dB. However, its performance degraded
dramatically as SNR go lower. In general, our performance is competitive with the typical optimization
iterative algorithms when SNR is not larger than 10 dB. It is main reason that CS-based algorithms are
not quite robust since some errors exist in the reference signal matrix S. Nonetheless, the developed
network can automatically fix these errors during the training. With the increase of SNR, we also
note that the imaging performance of the proposed method is ultimately bounded by the imaging
network’s representational error. However, as can be seen in the predicted target, the reconstructions
are semantically correct.

Target

The proposed 

method

Figure 3. Reconstruction results for different ratio of T/M based on the proposed algorithm.

TVAL3

SBL

The proposed 

method

SNR=0dB SNR=5dB SNR=10dB SNR=15dB SNR=20dBSNR=-5dB

Figure 4. Comparison of reconstruction results from various methods at different signal to noise
ratio (SNR).

Quantitatively, the MSEs of different methods under different SNRs are calculated and the
results are drawn in Figure 5. For each SNR, the shape of the target changes randomly in each
trial. As expected, the SBL algorithm is worse than the proposed method no matter for which SNR.
Although the TVAL3 algorithm shows good performance in high SNR, but it is sensitive to noise and
takes more time than the presented algorithm. Table 2 shows the time cost of various algorithms, each of
which is the average of 100 trials. Due to the neural network-based approach can be easily parallelized,
we also recorded the reconstruction time of the presented method with GPU implementation. It is easy
to calculate that the imaging frame rate of our method is no less than 280 Hz. From these results, we
can see that the proposed algorithm has great superiority with imaging efficiency. One explanation is
that an end-to-end network can directly transform the echo signal into the target, while classic imaging
techniques require a large amount of iterations to estimate a satisfactory solution. Therefore, it is
unsurprising that the neural network based method is much less time consuming. Thus, experimental
results above fully illustrate that the proposed method is a promising tool for fast TCAI under low
SNR. More evidence is shown in Figure 6. Again, we can see the superiority of deep learning-based
approach clearly.
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Figure 5. Performance with different SNRs.

Table 2. Comparison on elapsed time for different methods.

Parameters Values

TVAL3 [39] 2.2499 s
SBL [38] 4.5522 s

The proposed method 0.1369 s (GPU:0.0285 s)

Figure 6. Performance with different ratio of T/M.

4. Discussion

Compared with the classic imaging techniques, the end-to-end neural network can adjust the
imaging error adaptively, so its stability and robustness are easier to be guaranteed. Even though the
reconstructed image is not as perfect as TVAL3 at high SNR, the time cost is encouraging. The dynamic
response video was obtained with GPU implementation and included in Media. As aforementioned,
the imaging frame rate is quite high. Therefore, we set the pause time of each frame to 0.008 s. It is less
than the recovery time of a batch of images, so the video does not play very smoothly. Nonetheless,
the superiority of the proposed approach on imaging efficiency can be clearly. A frame image from
target video is shown in Figure 7a ( T/M = 367/3600), and the corresponding reconstruction result is
shown in Figure 7b.
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(a) (b)

Figure 7. (a) Target. (b) The corresponding reconstruction result.

To investigate the influence of noiseless and noisy training data on network imaging performance,
we trained two networks using different data sets. In test, the target size is the same as the original
target in Figures 4 and 8 shows the evidence that whether the training data is noisy or not has little
impact on the target restoration accuracy.

Figure 8. Compare the imaging performance of different networks

Also, it is worth noting that the method presented here in this manuscript is especially useful
for TCAI when we get the empirical data set. The large-scale reference signal matrix does not need
to be estimated in advance and the total imaging complexity will be reduced significantly. In the
absence of an empirical data set, the simulation data can be employed to train a practically usable
imaging network as in References [29] and [30]. In conclusion, the neural network based approach is a
promising tool for TCAI.

5. Conclusions

In this paper, a fast TCAI method is presented. We first introduced the TCAI system and
learning-based approach. Subsequently, an end-to-end network was developed and tens of thousands
of training pairs were generated to learn the mapping relationship between the echo signal and original
target. The developed network includes the nonlinear part of the encoded information and the linear
part of the decoded information. The experimental results of the simulation data set demonstrated that
the proposed method can outperform the state-of-the-art iterative algorithms in both accuracy and
efficiency. Also, it can quickly reconstruct targets of different sizes and the pixel interval that can be
resolved is no larger than 0.005 m. With the advantages of the neural network based approach, it has
a potential application in security screening, battlefield reconnaissance, nondestructive detection and
so on. In further work, we intend to improve the network performance and experimentally verify our
method with training data sets and echo signals.
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The following abbreviations are used in this manuscript:

TCAI Terahertz coded-aperture imagin
SNR Signal-to-noise ratio
THz terahertz
CNN Convolution neural4network
DL Deep learning
CS compressed sensing
MSE Mean Square Error
SBL Sparse Bayesian Learning
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