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Abstract: Automatic terrain classification in lower limb rehabilitation systems has gained worldwide
attention. In this field, a simple system architecture and high classification accuracy are two desired
attributes. In this article, a smart neuromuscular–mechanical fusion and machine learning-based
terrain classification technique utilizing only two electromyography (EMG) sensors and two ground
reaction force (GRF) sensors is reported for classifying three different terrains (downhill, level, and
uphill). The EMG and GRF signals from ten healthy subjects were collected, preprocessed and
segmented to obtain the EMG and GRF profiles in each stride, based on which twenty-one statistical
features, including 9 GRF features and 12 EMG features, were extracted. A support vector machine
(SVM) machine learning model is established and trained by the extracted EMG features, GRF features
and the fusion of them, respectively. Several methods or statistical metrics were used to evaluate the
goodness of the proposed technique, including a paired-t-test and Kruskal–Wallis test for correlation
analysis of the selected features and ten-fold cross-validation accuracy, confusion matrix, sensitivity
and specificity for the performance of the SVM model. The results show that the extracted features
are highly correlated with the terrain changes and the fusion of the EMG and GRF features produces
the highest accuracy of 96.8%. The presented technique allows simple system construction to achieve
the precise detection of outcomes, potentially advancing the development of terrain classification
techniques for rehabilitation.

Keywords: terrain classification; electromyography; ground reaction force; feature extraction;
multi-sensor fusion

1. Introduction

Applying intelligent rehabilitation techniques, such as rehabilitation robots [1–7] or in-home
rehabilitation systems based on wearable sensors [8–12], to help people suffering from limited mobile
ability to perform physical rehabilitation is of significance. Such intelligent techniques alleviate
the shortage of physical therapists and realize data monitoring for more accurate evaluations on
patients [13–16], and thus have become a new trend in recent years. The traditional scenario for lower
limb rehabilitation is level walking. In recent years, terrain classification techniques enable wearable
assistant systems to recognize more terrains, which allows patients to perform rehabilitation training in
more complex scenarios, and therefore has aroused wide attention [17–19]. Among all terrains, uphill,
level ground, and downhill are the three most common terrains in daily life, and thus are widely
investigated in the study of terrain identification [19–22].
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The input signals of these kinds of rehabilitation-driven systems for terrain classification include
kinematics information (e.g., inertial measurement units (IMUs)), kinetics information (e.g., ground
reaction force and interaction force), and electromyography (EMG) signals [23–27]. Using the input
signals mentioned above, increasing efforts have been made for classifying different terrains. For
example, in [28], five time-domain features of the EMG signals from eight muscles on the thigh were
extracted and analyzed. Ramp and level walking were classified for thirteen healthy participants
and the average classification accuracy for all terrains was 92.9%. In [27], signals from 13 IMUs on
the robotic legs of six transfemoral amputee subjects were collected and used to classify different
terrains and an average accuracy of 81.2% was reached in recognizing ramp and level ground. In [22],
the authors proposed a terrain identification method, namely muscle synergies, based on the EMG
signals from twelve muscles. The data from seven able-bodied participants were collected and were
classified as level ground and ramp with an average accuracy of 83.8%. However, in general, using a
single sensor type lacks in a comprehensive detection of the bodily changes of the user, and thus is not
adequate for high-accuracy terrain recognition [17,19].

To obtain multi-dimensional information, the fusion of multi-sensor data, together with machine
learning-based sensor fusion algorithms, is widely used in terrain identification in recent years. Some
studies report the integrated use of accelerometers, angle sensors, kinematic data captured by camera,
EMG signals, etc., to differentiate terrains [20,21,29–31]. For example, in [32], nine EMG and six ground
reaction force (GRF) sensors were utilized, based on which five terrains were identified continuously
in four gait phases using the linear discriminant analysis (LDA) and support vector machine (SVM)
methods, and the ramp–level ground classification accuracy in this work was averaged at 97.73%.
In [20], four healthy subjects performed walking activities on uphill, level ground and downhill, and
a high average terrain classification accuracy of 93.4%, based on the Bayesian LDA, was achieved
through developing a technique consisting of an interaction force sensor, four EMG sensors, four GRF
sensors, and a position sensor. In [21], the data from seven healthy subjects collected by seven EMG
sensors and two accelerometers were obtained and used to classify the terrain transition from level
ground to stairs or ramp; from this, the classification performance of the EMG and accelerometer signal
was compared and discussed, proving that the fusion of both signals may contribute to a more robust
classification. In [19], a terrain identification-enabled exoskeleton system which integrated only two
attitude and heading reference system (AHRS) sensors and three GRF sensors was designed, tested by
three healthy subjects and successfully identified ramp and level ground, with a mean accuracy of
97.77%. The number and categories of the applied sensors and the classification accuracy of the above
studies, along with some other relevant studies [17,33–35], are summarized in Figure 1.

We can infer from Figure 1 that fruitful results have been made by relevant studies in order
to obtain a robust identification accuracy and low complexity at the same time. Nevertheless, a
multi-sensory terrain identification system utilizing neuromuscular signals such as EMG, which has
proved to have a better performance in interpreting and predicting the intention of the user compared
to mechanical signals [28,36–38], with both a simple structure and high detection accuracy, has not
been reported yet. To fill the gap, in this article, a smart neuromuscular–mechanical fusion terrain
classification technique based on GRF detection, EMG and machine learning is presented. Here, only
four sensors, including two EMG sensors attached to two muscles (tibialis anterior and soleus) and
two GRF sensors placed at the hallux and heel, were used for classifying uphill, level ground and
downhill. The collected signals are preprocessed and analyzed to draw the typical profiles of the EMG
and GRF, based on which novel features reflecting the changing patterns of the EMG and GRF were
selected for the support vector machine (SVM) machine learning algorithm to classify the terrains. To
verify the proposed technique, standard experimental procedures compatible with relevant studies on
different terrains were performed. Comparisons were made using the EMG and GRF information,
respectively, and the combination of them to evaluate the effectiveness of the sensors’ fusion. A paired
t-test and Kruskal–Wallis test were applied to evaluate the correlation of the selected features and
terrain changes. Ten-fold cross-validation accuracy together with sensitivity and specificity were used
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to evaluate the goodness of the SVM machine learning model. An overview process of this work is
conceptually described in Figure 2.
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Figure 1. The numbers and categories of the applied sensors and the classification accuracy of relevant
studies. “electromyography-based (EMG-based)” or “Mechanical-based” mean only the EMG signals
or mechanical signals, e.g., inertial measurement units (IMUs), ground reaction force (GRF) sensors or
attitude and heading reference system (AHRS), are utilized in the study. “EMG & mechanical-based”
means the fusion of the EMG and other mechanical signals was applied.
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The paper is organized as follows. In Section 2, we explain the methodology of the experiment
setup, data pre-processing, feature extraction, establishment of SVM model and evaluation of the
selected features and the classifier. In Section 3, the experimental results are demonstrated and
discussed, including the EMG and GRF profiles, statistical features of the different terrains and the
performance of the SVM model.

2. Methodology

In order to accurately classify the terrain conditions, the features of the EMG and GRF in the
different terrains were studied and extracted by the following steps, as shown in Figure 3:

1. Collecting data from healthy individuals;
2. Pre-processing the raw data;
3. Extracting the statistical features;
4. Establishing an SVM model.
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Correlation analysis and statistical metrics will be used to examine the proposed method. The
above steps will be discussed in detail in the following sections.

2.1. Experiment Setup

Ten healthy individuals (6 male and 4 female) were recruited as volunteers to participate in the
experiment. They had no previous medical history of neurological and muscular diseases. Subjects’
consent was obtained before the experiment. Ethical approval was obtained from the Shijiazhuang
Central Hospital, Shijiazhuang, Hebei Province, China. Their physical body conditions are shown in
Table 1.

Table 1. Mean and standard deviation of the physical body conditions of the 10 volunteers.

Height/cm Weight/kg Age

175.70 ± 6.63 66.20 ± 9.19 20.80 ± 1.40

A pair of distal antagonistic muscles, tibialis anterior (TA) and soleus (SL), were selected in this
experiment because the EMG signals of the distal muscles show lower inter-subject variability than
the proximal [39]. The skin of the selected muscles was shaved and cleaned with 75% alcohol before
the experiment [40]. Three Ag-AgCl electrodes of 5 mm in diameter, including a reference and two
differential amplification ones [41], were attached to the ankle and the surface of the selected muscles,
respectively. The location and distance of the electrodes are referred to in [42]. The EMG signals were
acquired by a two-channel EMG device.

Two circular force sensing resistors (FSR), ranging from 20 to 20,000 g, were attached to the flat
area of the heel and hallux to collect the GRF signal for the stride division [43]. The resistance change
of the FSRs was linearly converted to a voltage change by proportional operational amplifiers and then
converted to digital signals by analog-to-digital converters (ADCs) embedded in STM32F103C8T6.
Both the EMG and GRF signals were sampled at a frequency of 2000 Hz, which is adequate for terrain
classification compared with other studies, and transmitted to PC via Bluetooth. A JavaScript script
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was written, which automatically obtained the system time and added it to the end of each message
sent to the PC. Finally, the EMG and GRF signals with the same particular timestamp were aligned,
and then all of the synchronized datapoints were used for further analysis.

The participants were instructed to walk at comfortable speeds according to their walking habits.
It is worth noting that the EMG profiles would change slightly when walking speeds varied, i.e.,
shifting less than 10% and 1% in peak amplitude and peak timing, within a certain range around
normal walking speed [30,44], which are acceptable for classifying three to five different terrains,
and therefore the developed protocol is also applied in other relevant studies [19,32]. When the start
command was issued, the participant stepped out on the leg with the device. Data acquisition started
at the first heel strike. The participants were instructed to walk a forty-meter flat ground four times,
and then walked back and forth twenty times on a slope with a length of 5 m angled at 5.2 degrees.
Similar ramp angle degrees are also found in other relevant studies and they are summarized in Table 2
for comparison with our work [19,22,27,31,35].

Table 2. Ramp angles selected in other relevant studies and comparison with our work.

Relevant Work Ramp Angle

[22] 4.78 degree
[27] 10 degree
[31] 10 degree
[19] 12 degree
[35] 8.5 degree

This work 5.2 degree

The participants were fully warmed-up to familiarize themselves with the protocol to ensure
they walk naturally with the measurement device, and rested for 15 min after each level walking
task and 5 consecutive slope walking tasks in order to prevent muscle fatigue [45]. At the end of
all the trials, the participants performed a maximum isometric voluntary contraction (MIVC) for the
EMG normalization.

2.2. Data Pre-Processing

A total of 767,324 synchronized EMG and GRF datapoints in 1918 strides, including 640 uphill,
704 level walking and 574 downhill, were selected. The pre-processing of the EMG and GRF signals
was performed in MATLAB.

The raw EMG signal needs to be filtered before it can be used for further analysis because it
is interfered with by noise. For the high-frequency region, most of the energy of the EMG signal
mainly concentrates within 0–500 Hz [46], and the high-frequency region (500–1000 Hz) of the EMG
signal is likely to be interfered with by aliasing, according to [47,48]. For the low-frequency region,
the frequency range of the movement artifacts, which is a type of noise caused by the movement of
the cable and the interface between the detection surface of the electrode and the skin, is typically
1–10 Hz [49]. Therefore, the raw EMG signal was filtered by a finite impulse response (FIR) bandpass
filter with cutoff frequencies of 10 (low) and 500 Hz (high) [41,50–52].

After denoising, we applied normalization to the EMG amplitude to reduce the inter-subject
variability of the EMG signals. The widely applied normalization references include the peak of EMG
from the ensemble average, the mean of the ensemble average, and maximal isometric voluntary
contraction (MIVC) [53]. In this work, a MIVC was chosen because it is less likely to be affected by joint
kinematics like knee or ankle flexion. Furthermore, different levels of MIVC have been researched,
and 50% has been proven to be an optimal point as it is easier to be reached and maintained by the
experiment participants, according to [54,55]. Hence, the EMG amplitude in this work was normalized
by 50% MIVC. Furthermore, we also calculated the linear envelope (LE) of the EMG signal, which is an
intuitive processing method of EMG reflecting the muscle force level [56]. Specifically, a full-wave
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rectification and a lowpass filter with a cutoff frequency of 3 Hz were used to obtain the LE, as previous
research has evidenced the ability of the 3 Hz cutoff frequency to provide good relations with muscle
force [56–60].

The GRF data was normalized to the body weight of each participant [61]. An important function
of the GRF signal is for segmenting the collected data sequence into complete stride sequences. Here,
the GRF data (without normalization) were binarized with a threshold of 300 g [43]. The timing of the
binarized data, changing from 0 to 1, of the heel was considered as the timing of the heel strike (HS),
and the interval of the two consecutive HSs was seen as the duration of a complete gait [62,63]. In this
way, the GRF and EMG data were segmented into a group of strides.

Finally, we generate the profiles of the EMG, LE and GRF curves in each stride by calculating the
ensemble average of the signals from all the participants. The ensemble average is obtained by the
following procedure: Firstly, the stride time divided by the HS was normalized to 100%, and then all
the EMG, LE and GRF curve data at each consecutive 1% of the normalized stride time were selected
and averaged, producing the ensemble average [56]. Finally, a standard deviation (SD) band of ±1
about the average was calculated to quantify the variability of each stride [56].

2.3. Feature Extraction

After the signal was pre-processed, the noise was attenuated while the stride segments were
obtained. However, the sequence data of these segments could not be directly fed into the SVM model
due to the large computation cost and the poor correlation between the class and the original sequence
data, which would have negatively affected the classification performance. Instead, some statistical
features extracted from the pre-processed signal were the appropriate choices for the input of the
SVM model.

A total of 21 statistical features, including 12 EMG features and 9 GRF features, in each step were
extracted to classify the terrain. The feature symbols used in this paper and their specific meanings are
shown in Table 3. These features can be divided into three categories as follows:

1. Force and time features extracted from the GRF curve. Such features reflect the variation and
relationship of the two GRF measures during a stride or between two consecutive strides and
they are depicted in Figure 4a.

2. Time-domain features extracted from the filtered EMG data, including the mean absolute value
(MAV), standard deviation (STD), root mean square (RMS), and waveform length (WL), which
are broadly used features, such as in [28,49]. Such features reflect the overall activation level of
the muscle in a stride.

3. Muscle force features extracted from the EMG and LE, including the TA peak, TA 80, SL peak,
SL 25. Such features reflect the muscle force level at a particular timing of a stride and they are
depicted in Figure 4b.

Table 3. Extracted features of the EMG and GRF, where i is the index of EMG filtered amplitude and N
is the length of the sequence in a stride.

Symbol The Meaning of the Features

GRF-Based

Hallux Max The max value of hallux GRF
Heel Max The max value of heel GRF

Max T The time interval between the two peaks
Hallux ON The duration of Hallux GRF above the threshold
Heel ON The duration of Heel GRF above the threshold

Hallux OFF The duration of Hallux GRF below the threshold
Heel OFF The duration of Heel GRF below the threshold

Start T The time interval between Hallux ON and Heel ON
End T The time interval between Hallux OFF and Heel OFF
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Table 3. Cont.

Symbol The Meaning of the Features

EMG-Based

TA Peak The peak value of the TA linear envelope
TA MAV MAV of the TA EMG, MAV = 1

N
∑N

i=1|xi|

TA STD STD of the TA EMG; STD =

√∑N
i=1 (xi−x)2

N

TA RMS RMS of the TA EMG; RMS =

√∑N
i=1 xi2

N
TA WL WL of TA EMG; WL =

∑N
i=2|∆xi|, where ∆xi = xi − xi−1

TA 80 The value of the TA linear envelope at 80% gait
SL Peak The peak value of the SL linear envelope
SL MAV MAV of the SL EMG, MAV = 1

N
∑N

i=1|xi|

SL STD STD of the SL EMG; STD =

√∑N
i=1 (xi−x)2

N

SL RMS RMS of the SL EMG; RMS =

√∑N
i=1 xi2

N
SL WL WL of SL EMG; WL =

∑N
i=2|∆xi|, where ∆xi = xi − xi−1

SL 25 The value of the SL linear envelope at 25% gait
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2.4. Establishment of SVM Model

The machine learning model—the support vector machine (SVM)—has been widely used for
the pattern recognition or classification of the EMG signal [64,65]. The basic idea behind the SVM
is to construct an optimal hyperplane [66], which can be used to classify linear separable patterns.
Non-linear separable patterns are mapped into higher-dimension space through a kernel function, so
that the patterns become linearly separable [67]. The kernel function selected in this paper was the
radial basis function (RBF) kernel, which has a good classification performance for multi-classifiers
with a small margin between each of the two classes [68].
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The establishment of the SVM model in this paper is described as follows: The features and
labels of the selected steps were used as the input vector of the model, and a ten-fold cross-validation
method [64,69] was applied to train the SVM model. In this method, all of the samples were split
equally into 10 groups while ensuring the proportion of each class in each group remained unchanged.
Then, one group was used for testing and the other nine groups were used for training. The process
above was iterated until all groups had been treated as the testing set.

2.5. Evaluation of the Selected Features and the SVM Model

To evaluate the goodness of our selected features and the classification performance of the SVM
model, we adopt several metrics and analysis methods for the evaluation.

The Kruskal—Wallis test by ranks was applied on each feature, which is a non-parametric method
for determining whether three or more independent groups of equal or different sample sizes are
the same or different on some variable of interest [70,71]. This test showed if there is a significant
difference between the three terrains for each feature. Furthermore, to evaluate the statistical difference
between each two terrains, the paired t-test, a statistical procedure used to determine whether the
mean difference between two sets of observations is zero [45], was used after a Kolmogorov–Smirnov
(KS) test, ensuring that the features in each class obey a Gaussian distribution.

For the SVM model, four kind of indexes, i.e., average accuracy, confusion matrix, sensitivity and
specificity, are used to evaluate the classification performance. The average accuracy (acc) of the SVM
model is defined as

acc =
Nc

Ntotal
× 100% (1)

where Nc is the number of correctly classified events, and Ntotal is the total number of the test events.
Here, the test events mean all the applied test set data in the ten-fold cross-validation procedure.

The confusion matrix Q is used to better quantify the specifics of the classification [19], which is
defined in this paper as follows:

Q =


q11 q12 q13

q21 q22 q23

q31 q32 q33

 (2)

where the element of the confusion matrix is defined as

qi j =
pi j

ptotal,i
× 100% (3)

where pij is the number of samples of the ith terrain that are identified as the jth terrain, and ptotal,i is
the total number of samples of the ith terrain. The elements on the diagonal present the classification
accuracy and the others show the errors.

In addition to accuracy, the calculation of sensitivity and specificity is beneficial for evaluating the
SVM model’s performance in binary classification problems [72]. They are defined as follows:

SEN =
TP

TP + FN
(4)

SPE =
TN

TN + FP
(5)

where SEN and SPE denote sensitivity and specificity, and TP, TN, FP, FN are defined as follows
(Table 4):
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Table 4. The definitions of TP, TN, FP and FN.

Prediction
Actual Value

Positive Negative

Positive TP FP

Negative FN TN

In this work, when considering one terrain as the positive value, the other two terrains are seen as
the negative values, and therefore three sensitivities and specificities are calculated when taking each
terrain as the positive value in turn.

3. Results and Discussion

The results and discussions mainly consist of three parts:

1. The profile of the EMG, LE and GRF curves;
2. The comparison and explanation of the differences between the extracted features in the

different terrains;
3. The classification performance of the SVM model and the discussion on sensor fusion.

3.1. EMG and GRF Profiles

The ensemble average of the EMG of the TA and SL and the GRF curve of the heel and the hallux
of two representative subjects randomly selected from 10 subjects are plotted in Figure 5. The solid
line in Figure 5 is the ensemble average, whereas the dashed line is the ±1 standard deviation (SD)
band, and the distance between them represents the stride-to-stride and inter-subject variability at
different moments of the gait. It can be seen that, generally, the SD of the curve will be larger at the
peak, where greater force is applied by humans. It can be concluded that although there are some
differences between the different strides, individuals and terrains, both the EMG and GRF follow
similar profiles [39,56,73]. Taking the GRF signal as a reference, the EMG–LE profile reveals the state of
muscle exertion in a complete gait. For the TA, two peaks can be observed. The TA generates the peak
at about 25% of the gait cycle to lower the foot to the ground soon after the HS. After the toe-off (TO),
at about 80% gait, a smaller peak is generated for the foot clearance, resulting in ankle dorsiflexion.
For the SL, the main feature is a significant peak at about 60% gait when the SL contracts and generates
the impulse of energy to push-off. When walking downhill, the SL also plays a minor roll during
midstance, mainly to maintain a balanced gait, which results in the rise at 25% gait when walking
downhill. It is worth noting that the discussion above is the basis of selecting the statistical features of
the EMG, which will be discussed in detail in Section 3.2. In addition, Figure 5b shows the EMG profile
of the TA and SL when walking on level ground, which is consistent with the standard profile of these
two muscles during level walking presented in [56], and highlights the correctness of the experimental
setup and data pre-processing. Section 3.3 will further validate the classification performance of our
proposed technique.

3.2. Statistical Features in Different Terrains

The EMG and GRF profiles reveal the overall difference qualitatively, and the statistical features
extracted in Table 3 quantitatively describe the difference between the EMG signal and GRF signal in
the different terrains. Figure 6 shows the average and normalized value of each feature in each terrain.
The following subsections will explain the biomechanical reasons for the variability of the features in
the different terrains.



Appl. Sci. 2020, 10, 2638 10 of 17

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 17 

Positive TP FP 

Negative FN TN 

In this work, when considering one terrain as the positive value, the other two terrains are seen 

as the negative values, and therefore three sensitivities and specificities are calculated when taking 

each terrain as the positive value in turn. 

3. Results and Discussions 

The results and discussions mainly consist of three parts:  

1. The profile of the EMG, LE and GRF curves; 

2. The comparison and explanation of the differences between the extracted features in the 

different terrains; 

3. The classification performance of the SVM model and the discussion on sensor fusion. 

3.1. EMG and GRF Profiles 

The ensemble average of the EMG of the TA and SL and the GRF curve of the heel and the hallux 

of two representative subjects randomly selected from 10 subjects are plotted in Figure 5. The solid 

line in Figure 5 is the ensemble average, whereas the dashed line is the ±1 standard deviation (SD) 

band, and the distance between them represents the stride-to-stride and inter-subject variability at 

different moments of the gait. It can be seen that, generally, the SD of the curve will be larger at the 

peak, where greater force is applied by humans. It can be concluded that although there are some 

differences between the different strides, individuals and terrains, both the EMG and GRF follow 

similar profiles [39,56,73]. Taking the GRF signal as a reference, the EMG–LE profile reveals the state 

of muscle exertion in a complete gait. For the TA, two peaks can be observed. The TA generates the 

peak at about 25% of the gait cycle to lower the foot to the ground soon after the HS. After the toe-off 

(TO), at about 80% gait, a smaller peak is generated for the foot clearance, resulting in ankle 

dorsiflexion. For the SL, the main feature is a significant peak at about 60% gait when the SL contracts 

and generates the impulse of energy to push-off. When walking downhill, the SL also plays a minor 

roll during midstance, mainly to maintain a balanced gait, which results in the rise at 25% gait when 

walking downhill. It is worth noting that the discussion above is the basis of selecting the statistical 

features of the EMG, which will be discussed in detail in Section 3.2. In addition, Figure 5b shows the 

EMG profile of the TA and SL when walking on level ground, which is consistent with the standard 

profile of these two muscles during level walking presented in [56], and highlights the correctness of 

the experimental setup and data pre-processing. Section 3.3 will further validate the classification 

performance of our proposed technique. 

 

Figure 5. The ensemble average of the EMG and GRF signals with ±1 SD band in three terrains:
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GRF profiles of uphill, level ground and downhill, normalized to the body weight (BW).
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3.2.1. TA EMG

The peak, mean absolute value (MAV), standard deviation (STD), root mean square (RMS), and
waveform length (WL) of the TA are significantly larger for uphill than for flat and downhill, indicating
that the TA is more active during uphill. This is because more efforts are made in order to overcome
gravity and lift the body up when walking uphill [74]. In addition, the TA peak increases from level to
downhill. The reason for that may be that the TA contracts more to resist the downward trend when
walking downhill, resulting in more contraction of the TA, which aligns with the profile presented
in [75]. Meanwhile, the feature “TA 80” decreases when going downhill because the gravity helping
the foot clearance at 80% stride reduces the activity of the TA.

3.2.2. SL EMG

The SL peak has the most significant difference among the three types of terrains, decreasing
from uphill, to level, to downhill. This is because the push-off force generated by the SL needs to
overcome the effect of gravity when walking uphill to make the body move forward, while the activity
is the opposite when walking downhill. The MAV, WL and other statistical data follow a similar rule
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as the TA, indicating that muscle activity is generally higher when walking uphill. In addition, the
co-contraction of the SL with the TA to stabilize the gait when going downhill makes the “SL 25”
increase. The above phenomenon is also observed in [76].

3.2.3. Ground Reaction Force

From uphill to downhill, the features “Start T” and “Heel ON” are decreasing, while “Hallux
ON” and “End T” are increasing, which means that the time interval between the front and rear foot
landing is shorter during downhill, while the time taken for the front foot to grip the ground is longer.
A similar discipline reporting a lower duty factor in foot strike was also observed in [74]. This can
resist the tendency of slipping downhill during the stance phase and make the gait stable, whereas in
uphill, the shorter burst of the front foot helps to achieve sufficient thrust to move forward.

The significant differences (p < 0.05) tested by the paired t-test of the features between each pair of
terrains are also shown in Figure 6. The p-values of the KS test, Kruskal–Wallis test and paired t-test
are shown in Table S1 in the Supplementary Materials and the distribution of all the features in each
terrain were Gaussian (p > 0.05). Here, all the features pass the Kruskal –Wallis test (p < 0.05), and
significant differences (p < 0.05) between at least two pairs of terrains were observed in the features we
selected, which indicates that all the features contributed to correctly classifying the terrains positively.
In addition, significant differences between all the three pairs of the terrains were observed in the four
features we proposed in the EMG feature set, i.e., the TA peak, SL peak, TA 80 and SL 25, as shown
in Figure 6, which indicates that the features we proposed in this work were more correlated with
the terrains compared with the conventional EMG time-domain features. The p-values presented
here proved that the features selected in this work were highly correlated with the terrain labels,
which potentially improved the performance of the classifier. The following section will evaluate the
performance of the SVM model utilizing these features.

3.3. Training Performance of SVM and Comparison between the EMG and GRF Features

The extracted features were set as inputs for the machine learning algorithm. Here, the GRF
and EMG are used separately to train the model first, and then the combination of them is employed.
The average and standard deviation of the overall accuracy, sensitivity and specificity of the different
selected sets of features are shown in Table 5.

Table 5. The average and standard deviation (SD) of the accuracy, sensitivity and specificity of the
model using different sets of features.

GRF EMG GRF + EMG

Accuracy ± SD 80.96% ± 6.17% 89.93% ± 3.63% 96.76% ± 1.57%

SEN ± SD
Uphill 83.44% ± 5.47% 95.00% ± 3.28% 98.59% ± 1.15%

Level ground 78.68% ± 7.36% 88.49% ± 4.62% 96.87% ± 1.62%
Downhill 80.99% ± 10.25% 86.04% ± 6.97% 94.59% ± 3.24%

SPE ± SD
Uphill 78.84% ± 7.34% 86.31% ± 4.76% 95.77% ± 1.79%

Level ground 84.07% ± 5.44% 92.46% ± 2.90% 97.99% ± 0.99%
Downhill 80.35% ± 5.94% 91.23% ± 3.73% 96.64% ± 2.19%

The use of only the EMG or GRF features each has its drawback. The average accuracy, sensitivity
and specificity of classifying the level ground using only the GRF features is not satisfied, as shown in
Table 5, because the value of the GRF features of level ground is usually close to the other two terrains,
as can be observed in Figure 6c,d, challenging the terrain condition classifier.

It can be observed in Table 5 that when feeding only the EMG features into the SVM model, the
overall accuracy, sensitivity, and specificity are all higher than those when using only the GRF features
to train the model. The classifier achieved a better performance with the help of EMG, indicating that
EMG signals better reflect the human body condition [28,36,37]. However, the sensitivity of downhill
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and level ground and the specificity of uphill are relatively lower, which means poor performance was
achieved when distinguishing level ground and downhill; similar results were also observed in [22,28].
This is because up to six features show no significant differences (p < 0.05) between level ground and
downhill, as shown in Figure 6, making the boundary between level ground and downhill ambiguous
and hard to classify.

When the model was trained with both the EMG and GRF features, its average accuracy reached
96.76%, which is sufficiently improved compared with using only the EMG or GRF features. Here, we
present a confusion matrix for when both feature sets were fed into the model in Table 6. As Table 6
shows, all of the terrains have a classification accuracy over 94.59% and a standard deviation below
3.24%, indicating that a high and robust accuracy was achieved. Hence, the fusion of the EMG and
GRF signals increased the performance of the SVM model, and better interpreted the change of the
terrain because they complement each other [20,32].

Table 6. Confusion matrix for the classification results of the SVM using both the EMG and GRF
features. The element is presented as average ± SD.

Actual Terrains
Prediction

Uphill Level Downhill

Uphill 98.59% ± 1.15% 1.41% ± 1.15% 0% ± 0%
Level 0.86% ± 1.54% 96.87% ± 1.62% 2.27% ± 1.52%

Downhill 0.35% ± 0.73% 5.06% ± 3.25% 94.59% ± 3.24%

A comparison of our results with existing work is presented in Table 7, which shows that, firstly,
our work reduced the total number of sensors. For example, in [32], the total number of sensors was
nearly four times that in this work. Secondly, we utilized only two types of sensors, EMG and GRF,
the results of which we compared to the work of [20], in which four different types of sensors were
used. The fewer sensors that are applied, in terms of both number and type, the less complex and
energy-consuming the circuit structure needs to be in order to obtain and process the signals; thus,
our work resulted in reduced component costs, circuit complexity and energy consumption, while
reaching a similar overall accuracy. This potentially provides a feasible technique for wearable assist
systems to better adapt to different environments.

Table 7. Comparisons of classification accuracy with existing work utilizing EMG signals.

[20] [21] [22] [32] This Work

Input
Interaction force,
4 EMG 1, 4 GRF 2

Position sensor

7 EMG
2 Accelerometers 12 EMG 9 EMG

6 GRF
2 EMG
2 GRF

Methodology BLDA SVM and LDA Muscle Synergies SVM and LDA SVM
Overall

Accuracy 96.1% 67.1% (only EMG)
95.2% (only Accelerometers) 83.8% 97.7% 96.8%

1 “4 EMG” is an abbreviation for the EMG of four muscles used as the input signal. 2 “4 GRF” is an abbreviation for
the GRF of four areas on the foot used as the input signal.

In this work, due to the limited access to resources such as hospitals and experimental sites, only
healthy subjects and three major terrains are involved for validating our proposed technique. Although
in some relevant studies, the same or similar formulas were used for proving the concept, we still think
that applying the technique to people in rehabilitation processes in more complex terrain scenarios
would increase the meaningfulness of the work. For example, in [30], both the elderly and young
subjects were recruited to estimate the slope angle using their walking data. The experimental data
showed that the elderly people applied different muscle recruitment strategies to the young subjects.
Specifically, the elderly tended to increase the activation in proximal hip extensors and decrease
the activation in distal knee extensors compared to the younger subjects. Nevertheless, the results
in [30] demonstrated that the machine learning-based technique would adapt to such differences when
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adequate experiment data were collected and used as training samples, producing similar estimation
performances in both sets of participants (estimation errors are both below 3 degrees). Hence, in our
future research plan, we aim to enlarge our training data volume by taking more types of terrains and
elderly people into consideration by collaborating with associated research institutions.

4. Conclusions

Terrain detection is of significance for wearable assistant systems. The work presented here
showcases a smart utilization of the electromyography (EMG) and ground reaction force (GRF) signals
from only four sensors, which provide statistical features for a machine learning model, a support
vector machine (SVM), to obtain a classification accuracy of 96.8%. By carefully selecting highly
correlated features, including 9 GRF features and 12 EMG features, fewer sensors were needed to be
applied to the system to achieve a similar classification accuracy compared with the relevant work,
thus reducing the cost, complexity, and energy consumption of the system. Therefore, the technique
developed in this paper offers an effective means to achieve precise terrain detection accuracy without
burdening systems with high hardware and computational complexity, potentially advancing the
development of terrain classification techniques for rehabilitation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/8/2638/s1,
Table S1: p-values of KS test, Kruskal–Wallis test and paired t-test.
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12. Kańtoch, E. Human activity recognition for physical rehabilitation using wearable sensors fusion and
artificial neural networks. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France,
24–27 September 2017; pp. 1–4.

13. Shi, D.; Zhang, W.; Zhang, W.; Ding, X. A Review on Lower Limb Rehabilitation Exoskeleton Robots. Chin. J.
Mech. Eng. 2019, 32, 74. [CrossRef]

14. Banala, S.K.; Kim, S.H.; Agrawal, S.K.; Scholz, J.P. Robot assisted gait training with active leg exoskeleton
(ALEX). IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 17, 2–8. [CrossRef]

15. Taati, B.; Wang, R.; Huq, R.; Snoek, J.; Mihailidis, A. Vision-based posture assessment to detect and categorize
compensation during robotic rehabilitation therapy. In Proceedings of the 2012 4th IEEE RAS & EMBS
International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June
2012; pp. 1607–1613.

16. Marchal-Crespo, L.; Riener, R. Robot-assisted gait training. In Rehabilitation Robotics; Academic Press: London,
UK, 2018; pp. 227–240.

17. Yuan, K.B.; Wang, Q.N.; Wang, L. Fuzzy-Logic-Based Terrain Identification with Multisensor Fusion for
Transtibial Amputees. IEEE-Asme Trans. Mech. 2015, 20, 618–630. [CrossRef]

18. Gupta, R.; Agarwal, R. Electromyographic Signal-Driven Continuous Locomotion Mode Identification
Module Design for Lower Limb Prosthesis Control. Arab. J. Sci. Eng. 2018, 43, 7817–7835. [CrossRef]

19. Long, Y.; Du, Z.-J.; Wang, W.-D.; Zhao, G.-Y.; Xu, G.-Q.; He, L.; Mao, X.-W.; Dong, W. PSO-SVM-based online
locomotion mode identification for rehabilitation robotic exoskeletons. Sensors 2016, 16, 1408. [CrossRef]

20. Kyeong, S.; Shin, W.; Yang, M.; Heo, U.; Feng, J.-R.; Kim, J. Recognition of walking environments and gait
period by surface electromyography. Front. Inf. Technol. Electron. Eng. 2019, 20, 342–352. [CrossRef]

21. Joshi, D.; Hahn, M.E. Terrain and Direction Classification of Locomotion Transitions Using Neuromuscular
and Mechanical Input. Ann. Biomed. Eng. 2016, 44, 1275–1284. [CrossRef]

22. Afzal, T.; Iqbal, K.; White, G.; Wright, A.B. A method for locomotion mode identification using muscle
synergies. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 25, 608–617. [CrossRef]

23. Huo, W.G.; Mohammed, S.; Amirat, Y.; Kong, K. Active Impedance Control of a Lower Limb Exoskeleton to
Assist Sit-to-Stand Movement. In Proceedings of the 2016 IEEE International Conference on Robotics and
Automation, Stockholm, Sweden, 16–21 May 2016; Okamura, A., Menciassi, A., Ude, A., Burschka, D., Lee, D.,
Arrichiello, F., Liu, H., Moon, H., Neira, J., Sycara, K., Eds.; IEEE: New York, NY, USA, 2016; pp. 3530–3536.

24. Lim, D.H.; Kim, W.S.; Kim, H.J.; Han, C.S. Development of real-time gait phase detection system for a lower
extremity exoskeleton robot. Int. J. Precis. Eng. Manuf. 2017, 18, 681–687. [CrossRef]

25. Peternel, L.; Noda, T.; Petric, T.; Ude, A.; Morimoto, J.; Babic, J. Adaptive Control of Exoskeleton Robots for
Periodic Assistive Behaviours Based on EMG Feedback Minimisation. PLoS ONE 2016, 11, 26. [CrossRef]

26. Young, A.J.; Ferris, D.P. State of the Art and Future Directions for Lower Limb Robotic Exoskeletons. IEEE
Trans. Neural Syst. Rehabil. Eng. 2017, 25, 171–182. [CrossRef]

27. Young, A.J.; Simon, A.M.; Hargrove, L.J. A Training Method for Locomotion Mode Prediction Using Powered
Lower Limb Prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 671–677. [CrossRef]

28. Jin, D.; Yang, J.; Zhang, R.; Wang, R.; Zhang, J. Terrain identification for prosthetic knees based on
electromyographic signal features. Tsinghua Sci. Technol. 2006, 11, 74–79. [CrossRef]

29. Shultz, A.H.; Goldfarb, M. A Unified Controller for Walking on Even and Uneven Terrain with a Powered
Ankle Prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 788–797. [CrossRef]

30. Kang, I.; Kunapuli, P.; Hsu, H.; Young, A.J. Electromyography (EMG) Signal Contributions in Speed and
Slope Estimation Using Robotic Exoskeletons. In Proceedings of the 2019 IEEE 16th International Conference
on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 548–553.

31. Ming, L.; Fan, Z.; Helen, H.H. An Adaptive Classification Strategy for Reliable Locomotion Mode Recognition.
Sensors 2017, 17, 2020. [CrossRef]

http://dx.doi.org/10.2522/ptj.20140253
http://dx.doi.org/10.1109/JIOT.2019.2920283
http://dx.doi.org/10.1186/s10033-019-0389-8
http://dx.doi.org/10.1109/TNSRE.2008.2008280
http://dx.doi.org/10.1109/TMECH.2014.2309708
http://dx.doi.org/10.1007/s13369-018-3193-3
http://dx.doi.org/10.3390/s16091408
http://dx.doi.org/10.1631/FITEE.1800601
http://dx.doi.org/10.1007/s10439-015-1407-3
http://dx.doi.org/10.1109/TNSRE.2016.2585962
http://dx.doi.org/10.1007/s12541-017-0081-9
http://dx.doi.org/10.1371/journal.pone.0148942
http://dx.doi.org/10.1109/TNSRE.2016.2521160
http://dx.doi.org/10.1109/TNSRE.2013.2285101
http://dx.doi.org/10.1016/S1007-0214(06)70157-2
http://dx.doi.org/10.1109/TNSRE.2018.2810165
http://dx.doi.org/10.3390/s17092020


Appl. Sci. 2020, 10, 2638 15 of 17

32. Huang, H.; Zhang, F.; Hargrove, L.J.; Dou, Z.; Rogers, D.R.; Englehart, K.B. Continuous locomotion-mode
identification for prosthetic legs based on neuromuscular–mechanical fusion. IEEE Trans. Biomed. Eng. 2011,
58, 2867–2875. [CrossRef]

33. Huang, H.; Kuiken, T.A.; Lipschutz, R.D. A strategy for identifying locomotion modes using surface
electromyography. IEEE Trans. Biomed. Eng. 2008, 56, 65–73. [CrossRef]

34. Chen, B.; Zheng, E.; Wang, Q. A locomotion intent prediction system based on multi-sensor fusion. Sensors
2014, 14, 12349–12369. [CrossRef]

35. Martinez-Hernandez, U.; Mahmood, I.; Dehghani-Sanij, A.A. Simultaneous Bayesian recognition of
locomotion and gait phases with wearable sensors. IEEE Sens. J. 2017, 18, 1282–1290. [CrossRef]

36. Gui, K.; Liu, H.; Zhang, D. A Practical and Adaptive Method to Achieve EMG-Based Torque Estimation for a
Robotic Exoskeleton. IEEE/ASME Trans. Mech. 2019, 24, 483–494. [CrossRef]

37. Hong, Y.W.; King, Y.; Yeo, W.; Ting, C.; Chuah, Y.; Lee, J.; Chok, E.-T. Lower extremity exoskeleton: Review
and challenges surrounding the technology and its role in rehabilitation of lower limbs. Aust. J. Basic Appl.
Sci. 2013, 7, 520–524.

38. Chen, B.J.; Wang, Q.N.; Wang, L. Adaptive Slope Walking with a Robotic Transtibial Prosthesis Based on
Volitional EMG Control. IEEE-Asme Trans. Mech. 2015, 20, 2146–2157. [CrossRef]

39. Winter, D.A.; Yack, H.J. EMG profiles during normal human walking: Stride-to-stride and inter-subject
variability. Electroencephalogr. Clin. Neurophysiol. 1987, 67, 402–411. [CrossRef]

40. Nazmi, N.; Rahman, M.A.A.; Yamamoto, S.I.; Ahmad, S.A. Walking gait event detection based on
electromyography signals using artificial neural network. Biomed. Signal Process. Control 2019, 47, 334–343.
[CrossRef]

41. Day, S. Important Factors in Surface EMG Measurement; Bortec Biomedical Ltd Publishers: Calgary, AB, Canada,
2002; pp. 1–17.

42. Hermens, H.J.; Freriks, B.; Merletti, R.; Stegeman, D.; Blok, J.; Rau, G.; Disselhorst-Klug, C.; Hägg, G.
European recommendations for surface electromyography. Roessingh Res. Dev. 1999, 8, 13–54.

43. Nazmi, N.; Rahman, M.A.A.; Ariff, M.H.M.; Ahmad, S.A. Generalization of ANN Model in Classifying
Stance and Swing Phases of Gait using EMG Signals. In Proceedings of the 2018 Ieee-Embs Conference on
Biomedical Engineering and Sciences, Sarawak, Malaysia, 3–6 December 2018; pp. 461–466.

44. Murley, G.S.; Menz, H.B.; Landorf, K.B. Electromyographic patterns of tibialis posterior and related muscles
when walking at different speeds. Gait Posture 2014, 39, 1080–1085. [CrossRef]

45. Ma, L.; Yang, Y.; Chen, N.; Song, R.; Li, L. Effect of different terrains on onset timing, duration and amplitude
of tibialis anterior activation. Biomed. Signal Process. Control 2015, 19, 115–121. [CrossRef]

46. Komi, P.V.; Tesch, P. EMG frequency spectrum, muscle structure, and fatigue during dynamic contractions in
man. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 42, 41–50. [CrossRef]

47. Larsson, B.; Månsson, B.; Karlberg, C.; Syvertsson, P.; Elert, J.; Gerdle, B. Reproducibility of surface EMG
variables and peak torque during three sets of ten dynamic contractions. J. Electromyogr. Kinesiol. 1999, 9,
351–357. [CrossRef]

48. Wang, J.; Tang, L.; Bronlund, J.E. Surface EMG signal amplification and filtering. Int. J. Comput. Appl. 2013,
82, 15–22. [CrossRef]

49. Chowdhury, R.H.; Reaz, M.B.I.; Ali, M.A.B.; Bakar, A.A.A.; Chellappan, K.; Chang, T.G. Surface
Electromyography Signal Processing and Classification Techniques. Sensors 2013, 13, 12431–12466. [CrossRef]

50. Barzilay, O.; Wolf, A. A fast implementation for EMG signal linear envelope computation. J. Electromyogr.
Kinesiol. 2011, 21, 678–682. [CrossRef] [PubMed]

51. Dutta, A.; Khattar, B.; Banerjee, A. Nonlinear Analysis of Electromyogram Following Neuromuscular
Electrical Stimulation-Assisted Gait Training in Stroke Survivors. In Converging Clinical and Engineering
Research on Neurorehabilitation; Springer: Berlin, Germany, 2013; pp. 53–57.

52. Barsakcioglu, D.Y.; Farina, D. A real-time surface emg decomposition system for non-invasive human-machine
interfaces. In Proceedings of the 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland,
OH, USA, 17–19 October 2018; pp. 1–4.

53. Burden, A. How should we normalize electromyograms obtained from healthy participants? What we have
learned from over 25 years of research. J. Electromyogr. Kinesiol. 2010, 20, 1023–1035. [CrossRef] [PubMed]

54. Yang, J.F.; Winter, D. Electromyographic amplitude normalization methods: Improving their sensitivity as
diagnostic tools in gait analysis. Arch. Phys. Med. Rehabil. 1984, 65, 517–521. [PubMed]

http://dx.doi.org/10.1109/TBME.2011.2161671
http://dx.doi.org/10.1109/TBME.2008.2003293
http://dx.doi.org/10.3390/s140712349
http://dx.doi.org/10.1109/JSEN.2017.2782181
http://dx.doi.org/10.1109/TMECH.2019.2893055
http://dx.doi.org/10.1109/TMECH.2014.2365877
http://dx.doi.org/10.1016/0013-4694(87)90003-4
http://dx.doi.org/10.1016/j.bspc.2018.08.030
http://dx.doi.org/10.1016/j.gaitpost.2014.01.018
http://dx.doi.org/10.1016/j.bspc.2015.03.012
http://dx.doi.org/10.1007/BF00421103
http://dx.doi.org/10.1016/S1050-6411(99)00006-1
http://dx.doi.org/10.5120/14079-2073
http://dx.doi.org/10.3390/s130912431
http://dx.doi.org/10.1016/j.jelekin.2011.04.004
http://www.ncbi.nlm.nih.gov/pubmed/21689608
http://dx.doi.org/10.1016/j.jelekin.2010.07.004
http://www.ncbi.nlm.nih.gov/pubmed/20702112
http://www.ncbi.nlm.nih.gov/pubmed/6477083


Appl. Sci. 2020, 10, 2638 16 of 17

55. Yang, J.F.; Winter, D.A. Electromyography reliability in maximal and submaximal isometric contractions.
Arch. Phys. Med. Rehabil. 1983, 64, 417–420.

56. David, A.W. The Biomechanics and Motor Control of Human Gait; University of Waterloo Press: Waterloo, ON,
Canada, 1988.

57. Tabard-Fougère, A.; Rose-Dulcina, K.; Pittet, V.; Dayer, R.; Vuillerme, N.; Armand, S. EMG normalization
method based on grade 3 of manual muscle testing: Within-and between-day reliability of normalization
tasks and application to gait analysis. Gait Posture 2018, 60, 6–12. [CrossRef]

58. Colacino, F.M.; Emiliano, R.; Mace, B.R. Subject-specific musculoskeletal parameters of wrist flexors and
extensors estimated by an EMG-driven musculoskeletal model. Med. Eng. Phys. 2012, 34, 531–540. [CrossRef]

59. Buongiorno, D.; Barone, F.; Solazzi, M.; Bevilacqua, V.; Frisoli, A. A linear optimization procedure for an
emg-driven neuromusculoskeletal model parameters adjusting: Validation through a myoelectric exoskeleton
control. In Proceedings of the International Conference on Human Haptic Sensing and Touch Enabled
Computer Applications, London, UK, 4–7 July 2016; pp. 218–227.

60. Kim, S.; Nussbaum, M.A.; Esfahani, M.I.M.; Alemi, M.M.; Alabdulkarim, S.; Rashedi, E. Assessing the
influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part I–“Expected”
effects on discomfort, shoulder muscle activity, and work task performance. Appl. Ergon. 2018, 70, 315–322.
[CrossRef]

61. Wannop, J.W.; Worobets, J.T.; Stefanyshyn, D.J. Normalization of ground reaction forces, joint moments, and
free moments in human locomotion. J. Appl. Biomech. 2012, 28, 665–676. [CrossRef]

62. Tao, W.; Liu, T.; Zheng, R.; Feng, H. Gait Analysis Using Wearable Sensors. Sensors 2012, 12, 2255–2283.
[CrossRef]

63. Jung, J.Y.; Heo, W.; Yang, H.; Park, H. A Neural Network-Based Gait Phase Classification Method Using
Sensors Equipped on Lower Limb Exoskeleton Robots. Sensors 2015, 15, 27738–27759. [CrossRef]

64. Subasi, A. Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders.
Comput. Boil. Med. 2013, 43, 576–586. [CrossRef] [PubMed]

65. Tavakoli, M.; Benussi, C.; Lopes, P.A.; Osorio, L.B.; de Almeida, A.T. Robust hand gesture recognition with a
double channel surface EMG wearable armband and SVM classifier. Biomed. Signal Process. Control 2018, 46,
121–130. [CrossRef]

66. Ziegier, J.; Gattringer, H.; Mueller, A. Classification of gait phases based on bilateral emg data using support
vector machines. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and
Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018; pp. 978–983.

67. Xi, X.; Tang, M.; Luo, Z. Feature-level fusion of surface electromyography for activity monitoring. Sensors
2018, 18, 614. [CrossRef] [PubMed]

68. Savur, C.; Sahin, F. Real-time american sign language recognition system using surface emg signal. In
Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA),
Miami, FL, USA, 9–11 December 2015; pp. 497–502.

69. Alkan, A.; Günay, M. Identification of EMG signals using discriminant analysis and SVM classifier. Expert
Syst. Appl. 2012, 39, 44–47. [CrossRef]

70. Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47,
583–621. [CrossRef]

71. Chan, Y.; Walmsley, R.P. Learning and understanding the Kruskal-Wallis one-way analysis-of-variance-
by-ranks test for differences among three or more independent groups. Phys. Ther. 1997, 77, 1755–1761.
[CrossRef]

72. Figueiredo, J.; Moreno, J.C.; Santos, C.P. Assistive locomotion strategies for active lower limb devices. In
Proceedings of the 2017 IEEE 5th Portuguese Meeting on Bioengineering (ENBENG), Coimbra, Portugal,
16–18 February 2017; pp. 1–4.

73. Arsenault, A.; Winter, D.; Marteniuk, R. Is there a ‘normal’ profile of EMG activity in gait? Med. Biol. Eng.
Comput. 1986, 24, 337–343. [CrossRef]

74. Vernillo, G.; Giandolini, M.; Edwards, W.B.; Morin, J.-B.; Samozino, P.; Horvais, N.; Millet, G.Y. Biomechanics
and physiology of uphill and downhill running. Sports Med. 2017, 47, 615–629. [CrossRef]

http://dx.doi.org/10.1016/j.gaitpost.2017.10.026
http://dx.doi.org/10.1016/j.medengphy.2011.08.012
http://dx.doi.org/10.1016/j.apergo.2018.02.025
http://dx.doi.org/10.1123/jab.28.6.665
http://dx.doi.org/10.3390/s120202255
http://dx.doi.org/10.3390/s151127738
http://dx.doi.org/10.1016/j.compbiomed.2013.01.020
http://www.ncbi.nlm.nih.gov/pubmed/23453053
http://dx.doi.org/10.1016/j.bspc.2018.07.010
http://dx.doi.org/10.3390/s18020614
http://www.ncbi.nlm.nih.gov/pubmed/29462968
http://dx.doi.org/10.1016/j.eswa.2011.06.043
http://dx.doi.org/10.1080/01621459.1952.10483441
http://dx.doi.org/10.1093/ptj/77.12.1755
http://dx.doi.org/10.1007/BF02442685
http://dx.doi.org/10.1007/s40279-016-0605-y


Appl. Sci. 2020, 10, 2638 17 of 17

75. Alexander, N.; Schwameder, H. Effect of sloped walking on lower limb muscle forces. Gait Posture 2016, 47,
62–67. [CrossRef]

76. Lay, A.N.; Hass, C.J.; Nichols, T.R.; Gregor, R.J. The effects of sloped surfaces on locomotion: An
electromyographic analysis. J. Biomech. 2007, 40, 1276–1285. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.gaitpost.2016.03.022
http://dx.doi.org/10.1016/j.jbiomech.2006.05.023
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Experiment Setup 
	Data Pre-Processing 
	Feature Extraction 
	Establishment of SVM Model 
	Evaluation of the Selected Features and the SVM Model 

	Results and Discussion 
	EMG and GRF Profiles 
	Statistical Features in Different Terrains 
	TA EMG 
	SL EMG 
	Ground Reaction Force 

	Training Performance of SVM and Comparison between the EMG and GRF Features 

	Conclusions 
	References

