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Featured Application: The application of the proposed work is in robotics. If a certain robot
operation is defined for a part of a particular object, it can be transferred to other class instances
by applying the proposed method for semantic association of the object components.

Abstract: Most objects are composed of semantically distinctive parts that are more or less
geometrically distinctive as well. Points on the object relevant for a certain robot operation are
usually determined by various physical properties of the object, such as its dimensions or weight
distribution, and by the purpose of object parts. A robot operation defined for a particular part of a
representative object can be transferred and adapted to other instances of the same object class by
detecting the corresponding components. In this paper, a method for semantic association of the
object’s components within the object class is proposed. It is suitable for real-time robotic tasks and
requires only a few previously annotated representative models. The proposed approach is based on
the component association graph and a novel descriptor that describes the geometrical arrangement
of the components. The method is experimentally evaluated on a challenging benchmark dataset.

Keywords: component association; semantic segmentation; part recognition

1. Introduction

One of the trends in robotics is to reduce the need for robot programing by allowing a robot to
learn certain tasks from a human instructor. One approach to this problem is kinesthetic training of a
robot, where a human manually guides a robot manipulator to perform certain action and then the
robot applies the learned action to solve a practical task [1,2]. An advanced version of such training
would be to define a robot action for a particular instance of an object class, referred to in this paper
as a representative object, and apply an algorithm that would adapt this action to the other instances
of the same class. In order to achieve this capability, the considered algorithm must associate the
components of the representative object relevant for a particular task with the corresponding segments
of the other instances of the same object class. The problem addressed in this paper is how to associate
the components of different objects that have the same purpose. Since the target application field
considered in this paper is robotics, we define components as regions of the object’s surface that could
potentially represent contact surfaces between the object and a robot tool when performing some task.
For example, if the task is to carry a mug, it should be grasped by the handle. For a light bulb changing
task, a robot should be able to recognize the light bulb. A usual approach for semantic segmentation of
objects is to train the algorithm on manually annotated training and validation datasets and test it using
a test dataset. Since the effort of manually annotating training data is time and energy consuming,
the motivation for this paper was minimization of such labor. Without any prior knowledge about
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the purpose of a particular object class, the only cues that can be used to solve this problem are the
similarity of the shapes of components and their spatial arrangement. The real-time execution of the
algorithm is crucial for practical robotic application.

1.1. The Problem and the Contributions

The problem addressed in this paper is more precisely stated as follows. Let us consider a
database of 3D models of objects belonging to the same class, represented by triangular meshes.
There is a number of such datasets that are publicly available. An algorithm selects a small subset of
representative objects from this dataset. On each representative object, a human expert annotates the
target component specific for a certain task. According to these annotations, the algorithm identifies
the semantically corresponding component of each of the remaining models in the database, referred
to in this paper as query objects. The proposed approach enables easy and fast expansion of the
existing model database with new query objects. In an ideal case, the annotation of a component on a
single representative object should be sufficient for identification of all corresponding components
in a given object class. However, certain object classes can comprehend objects whose components
differ significantly in their shape, size, and position. Therefore, often more than one annotated
representative object is required. The focus of our research is computational efficiency, required for
practical applications in robotics. Our goal is to develop a method that identifies the target component
on a newly perceived object and add this object to the existing database in a few seconds.

The approach presented in this paper is based on the detection of convex and concave surfaces,
referred to in this paper as segments. Components are either represented by one or multiple segments.
A selected component of the representative object is associated with the corresponding segments of the
other instances of the same object class by constructing a component association graph (CAG). Graph
nodes represent all segments of all models from the model database. The nodes are interconnected by
edges. The weight of each edge represents a measure of the likelihood that these two segments belong
to object components that have the same purpose. This measure is comprised of segment size, shape,
position, and neighborhood similarity. The proposed similarity measures are based on the convex
template instance (CTI) descriptor, proposed in [3], which describes object segments by approximating
their shape with convex polyhedrons. A neighborhood similarity is defined by a novel descriptor,
named the topological relation descriptor (TRED), which describes the topological relations between
two segments in the model, which is also based on the CTI descriptor. Three methods for associating
the selected component of the representative models with the segments of the other instances of
the same object class using the CAG are proposed in this paper. The direct segment association
method associates each segment according to its nearest neighbor in the CAG. The object-constrained
association method associates the segments of the query object with each representative objects using a
greedy search and computes the matching score between the query object and all representative object.
The associations established between the query object and the representative object with the highest
matching score are taken as the final result. The MST-based association method associates the query
object segments with the representative object segments based on a minimum spanning tree (MST). As
the result of any of these three methods, the selected component of the representative model defined
for a certain task is associated with the corresponding segments of all models from the model database.

Accordingly, the following contributions of this paper are proposed.

1. A novel computationally efficient approach for establishing associations between components of
an object of a given class, based on the component association graph.

2. A novel topologicalrelation descriptor (TRED), which describes the geometrical arrangement of
components in a 3D object model.

1.2. Paper Overview

The paper is structured as follows. In Section 2, the related research is presented. Sections 3–6
describe the proposed methodology. Section 3 provides a formal problem definition, an overview of
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the proposed approach and an explanation of the CAG. In Section 4, an approach for measuring the
semantic correspondence likelihood, assigned to the edges of the component association graph,
is provided. In Section 5, three methods for the final association between the segments and a
target component, based on the CAG, are proposed. Section 6 describes a method for selecting
the representative objects. An experimental evaluation and a discussion of the results are given in
Section 7. The paper is concluded in Section 8.

2. Related Research

Semantic segmentation in 3D was recently established as an important task in various applications:
autonomous driving, human-machine interaction, object manipulation, manufacturing, geometric
modeling, and reconstruction of 3D scenes, just to name a few. To facilitate the development of 3D
shape understanding, the ShapeNet challenge [4] for semantic 3D shape segmentation on a large-scale
3D shape database was proposed. In this challenge, ShapeNet Parts, a subset of 16 classes from the
ShapeNet database [5], was used, which is also used in the experimental analysis reported in this paper.
The PointCNN method introduced in the ShapeNet challenge was later improved in [6]. It represents a
generalization of the typical convolutional neural network (CNN) architecture for feature learning from
point clouds. The segmentation accuracy of the PointCNN, experimentally evaluated on ShapeNet
Parts dataset, outperformed 14 other methods in segmenting objects belonging to seven classes, while
it achieved comparable accuracy in segmentation of objects from the other nine classes. The CNN
architectures have been shown to be the most accurate and efficient approaches in a recent review of
deep learning techniques applied to semantic segmentation, given in [7]. The best accuracy of object
segmentation achieved by seven deep learning methods reported in [4] was between 63 and 96%,
depending on the object class.

However, manual annotation of large datasets required for training neural networks is a
time-consuming and delicate problem. Therefore, Yi et al. [8] proposed a novel active learning
method capable of segmenting massive geometric datasets into accurate semantic regions that grants a
good accuracy vs. efficiency trade-off. The ShapeNet Parts dataset was annotated using this approach.
The goal of this approach (reducing human work required for the annotation of large datasets) is also
the main motivation of the component association method proposed in this paper. The framework [8]
achieved the annotation of large-scale datasets by cycling between manually annotating the regions,
automatically propagating these annotations across the rest of the shapes, manually verifying both
human and automatic annotations, and learning from the verification results to improve the automatic
propagation algorithm. Although the approach proposed in [8] included the propagation of component
labels from a small object set to a larger set, the focus of their research was on the whole iterative
annotation process. A kind of continuation of the research [8] was given in [9]. The method also
propagates labels from a small subset to a large dataset by global optimization analogous to the
approach proposed in [10], which is based on conditional random fields. Our research, on the other
hand, focuses on efficient detection of the target component on a query object given a small annotated
set of representative objects, which could allow database expansion in real time.

An automatic approach to achieve semantic annotation of 3D models was proposed in [11].
The approach extracts concave and convex features as the cues for object decomposition into structural
parts. By analyzing the position, shape, size, and configuration of the structural parts, the semantic
category is assigned to each of them. The proposed methodology resembles the approach proposed
by our paper, but it is applied in the semantic annotation of architectural buildings; therefore, the
descriptors are adapted to that application, e.g., relative height, volume, dimension ratio, form mode,
etc. The final assignment of the semantic label to a part in [11] was performed by the decision tree and
the adapted support vector machine, while in this paper, three variants of assigning the label based on
the CAG are proposed.

Analogous to the related methods discussed in this section, our method also performs
segmentation of complete 3D object models. However, in order to use the algorithm proposed
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in this paper in a practical robotic application, a full 3D model of a given query object must be inferred
from sensor data. The Pixel2Mesh deep neural network [12], AtlasNet [13], and occupancy network
(ONet) [14] reconstruct full 3D object models from RGB images. AtlasNet and ONet can also receive 3D
point clouds as the input. The generative shape proposal network (GSPN) [15] processes point clouds
for the purpose of solving the semantic segmentation problem. This approach deals with cluttered real
indoor scenes, partial point clouds, and point clouds of part-segmented 3D models, which represent
real case scenarios in robotic applications.

3. Overview of the Proposed Approach

Let M be a set of 3D models of objects belonging to the same semantic class. This model set is
referred to in this paper as a model database. It contains 3D models of objects represented by triangular
meshes Pk, k = 1, ..., nM. The considered algorithm should select a small set R of representative objects
and present them to a human expert, which is asked to annotate a component relevant for a particular
task on every object in this set. This annotation assumes the selection of a subset of mesh vertices of
each mesh Pr ∈ R, referred to in this paper as points. The algorithm should then automatically label
each mesh Pk ∈ M\R, by assigning the label 1 to the points representing the target component and 0
to the remaining points.

3.1. Component Detection

In the approach proposed in this paper, object components are detected by segmenting the object’s
surface into convex and concave segments. This segmentation can be performed using the method
proposed in [16]. These segments represent component proposals. The segmentation is performed by
segmenting the model mesh into planar patches using the method applied in [17] and aggregating
these patches according to the convexity criterion. In this paper, the term concave surfaces is used to
denote inverted convex surfaces, i.e., convex surfaces with opposite local surface normals, as illustrated
by Figure 1. Each segment of each model in a model database is assigned a unique ID representing
a pair of indexes (i, k) where i denotes the segment index and k the model index. One semantic
component can be represented by multiple convex or concave segments. For example, the mug handle
shown in Figure 2 is represented by one convex and one concave surface.

Since the segmentation of certain shapes can be ambiguous, some additional segments obtained
by merging the original segments are created, in order to cover a variety of possible segmentation
variants. The algorithm applied for this segment merging is described in Appendix A.

Figure 1. An example of a convex (left) and a concave (right) surface with surface normals denoted
by arrows.

Figure 2. Representation of a mug handle by one convex and one concave surface.
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3.2. Component Association Graph

The method for establishing associations between segments of the objects of the same class,
proposed in this paper, is based on the component association graph (CAG). Nodes of the CAG
represent segments of all models from the database, connected by edges with the assigned semantic
correspondence likelihood measure (SCLM). Each segment of the query object is, thus, connected with
n nodes with the greatest SCLM values, referred to in this paper as the nearest neighbors. The number
of nodes is limited in order to reduce the computational complexity, which is especially important in
the case of large databases. The SCLM consists of the segment shape, size, position, and neighborhood
similarity measure. Three methods for establishing the final associations between segments and
the target component based on the constructed CAG are proposed in Section 5. As a result of this
association process, each segment in the model database is assigned a label with a value of one, if this
segment is associated with the target component, or a value of zero otherwise.

4. Semantic Correspondence Likelihood

The likelihood that a query object segment CQ
j and the kth model segment CM

ik represent
semantically corresponding components is assessed by the SCLM computed by:

yijk = yC
ijk + wNyN

ijk, (1)

where yC
ijk represents segment shape, size, and position similarity, yN

ijk represents the segment
neighborhood similarity, and wN is a weighting factor. The computation of the shape, size, position,
and neighborhood similarity is described in the following subsections.

4.1. CTI Descriptor

The computation of the SCLM is based on the CTI descriptor proposed in [3]. In this subsection,
a brief description of this descriptor is provided. Let A be a set of different unit vectors am ∈ R3, m =

1, ..., nd representing standardized normals. Furthermore, let us consider a set of all convex polyhedrons
such that each face of the polyhedron is perpendicular to one of the vectors am ∈ A. The set A is
referred to as a convex template, and each convex polyhedron belonging to the considered polyhedron
set is referred to as a convex template instance (CTI). CTI is uniquely defined by a convex template A
and a vector d = [d1, d2, ..., dnd ], where dm represents the distance between the mth polyhedron face
and the origin of the object RF. This vector represents the CTI descriptor. The approach proposed in
this paper requires that for each unit vector am ∈ A, there exist its opposite vector am ∈ A. The CTI
descriptor was originally designed for fruit recognition [3]. Later, it was applied for the alignment of
similar shapes with the purpose of object classification on depth images [18]. In [16], the CTI descriptor
was applied for solving the shape instance detection problem. A CTI descriptor is computed for each
object segment. Four examples of objects represented by CTIs are shown in Figure 3.

4.2. Segment Shape, Size, and Position Similarity

The shape, size, and position similarity of two segments is measured by comparing their CTI
descriptors. In order to reduce computational complexity, the CTI descriptors, d, are projected onto a
lower dimensional latent space, as proposed in [19]. Thereby, descriptors q of nq < nd elements are
obtained by:

q = OTd, (2)

where O represents an orthonormal basis defining a latent space computed by performing the principal
component analysis (PCA) of the CTI descriptors d extracted from the segments of a training set.
Another reason for computing the latent vectors is to decouple the shape from the position information.
The first three elements of q, denoted in this paper by qt, represent the position of the segment in the
object RF, while the other 21 elements, denoted in this paper by qs, describe its shape and size. Let us
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consider a model database M of nM models. The segments of the kth model are represented by latent
vectors qM

ik , i = 1, ..., nM,k. Analogously, segments of the query object are represented by the latent
vector qQ

j , j = 1, ..., nQ.

Figure 3. Representation of objects by convex template instances (CTIs).

The similarity between two segments taking into account their position (t), shape (s), and size (a)
can be measured by Gaussian function:

yC
ijk = exp

(
−1

2

(
et

ijk

σ2
t
+

es
ijk

σ2
s
+

ea
ijk

σ2
a

))
, (3)

where σt, σs, and σa represent parameters that define the contribution of the difference between
the segment position, shape and size to the total similarity measure, respectively. The values of
the algorithm parameters used in the experiments reported in Section 7 are given in that section.
Translation, shape, and scale differences are computed by the following three equations.

et
ijk =

||qQ,t
j − qM,t

ik ||
2

||qQ,s
j ||||q

M,s
ik ||

, (4)

es
ijk = 1−


 qQ,s

j

||qQ,s
j ||

T (
qM,s

ik

||qM,s
ik ||

)
2

, (5)

ea
ijk =

(
||qQ,s

j || − ||q
M,s
ik ||

)2

||qQ,s
j ||||q

M,s
ik ||

. (6)

The norm of vector qs represents a measure of the segment size. In (4), the position difference is
normalized by the size of the segments, therefore allowing bigger segments to have greater distance in
order to achieve the same similarity measure values. Equation (5) contains a scalar product of two
unit vectors. The greater the value of the scalar product, the more similar the shapes are. Equation (6)
represents a segment size difference measure.

4.3. Neighborhood Similarity

Let us assume two segments Ci and Cj, described by CTI descriptors di and dj, belonging to the
same model. In order to describe the geometrical arrangement of segments in the model, we introduce
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the TRED that describes topological relations between two segments. The TRED represents a tuple
T(Ci, Cj) = (µij, vij, σv

ij). The relation type coefficient, µij, is computed by:

µij = min
m=1,...,nd

ρijm, (7)

where:

ρijm =
dim + djm

dim + dim
. (8)

In Equation (8), m and m represent the indexes of two opposite unit vectors am, am ∈ A. Five
types of topological relation between two segments Ci and Cj, defined by µij, are considered:

Type 1: Cj contains Ci:

µij ≥ 1∧ µij > µji

Type 2: Ci and Cj are identical:

µij = µji = 1

Type 3: Ci and Cj intersect:

0 < µij < 1∧ 0 < µji < 1

Type 4: Ci touches Cj:

µij = 0

Type 5: Ci and Cj are disjoint:

µij < 0.

The relation type between two segments is denoted in this paper by type(T(Ci, Cj)). Three of
these relations are illustrated by Figure 4: a segment Ci is inside a segment Cj (left); two segments Ci
and Cj intersect (middle); and a segment Ci touches a segment Cj (right).

Figure 4. Topological relation descriptor (TRED). The CTI descriptor elements dxm that are denoted
with arrows directed opposite the corresponding vector am have negative values.

If two segments are touching (Type 4), vij and σv
ij are computed by:

vij =

nd
∑

m=1
wijmam∥∥∥∥ nd

∑
m=1

wijmam

∥∥∥∥ , (9)
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and:

σv
ij =

√√√√√√√
nd
∑

m=1
wijk arccos2 vT

ij am

nd
∑

m=1
wijk

+ σ2
v0, (10)

where:

wijm = exp

(
−1

2

(
µij − ρijm

σρ

)2
)

. (11)

Vector vij is approximately orthogonal to the plane that separates Ci and Cj, and it is directed
from Ci to Cj. Its purpose is to describe the touching direction. This vector is computed as a weighted
average of all vectors am, where vectors corresponding to smaller values ρijm have greater weights.
Value σv

ij describes the uncertainty of vector vij, where σv0 is a constant that models the uncertainty
due to the measurement noise. TREDs are computed for every pair of model segments. A segment Cj
is a neighbor of a segment Ci if type(T(Ci, Cj)) is 1 or 4. In order to make the method robust to noise,
the definitions of the topological relation types are relaxed by introducing a suitable tolerance. As a
consequence of this relaxation, the topological relation of Type 2 includes not only identical segments,
but also segments that occupy approximately the same space.

Furthermore, if two segments are of different convexity types (convex or concave), then they are
considered to be neighbors only if their topological relation is of Type 1 or Type 2.

The neighbors of each segment are grouped into clusters according to the associated TRED
descriptors. These clusters are denoted in this paper by Γ, and the cluster set assigned to a segment
CX

p is denoted by NX
p , where X stands for the query (Q) or representative (M) model. Two neighbors

of Ci are grouped into a cluster only if their topological relation to Ci is of the same type. In the case
of the Type 4 relation, two neighbors Cj and Ck can be grouped in the same cluster if their vectors vij
and vik are similar. Vectors vij and vik are considered to be similar if the angle between them is ≤ 60◦.
In the case of the Type 1 relation, all neighbors Cj such that µij > µji are grouped in one cluster and all
neighbors Cj such that µij < µji are grouped in another cluster. All neighbors of different convexity
types than Ci whose topological relation is of Type 2 are grouped into one cluster.

Similarity between the neighborhood of a segment CQ
j of a query object and a segment CM

ik of the

kth model is measured by matching their neighbor clusters. Let CQ
m and CM

lk be neighbors of CQ
j and

CM
ik , respectively. The similarity between these two segments is measured by:

yn
lmk = ε lmk exp

(
−1

2

(
es

lmk
σ2

s
+

ea
lmk
σ2

a

))
, (12)

where ε lmk is a binary variable, which has a value of one only if:

type(T(CQ
j , CQ

m)) = type(T(CM
ik , CM

lk )),

or a value of zero otherwise. Furthermore, two neighbors CQ
m and CM

lk of Type 4 are matched
only if vectors vjm and vilk of the associated TREDs have sufficiently similar directions taking into
consideration their uncertainties described by σv

jm and σv
ilk. Otherwise, ε lmk = 0.

The similarity of two neighbor clusters ΓQ
rj ∈ NQ

j and ΓQ
pik ∈ NM

ik , where p and r represent cluster
indexes, is measured by the similarity of the shape and size of the two most similar segments belonging
to these two clusters. The similarity measure of two clusters is computed by:

yΓ(ΓQ
rj , ΓM

pik) = max
CQ

m∈ΓQ
rj

CM
lk ∈ΓM

pik

yn
lmk.

The neighborhood similarity measure is computed by applying the following procedure. First,
an initially empty set BN

ijk is created. Then, the pair of clusters with the highest value yΓ is identified



Appl. Sci. 2020, 10, 2641 9 of 20

and stored in BN
ijk. This step is repeated for all remaining clusters until no more cluster pairs can

be formed. Finally, the resulting set BN
ijk is used to compute the neighborhood similarity measure

according to the following formula:

yN
ijk = ∑

(Γ,Γ′)∈BN
ijk

yΓ(Γ, Γ′).

5. Associating Segments with the Target Component

There are three proposed variants of assigning the target component to a query object segment
based on the constructed CAG. Note that the construction of CAG is independent of the applied variant.

Direct Segment Association

The query object segment is assigned the ID of the nearest neighbor in the CAG representing a
segment of a representative object.

Object-Constrained Association

The object-constrained association approach compares the query model with each representative
model. Each segment of the query model is associated with every component of the representative
model by a greedy search. The association with the greatest SCLM is detected, and the query
segment is assigned the ID of the associated representative model component. That query segment is
omitted from the further search, and the search continues until all query segments are associated with
corresponding representative object segments. An object matching score between the query and the
representative model is computed as the sum of SCLMs between the associated query model segments
and representative model segments that represent the target component. Query model segments are
finally assigned the IDs of the associated segments of the representative model with the greatest object
matching score.

MST-Based Association

A root node is added to the CAG, which does not represent any segment. Then, a minimum
spanning tree (MST) is constructed with the constraint that all segments of the representative objects
are directly connected to the root node. Hence, each representative object segment of all representative
models spreads one subtree. Segments of the query object are assigned the ID of the representative
model segment in the same subtree.

At the end of any of the three proposed procedures, each query object segment is assigned the
ID of a representative object segment. Finally, the query object segments inherit the labels of the
associated representative object segments. The first and the third variant associate each query object
segment with the ID of a corresponding representative object segment, independent of the labels of
the representative object segments. Hence, these two methods can be performed before the target
component is annotated on the representative objects.

6. Selection of Representative Objects

Let us consider a model database M representing a set of models Mk of objects belonging to the
same object class. Each model Mk is represented by a 3D mesh. As previously explained, every mesh
is segmented into convex and concave segments, and each of these segments is represented by a
CTI descriptor. In order to facilitate the explanations of the proposed approach, a model Mk will be
represented by a sequence of point sets Mk = (C1k, . . . , CnM,kk, Pk), where Cik is the ith model segment
and Pk is a set of 3D points lying on the surface of the kth model. For the computational efficiency,
these points can be obtained by sub-sampling the mesh vertices. The similarity of the kth and the lth
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object is assessed by measuring the distances between the points of the kth model to the CTIs of the lth

model and opposite. The object similarity measure is computed by:

yO
kl = yO

lk = zO
kl · z

O
lk, (13)

where:

zO
kl =

1
|Pk| ∑

p∈Pk

exp

(
−1

2

δ2
pM(p, Ml)

σ2
p

)
(14)

δpM(p, Ml) = min
Cjl∈Ml

(δpC(p, Cjl)) (15)

δpC(p, Cjl) = | max
m=1,...,nd

(aT
m p− djlm)| (16)

Parameter σp in (14) is an experimentally determined constant. If Cjl is a concave segment, then
the min operation is used in (16) instead of max. Note that yO

kl ∈ [0, 1].
Set R of the representative objects is selected by a greedy procedure that maximizes the similarity

between R and all objects Mk ∈ M. The similarity between an object model Mk ∈ M and set R is
defined as the similarity between this model and the most similar model Mr ∈ R. This similarity can
be measured by a value yR

k computed by:

yR
k = max

Mr∈R
yO

kr.

The similarity between M and R can be measured by value yMR representing the total sum of
values yR

k , i.e.,

yMR =
|M|
∑

k=1
yR

k .

In the approach proposed in this paper, the set of representative objects R is selected by an iterative
procedure, where in each iteration, a model that maximizes yMR is selected until a predefined number
of representative objects nR is selected.

7. Experimental Evaluation

The proposed approach was experimentally evaluated using the ShapeNet 3D model database [5].
A part of this dataset is dedicated to testing methods that segment 3D models into semantic parts. This
dataset consists of 16 subsets, each representing one object class. Each of these subsets is subdivided
into training, validation, and test subsets, where the training subsets are significantly larger than
the validation and test subsets. The dataset was originally designed to be used in the following
way: the evaluated method should be trained using a manually annotated training dataset and the
associated validation dataset and tested using the corresponding test dataset. However, in this paper,
we investigated a different paradigm. We wanted to test the ability of the proposed approach to (i)
segment unannotated 3D models of a particular object class into segments and establish associations
between these segments according to the similarity of their shape, size, and geometric arrangement
and (ii) to use the established associations to identify a user selected component in all models given a
small set of manually annotated representatives. In order to automatize the experiments that require a
user selection, instead of manually annotating the representative set in each experiment, we used the
ground truth annotations available for every model in the dataset.

Since the target application of the proposed approach was facilitating robotic operations, we
selected six object classes from the considered dataset, which could be associated with an exactly
defined robot task: mugs, knives, bags, lamps, caps, and laptops. For the mugs, knives, and bags,
the target component was the handle for the robot grasping task. For the lamps, the target component
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was the light bulb for the replacement task. The target component of the cap was the peak for the
dressing task, and the target component of the laptop was the screen for the opening and closing task.

In the case of all classes except the lamps, we used the original annotations of the ShapeNet
dataset, where the object handle, peak, and screen were annotated as one of the semantic categories.
In the case of lamps, we selected a subset of 210 lamps with clearly distinguishable light bulbs and
annotated the light bulbs manually.

The following experimental procedure was applied to each of the six considered object classes,
with the parameter values given in Table 1.

1. Every model was segmented into convex and concave segments using the approach proposed
in [16].

2. Segment merging was performed by the procedure described in Appendix A.
3. Every segment was represented by a CTI descriptor. Analogously to [3,19], we used a convex

template consisting of nd = 66 unit vectors uniformly distributed on the unit sphere.
4. The TRED descriptor, described in Section 4, was computed for every segment pair of

every model.
5. The neighbor clusters were identified and assigned to every segment.
6. The CTI descriptor of every segment was projected onto the corresponding latent space by (2).
7. The SCLM proposed in Section 4 was computed between each of two segments of different

models in the model set.
8. A CAG was created. The nodes of this graph represented all segments of all models in the model

set. Each node was connected to at most 100 most similar segments, according to the SCLM
computed in Step 7.

9. A small number of representative objects was selected by the method proposed in Section 6.
This number was ≤10% of all models in the considered model set.

10. A target component was annotated on the representative objects. In a practical application, this
step would be performed manually by a human expert. In the reported experiments, the ground
truth annotations, which were available for all models, were assigned to the representative
object models.

11. All segments of all remaining models were automatically annotated using the CAG created
in Step 8 and the three methods proposed in Section 5: direct segment association (DSA),
object-constrained association (OCA), and MST-based association (MST).

12. The result obtained for every model was compared to the ground truth using the intersection
over union (IoU) performance index.

Steps 1–8, the computation of object similarity in Step 9, and the creation of MST in Step 11 were
implemented in C++. Step 12 and the rest of the Steps 9 and 11 were implemented in MATLAB.

Table 1. Parameter values.

nd nq σt σs σa σv0 σp τtr τv

66 24 2.4 0.132 0.707 0.1 0.025 0.333 2

The computation of the latent vector, performed in Step 6, required an orthonormal basis defining
a latent space. This orthonormal basis was represented by an nd × nq matrix O. This matrix was
computed by the training procedure proposed in [19], where simpler CTI descriptors were used
instead of the more complex VolumeNet descriptors, as proposed in [20]. The training was performed
using the 3DNet dataset [21]. A total of 351 3D meshes of objects belonging to 10 classes were
segmented into convex and concave surfaces, and a CTI descriptor was computed for each surface.
Each CTI descriptor represented a point in an nd-dimensional space. The obtained descriptors were
collected in two subsets, one representing convex segments and the other concave segments. Matrix O
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was computed for each descriptor set using the method based on the principal component analysis
(PCA) proposed in [19]. For both convex and concave segments, we generated a latent space of nq = 24
dimensions. This number of dimensions was chosen as the minimum number of the first principal
components, such that the variances of the remaining principal components were ≤10−4 for both the
convex and concave segment set.

The ground truth component annotation was available in the ShapeNet dataset for every model
as a set of sample points with assigned labels. Since the proposed approach computed segment
associations, the segments had to be associated with the labeled points. Each point was associated with
the closest segment. Furthermore, the distance between every point and the CTI of every segment were
computed, and every point was associated with a segment if the distance to the CTI of this segment
was ≤0.001. This distance was computed by (16). Note that this was not the Euclidean distance, but it
was a good approximation, which could be computed very efficiently. The same distance threshold
could be used for all objects, since all models in the ShapeNet dataset were scaled to approximately
the same size. This point-segment association allowed each point to be associated with more than
one segment.

In Step 10 of the experimental procedure, a segment of a representative object was labeled as being
part of the target component if more than half of the points it was associated with were annotated.
Step 11 annotated the segments of all models from a considered model set, except the representative
objects, which were already annotated in Step 10. In order to compute IoU in Step 12, annotations
must be transferred from segments to sample points. A point was labeled as belonging to the target
component if it was associated with at least one annotated segment.

7.1. Results

A few sample results are shown in Figure 5. True positives, i.e., points that were correctly
associated with the target component, are depicted by the green color, while false positives, i.e., points
that were falsely associated with the target component, are depicted in red color. The false negatives,
representing the target component points, which were not associated with the target component by
the proposed algorithm, are depicted in blue color.

Figure 5. Sample results.

The quantitative results obtained by the described experimental procedure are presented in
Table 2. Each of the three component association methods were tested with and without using the
neighborhood similarity, i.e., with weight wN equal to one and zero, respectively. The number of
representative objects was the greatest integer ≤ 10% of all models in the model database of each
object class. The presented IoU values represented the average over all objects of a particular class
excluding the representative objects.
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Table 2. Accuracy of the automatic component annotation. DSA, direct segment association; OCA,
object-constrained association; MST, minimum spanning tree.

Class Mug Knife Bag Lamp Cap Laptop

total No. of objects 184 391 68 210 53 451

No. of representatives 18 39 6 21 5 45

IoU

DSA wN = 0 78.50 75.40 44.10 43.10 82.50 75.30
wN = 1 77.40 73.30 50.30 57.20 84.80 77.20

OCA wN = 0 73.90 58.00 48.00 53.60 82.40 58.90
wN = 1 75.10 62.40 43.60 65.40 82.40 59.30

MST wN = 0 77.90 75.90 42.60 36.80 82.70 76.70
wN = 1 76.30 73.20 60.90 53.00 75.90 76.10

In order to compare the proposed method with the state-of-the-art approaches, the following
experiment was executed. For each of the five classes: mugs, knives, bags, caps, and laptops, Steps 1–10
were performed on the training subset, which included the selection and annotation of representatives.
Note that only a small representative subset of the training dataset was annotated. The number of
annotated representatives was the greatest integer ≤10% of all models in the training subset of each
object class. Then, the database was extended (Steps 1–8) by the test dataset; the labels were assigned
to the models from this subset; and the accuracy analysis was performed (Steps 11–12). The results
of the accuracy analysis performed on the test subset measured by per-class IoU are given in Table 3.
At the bottom of the table, the accuracies achieved by the three methods (DSA, OCA, and MST)
proposed in this paper are given. Since this paper investigated component association with a small set
of representatives, it was not expected to outperform the existing methods extensively trained using
large annotated datasets.

Table 3. Accuracy (%) comparison with the state-of-the-art methods.

Method/Class Mug Knife Bag Cap Laptop

SyncSpecCNN [22] 92.73 86.10 81.72 81.94 95.61
Pd-Network [23] 94.00 87.25 82.42 87.04 95.44

SSCN [24] 95.23 89.10 82.99 83.97 95.78
SpiderCNN [25] 93.50 87.30 81.00 87.20 95.80

SO-Net [26] 94.20 83.90 77.80 88.00 94.80
PCNN [27] 94.80 86.00 80.10 85.50 95.70
KCNet [28] 94.40 87.20 81.50 86.40 95.50
Kd-Net [23] 86.70 87.20 74.60 74.30 94.90

3DmFV-Net [29] 94.00 85.70 84.30 86.00 95.20
RSNet [30] 92.60 87.00 86.40 84.10 95.40

DGCNN [31] 93.30 87.30 83.70 84.40 96.00
PointNet [32] 93.00 85.90 78.70 82.50 95.30

PointNet++ [33] 94.10 85.90 79.00 87.70 95.30
SGPN [34] 93.80 83.00 78.60 78.80 95.80

PointCNN [6] 95.28 88.44 86.47 86.04 96.11

DSA wn = 0 82.14 75.53 39.67 69.59 75.54
wn = 1 76.65 73.42 41.66 74.76 74.53

OCA wn = 0 75.74 56.35 36.24 81.45 59.67
wn = 1 76.47 59.18 40.34 80.28 59.95

MST wn = 0 77.68 75.59 34.92 75.57 76.74
wn = 1 75.80 64.78 44.01 72.32 65.91

Let us assume a database with the total number of objects as stated in Table 4. The running
times of the automatic component annotation with the included neighborhood similarity (wN = 1) in
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the SCLM are reported in Table 4. The average execution time of every step per object is presented.
Furthermore, the total execution time of all steps required for expanding the model database with a
new query object is provided. It was assumed that before the expansion, the database contained the
total number of objects given in Table 4 minus one. The average running time per model is reported
for Steps 1–8, implemented in C++, and for Steps 11 and 12, implemented in MATLAB. In the case of
the MST method, the execution time of Step 11 included computation of MST implemented in C++.
The representative selection time, Step 9, was required only when the representative models were
selected. In the case where the database was extended without annotating a new representative object,
this step was not performed. Thus, the execution times of this step are presented separately from
the other steps. Furthermore, Step 10, which was performed by a human expert, is not considered in
Table 4. The experiments were executed on a PC with an Intel Core i7-4790 3.60GHz processor and 16
GB of installed RAM memory running Windows 10 64-bit OS.

Table 4. Running time of the automatic component annotation.

Class Mug Knife Bag Lamp Cap Laptop

total no. of objects 184 391 68 210 53 451

no. of representatives 18 39 6 21 5 45

C++ steps 1–6 825 1112 1484 917 702 288
average step steps 7–8 19 70.6 36.2 62.4 3.8 14.6

execution time
MATLAB steps 11–12

DSA 4.7 10.6 5.6 8.2 2.1 3.5
per object [ms] OCA 109.7 667.5 11.9 199.1 4.6 383.4

MST 52.2 106.7 14.9 45.4 5.3 72.5

total time min 849 1193 1526 988 708 306
per object [ms] max 954 1850 1535 1179 711 686

representative C++ step 9 59,847 198,611 12,249 82,930 4873 314,175
selection time [ms] MATLAB step 9 10 26 2 4 1 35

In order to investigate how the component association accuracy depended on the number
of representative objects, we performed a series of experiments, where we varied the number of
representatives from one to the value shown in Table 2. The results of this analysis are shown in
Figure 6. The experiments were performed for all three component association methods with wN = 1.
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Figure 6. Component association accuracy depending on the number of representatives and the applied
method measured by IoU.

7.2. Discussion

The standard pipeline for semantic object segmentation with standard machine learning or deep
neural networks consists of training, validation, and test parts. The training is usually performed
on a large subset containing many annotated objects. The time spent for the annotation and training
is rarely reported in the research, but it surely requires much time and energy. This experimental
analysis investigated how accurate semantic association can be achieved without extensive training
and annotation. The reported results proved that only a few annotated representative models were
required to achieve the reported accuracy. In the case of simple objects, such as knives, caps, mugs,
and laptops, only one or two annotated models were required to achieve an IoU of approximately 0.7.
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From the presented experimental analysis, it could be concluded that including neighborhood
similarity in the SCLM improved the results significantly in the case of bags and lamps, which had
more complex shapes than mugs, knives, caps, and laptops. In the case of mugs, knives, caps, and
laptops, which had simple shapes, the information about the topological relations between components
did not enhance the ability of the algorithm to identify the target component.

For all classes except the lamps, the MST component association method would be the method of
choice, because it provided a relatively high IoU for a small number of representatives, which did not
grow significantly with the number of representatives. In the case of mugs, caps, and laptops, a single
representative was sufficient to identify the target component in the remaining objects with IoU > 0.70.
In the case of knives, the wrong selection of the first representative by the proposed method resulted
in a very low IoU. However, with the second representative, an IoU close to 0.7 was reached.

The MST method was expected to provide better results than the DSA in the case where the model
database represented a sufficiently dense sampling of the considered object class. We considered
a model database to be dense if for any two objects, a sequence of objects could be found where
two consecutive objects had sufficiently similar shapes to allow unambiguous segment association.
An example of such a sequence is shown in Figure 7. A bag handle of a reference object, shown in the
top left image of Figure 7, was correctly associated with the segment represented by green points in the
bottom right image of Figure 7. In an ideal case, the processing of such a model database by the MST
method would allow correct component association using a single annotated representative object.
However, in order for a dataset to be dense and cover large shape variations, it has to be very large. In
order to evaluate how the size of the object dataset affected the accuracy of the MST-based component
association, the procedure explained in Steps 1–12 was performed for all six classes with different
numbers of models in the database, varying from 25% to 100% of the total No. of objects given in
Table 2 and with the included neighborhood similarity, wN = 1. The results are given in Table 5.

Figure 7. An example of the dense database with similar consecutive objects.

Table 5. Accuracy of the component annotation by MST with different numbers of objects in
the database.

Percent of Database/Class Mug Knife Bag Lamp Cap Laptop

25% 0.721 0.755 0.400 0.080 0.706 0.762
50% 0.747 0.726 0.419 0.177 0.732 0.694
75% 0.752 0.749 0.604 0.400 0.793 0.739

100% 0.763 0.732 0.609 0.530 0.759 0.761

Although the proposed method provided interesting results for a small numbers of representative
objects, it did not achieve very high accuracy even when a high percentage of annotated representative
objects was used. One of the reasons was that the proposed approach relied on a segmentation method
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that provided segments that often crossed the boundary of the target component. This was noticeable
in the case of mug and bag handles, where the concave segment representing the inner side of a handle
extended to the body of the object, resulting in false positives, as illustrated by the example shown in
the leftmost image of Figure 5, where the red points were falsely assigned to the handle.

The goal of the proposed approach was to reduce the annotation effort and allow an easy
expansion of the model dataset by new models in real time. The execution times provided in
the Table 4 indicated that expanding the model database with a new model, recomputation of the
CAG, and establishing the component-segment correspondences required between approximately
0.3 and 1.9 seconds, depending on the complexity of the object structure, the chosen method, and the
number of objects already in the model dataset. Thus, the proposed method is usable for real time
robotic applications. The active learning framework for annotating massive geometric datasets [8]
reported the average time required for preprocessing and annotation per shape of approximately
one minute for a database of 400 objects. This time was expected to scale linearly with the size
of the database. Furthermore, the analysis of a new shape, in a method for converting geometric
shapes into hierarchically segmented labeled parts, proposed by [9], typically took about 25 seconds.
Comparing with these two methods, which also propagated labels from a small subset to a large
dataset, the method proposed in this paper is significantly faster.

8. Conclusions

The aim of the paper was to investigate how accurate semantic association can be achieved
without extensive training and annotation of a large amount of data and if such an approach could
be time effective for real-time applications. The target application of the proposed approach was in
robotics, where it could be used in combination with an object detection and 3D reconstruction module.
The task of this module would be to detect objects of a particular class in an RGB-D image or a LiDAR
scan and to reconstruct their full 3D model. The proposed approach could then be used to associate
the components of the reconstructed object, with the corresponding components of representative
object models. In order to be applicable in real-world scenarios, the robot perception system must be
able to cope with cluttered scenes, where the target objects are partially visible and appear in various
poses. Augmentation of the proposed approach with a method that would detect objects of a given
class in complex scenes and perform their 3D reconstruction is our first choice for the continuation of
the presented research.

Since the application of neural networks in semantic segmentation and object classification was
justified by the reported accuracy in related research, training a neural network for general-purpose
component segmentation and matching is an interesting subject for future research. In order to apply
a neural network for solving the problem defined in this paper, a neural network should be trained
using various datasets in order to learn a generic criterion for possible semantic association between
model components. After being trained, the network would be applied for detection and association
of the components of another unannotated dataset.

In this paper, a method for semantic association of the object components with the relatively small
number of the annotated representative objects was proposed. The method was based on construction
of the component association graph, whose nodes represented the object segments. Segments were
approximated by convex polyhedrons. The CAG edges were assigned a semantic correspondence
likelihood measure between the segments, which took into consideration both segments and their
neighborhood similarity. The final association was performed by one of the three proposed methods
based on the component association graph. The evaluation of the proposed approach on a subset of
the ShapeNet Part benchmark dataset yielded interesting results, which indicated that with a rather
small number of annotated representatives, the identification of a target component with accuracy
measured by IoU greater than 0.6 could be achieved in only a few seconds.
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Appendix A. Segment Merging

The criterion used to select the candidates for merging is based on proximity of two segments
and convexity of their union. Two segments Ci and Cj satisfy the proximity criterion if:

min(µij, µji) ≥ −τprox,1,

where τprox,1 = 0.2 is an experimentally determined threshold. The convexity of the union of two
segments is evaluated by computing its convex hull and counting the outlier points, i.e., points that do
not lie on the convex hull within a predefined threshold. The outlier percentage is defined by:

η(Ci, Cj) =
|Ci∪Cj|−|inliers(Ci∪Cj ,CH(Ci∪Cj))|

min(|Ci |,|Cj|) ,

where |X| denotes the cardinality of a set X, CH(X) denotes the convex hull of a set X, and inliers(X, Y)
denotes the inlier set. The inlier set contains all points p ∈ X that are close to the surface of a convex
polyhedron Y. Furthermore, p ∈ inliers(X, Y) only if the local surface in the vicinity of p is similarly
oriented as the surface of Y in the vicinity of p. This is evaluated by the following criterion based on
the point-to-plane distance between p and the tangential plane of Y with the normal parallel to the
local surface normal of p:

max
p′∈VY

(nT
p (p′ − p)) ≤ τprox,2,

where np is the local surface normal of p, VY is the set of vertices of Y, and τprox,2 is an experimentally
determined threshold. In the experiments reported in Section 7, τprox,2 was set to 5% of the radius of
the model’s bounding sphere, where an approximate minimum bounding sphere was computed by the
algorithm proposed in [35]. If η(Ci, Cj) < τnew, then a new segment is created from the union of Ci and
Cj. If η(Ci, Cj) < τmerge < τnew, then the new segment replaces Ci and Cj, i.e., the two original segments
are rejected. The values of thresholds τnew and τmerge used in the experiments reported in Section 7
were 0.2 and 0.05, respectively. This merging process was applied not only to the original segments,
but also to the new segments created by merging the original segments. In that case, the candidates for
merging were always one original and one new segment. If one candidate was an original segment Ci
and another was a new segment composed of original segments Cj, then the proximity and convexity
criterion were evaluated for each pair of segments (Ci, Cj).
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