
applied
sciences

Article

Log Analysis-Based Resource and Execution Time
Improvement in HPC: A Case Study

JunWeon Yoon 1 , TaeYoung Hong 1, ChanYeol Park 1, Seo-Young Noh 2 and HeonChang Yu 3,*
1 Supercomputing Center, KISTI, 245 Daehak-ro, Yuseong-Gu, Daejeon 34141, Korea; jwyoon@kisti.re.kr (J.Y.);

tyhong@kisti.re.kr (T.H.); chan@kisti.re.kr (C.P.)
2 Department of Computer Science, Chungbuk National University, Chungbuk 28644, Korea;

rsyoung@cbnu.ac.kr
3 Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea
* Correspondence: yuhc@korea.ac.kr; Tel.: +82-2-3290-2392

Received: 28 February 2020; Accepted: 9 April 2020; Published: 10 April 2020
����������
�������

Abstract: High-performance computing (HPC) uses many distributed computing resources to solve
large computational science problems through parallel computation. Such an approach can reduce
overall job execution time and increase the capacity of solving large-scale and complex problems.
In the supercomputer, the job scheduler, the HPC’s flagship tool, is responsible for distributing and
managing the resources of large systems. In this paper, we analyze the execution log of the job
scheduler for a certain period of time and propose an optimization approach to reduce the idle time
of jobs. In our experiment, it has been found that the main root cause of delayed job is highly related
to resource waiting. The execution time of the entire job is affected and significantly delayed due to
the increase in idle resources that must be ready when submitting the large-scale job. The backfilling
algorithm can optimize the inefficiency of these idle resources and help to reduce the execution time of
the job. Therefore, we propose the backfilling algorithm, which can be applied to the supercomputer.
This experimental result shows that the overall execution time is reduced.

Keywords: HPC; supercomputer; parallel computing; job scheduling; backfilling

1. Introduction

A batch job scheduler periodically monitors the status of computing resources in a cluster and
distributes jobs efficiently. Such a batch job scheduler is called, in general, the Distributed Resource
Management System (DRMS) [1], Workload Management System (WMS) [2], or simply a job scheduler.

The basic role of the scheduler is to accurately reflect the resource status [3]. This includes the
various computational resource, such as licenses, CPU, and memory, as well as many-core based
acceleration systems, such as GPU and Intel PHI (many-core architecture) [4], which are of recent
interest. It also meets requirements such as the fair-share policy [5] to ensure the fair distribution of
resource distribution after awareness of resources, preemption support for high-priority jobs, resource
scalability assurance, and support for various system environments. Most job scheduler software
reflects the user job environment, from job submission to termination, as well as the state of the
inventory and system status of the entire managed object. It also stores various pieces of information
related to job execution, such as job scripts, environment variables, libraries, waiting, and the starting
and ending times for a job. In order to configure the cluster environment and manage batch jobs,
the scheduler is chosen to reflect the characteristics of the computation environment in software and
hardware perspective [6].

This study analyzes the job execution logs performed in the batch scheduler of the Tachyon2
system, which has been actively operated in the National Supercomputing Center at Korea Institute of

Appl. Sci. 2020, 10, 2634; doi:10.3390/app10072634 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-6094-8969
https://orcid.org/0000-0001-6104-1752
http://dx.doi.org/10.3390/app10072634
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/7/2634?type=check_update&version=2

Appl. Sci. 2020, 10, 2634 2 of 14

Science and Technology Information (KISTI) [7]. The acquired log of the supercomputer contains rich
pieces of information related to submitted jobs, such as user information, execution time, resource size,
job exit status, and so on [8]. When a large-scale job is submitted to the batch scheduler, it waits without
using the returned compute resource until the requested resource is prepared. This supercomputer log
shows that idle resources are not used during this waiting time, causing inefficient resource waste.
Therefore, the efficiency of resource allocation has to be evaluated by the scheduling algorithm [9].
It can be seen that optimization can be performed by applying the backfilling. In this paper, we will
show that turnaround time can be reduced by optimizing the inefficiency of waiting resources.

The rest of this paper is organized as follows: In Section 2, we will introduce system configurations
of Tachyon2, which is the supercomputer used for our analysis. In Sections 3 and 4, we will introduce
the backfilling algorithm and our experimental results, respectively. We will conclude this paper in
Section 5.

2. System Configuration

2.1. System Overview

This study was carried out using a Tachyon2 supercomputer that is currently in service. This
system consists of various hardware and software stacks. On the hardware side, it is made of compute
nodes, storage, backup archivers, and infrastructure nodes (login, data mover, scheduler, admin, etc.).
In Tachyon2, each machine is connected by an InfiniBand interconnect [10]. For software, it works with
a variety of software stacks, from the system OS to the application layer. As shown in Figure 1, KISTI’s
Tachyon2 supercomputer is a Linux-based cluster system with 3200 computing nodes. Each node is
equipped with two quad-core Intel Xeon X5570 2.93GHz (Nehalem) CPUs, each of which has 8 cores.
And DDR3 type of 24GB memory is installed in 3 channels. In this system, the Sun Grid Engine (SGE)
is being used as a batch job scheduler [11].

Appl. Sci. 2020, 10, 2634 2 of 14

of Science and Technology Information (KISTI) [7]. The acquired log of the supercomputer contains
rich pieces of information related to submitted jobs, such as user information, execution time,
resource size, job exit status, and so on [8]. When a large-scale job is submitted to the batch scheduler,
it waits without using the returned compute resource until the requested resource is prepared. This
supercomputer log shows that idle resources are not used during this waiting time, causing
inefficient resource waste. Therefore, the efficiency of resource allocation has to be evaluated by the
scheduling algorithm [9]. It can be seen that optimization can be performed by applying the
backfilling. In this paper, we will show that turnaround time can be reduced by optimizing the
inefficiency of waiting resources.

The rest of this paper is organized as follows: In Section 2, we will introduce system
configurations of Tachyon2, which is the supercomputer used for our analysis. In Section 3 and
Section 4, we will introduce the backfilling algorithm and our experimental results, respectively. We
will conclude this paper in Section 5.

2. System Configuration

2.1. System Overview

This study was carried out using a Tachyon2 supercomputer that is currently in service. This
system consists of various hardware and software stacks. On the hardware side, it is made of compute
nodes, storage, backup archivers, and infrastructure nodes (login, data mover, scheduler, admin,
etc.). In Tachyon2, each machine is connected by an InfiniBand interconnect [10]. For software, it
works with a variety of software stacks, from the system OS to the application layer. As shown in
Figure 1, KISTI’s Tachyon2 supercomputer is a Linux-based cluster system with 3200 computing
nodes. Each node is equipped with two quad-core Intel Xeon X5570 2.93GHz (Nehalem) CPUs, each
of which has 8 cores. And DDR3 type of 24GB memory is installed in 3 channels. In this system, the
Sun Grid Engine (SGE) is being used as a batch job scheduler [11].

Figure 1. Diagram of KISTI’s Tachyon2 supercomputer.

2.2. Batch Job Scheduler

Scheduler is a program that manages the order and schedule by giving priority to fairness of
numerous submitted jobs. There are various solutions, such as a Sun Grid Engine (SGE), Slurm [12],

Figure 1. Diagram of KISTI’s Tachyon2 supercomputer.

Appl. Sci. 2020, 10, 2634 3 of 14

2.2. Batch Job Scheduler

Scheduler is a program that manages the order and schedule by giving priority to fairness of
numerous submitted jobs. There are various solutions, such as a Sun Grid Engine (SGE), Slurm [12],
LSF [13], Portable Batch System (PBS) [14], LoadLeveler [15], etc. Tachyon2 is using SGE to handle
batch jobs. With such a scheduler, users can submit numerous jobs without concerning where and
when the work will be assigned to computing resource and performed [16].

In order to execute an application on the supercomputer, the user writes a job specification script,
as shown in Table 1, and submits the job script to the scheduler using the “qsub” command. When
an available resource is acquired while waiting in the queue, the job is allocated to that resource and
executed on that system. When assigning jobs, the policy for job assignment has to work. In Tachyon2,
the exclusive node assignment policy is configured and applied. This means that only one job is
assigned to a node, and interference can be eliminated when multiple jobs are executed simultaneously.

Table 1. Batch job script for submission.

#!/bin/bash 1
#$ -V 2 Pass the environment variabe

#$ -cwd 3 Use the current working directory
#$ -w e 4 Verify options and abort if there is an error

#$ -N Job_name 5 Job name
#$ -pe mpi_4cpu 8 6 Parallel environment

#$ -q normal 7 Queue name to be execute
#$ -R yes 8 Resource reservation trigger

#$ -wd /scratch/$User/job_dir 9 Working directory
#$ -l h_rt=10:00:00 10 Maximum running time

#$ -l OMP_NUM_THREADS = 2 11 OpenMP threads per MPI process
#$ -M myEmailAddress 12 Email address to notify

mpirun -hostfile
$TMPDIR/machines

-np $NSLOTS userjob.exe
13 User application

Figure 2 shows the execution process of parallel application in the high-performance computing
(HPC) batch-type environment. In general, all batch jobs are processed through the scheduler, the status
of resources is continuously monitored, and abnormal resources are excluded from available resources.
In this system, a job is not preempted by another until it is submitted to the scheduler, executed,
and finished [17].

Appl. Sci. 2020, 10, 2634 3 of 14

LSF [13], Portable Batch System (PBS) [14], LoadLeveler [15], etc. Tachyon2 is using SGE to handle
batch jobs. With such a scheduler, users can submit numerous jobs without concerning where and
when the work will be assigned to computing resource and performed [16].

In order to execute an application on the supercomputer, the user writes a job specification
script, as shown in Table 1, and submits the job script to the scheduler using the “qsub” command.
When an available resource is acquired while waiting in the queue, the job is allocated to that resource
and executed on that system. When assigning jobs, the policy for job assignment has to work. In
Tachyon2, the exclusive node assignment policy is configured and applied. This means that only one
job is assigned to a node, and interference can be eliminated when multiple jobs are executed
simultaneously

Table 1. Batch job script for submission.

#!/bin/bash 1
#$ -V 2 Pass the environment variabe

#$ -cwd 3 Use the current working directory
#$ -w e 4 Verify options and abort if there is an error

#$ -N Job_name 5 Job name
#$ -pe mpi_4cpu 8 6 Parallel environment

#$ -q normal 7 Queue name to be execute
#$ -R yes 8 Resource reservation trigger

#$ -wd /scratch/$User/job_dir 9 Working directory
#$ -l h_rt=10:00:00 10 Maximum running time

#$ -l OMP_NUM_THREADS = 2 11 OpenMP threads per MPI process
#$ -M myEmailAddress 12 Email address to notify

mpirun -hostfile $TMPDIR/machines
 -np $NSLOTS userjob.exe

13 User application

Figure 2 shows the execution process of parallel application in the high-performance computing
(HPC) batch-type environment. In general, all batch jobs are processed through the scheduler, the
status of resources is continuously monitored, and abnormal resources are excluded from available
resources. In this system, a job is not preempted by another until it is submitted to the scheduler,
executed, and finished [17].

Figure 2. Procedure for the job running using a batch job scheduler.

The turnaround time of a job (Jobtat) is the time from when the user submits the job to get the
results, which can be optimized according to the scheduling algorithm [18]. The steps of each process
related to the work execution can be represented as follows:

Figure 2. Procedure for the job running using a batch job scheduler.

Appl. Sci. 2020, 10, 2634 4 of 14

The turnaround time of a job (Jobtat) is the time from when the user submits the job to get the
results, which can be optimized according to the scheduling algorithm [18]. The steps of each process
related to the work execution can be represented as follows:

Jobtat = Tready + Trunning + Tprocessing (pre, post) (1)

Trunning = Tcal + Tcomm + Tio (2)

• Jobtat: Amount of time from submission to termination of the job;
• Tready: Waiting time for available resources in the ready queue;
• Trunning: Real-time of user job;
• Tprocessing: Pre or post-processing time to store job information;
• Tcal: Job computation time (CPU bound);
• Tcomm: Communication time (Network bound);
• Tio: I/O time between compute nodes and filesystem.

Ultimately, Jobtat consists of waiting time before submitting a job, real job running time,
and preprocessing time. Scheduling optimization here can effectively reduce the latency of the
job (Tready). In this paper, we focus and simulate Jobtat reduction by optimizing Tready through the
backfilling algorithm.

2.3. Job Execution Logs

Tachyon2 stores information about job execution at the start and endpoint. When a job is submitted,
it is queued while available resources are ready. When available resources are obtained, the job is
assigned to the compute resources. At this time, the user’s job description script is backed up, and the
library, compiler, and node information required to run the program are stored. At this time, the user’s
job scripts, libraries and compilers required to run the program, and the allocated resource information
are stored [19].

When the job is completed on the Tachyon2 system, the scheduler (SGE) leaves the job execution
information, then regenerates this log and saves it again daily in the format shown in Table 2. This
data is used in accounting, statistical extraction, user job tracking, and so on. This log contains the log
recording time, unique job ID, job name and date information. In addition, such a log format contains
several important pieces of date information that are related to the job. For example, Submit-Date,
Start-Date, and End-Date are representing the submission, starting, and ending date information
in the format of yyyymmddhhmmss. While such date information is provided in the perspective of
jobs, there are pieces of resource utilization perspective information, such as Wait-Time (Tready) and
Execution-Time (Trunning). Such time information provides how long the jobs were queued for waiting
resources and utilized assigned computing resources. Finally, the log format also provides pieces status
information, such as the number of used CPU, Exit-Code, Failed-Code, and the number of threads [6].

As mentioned earlier, Tachyon2 uses an exclusive policy that executes only one job per node.
Even if the number of cores used by a job is 4 (CPUS), it is subtracted after multiplying by 8 (E-CPU),
which is the total number of cores installed on the node. Resource usage is calculated for all nodes on
which the job has been run. Each of the CPU USAGE (s), MEM USAGE (KB), and MAX VMEM (KB)
is expressed as the sum of CPU time, memory usage, and virtual memory usage of all nodes where
the job is executed. Normally, jobs in HPC are executed using multiple resources, and the scheduler
recognizes the events of each processor at the end of the job and logs the status. Most of the job is
normally completed and then terminated, but it can be abnormally terminated for reasons such as
forced termination by the user, error in the job submission script, exceeding the wall time limit of the
job scheduler, software and hardware problems, etc. At the end of the job, the scheduler leaves each
signal code according to the above causes [20]. The code for this cause is logged in the EXIT-CODE

Appl. Sci. 2020, 10, 2634 5 of 14

(#19) and FAILED (#20) fields. In the case of the OpenMP (Open Multi-Processing) code, the number
of threads is stored in the OMP_NUM_THREADS (# 21) field.

Table 2. Job executed information of the converted Sun Grid Engine (SGE) log.

No. Property Value(Example) No. Property Value(Example)

1 DATE 20181029 12 CPUS (cores) 128
2 JOBID 2310609 13 CPU USAGE (s) 2521538.58
3 GID na0*** 14 MEM USAGE (KB) 2269836.14
4 UID r000*** 15 MAX VMEM (KB) 345363.75
5 JOBNAME mpi_solver 16 STATUS D
6 QNAME nomral 17 E-CPU(cores) 256
7 SUBMIT(DATE) 20181026111256 18 E-RUN(s) 11343872
8 START(DATE) 20181028191152 19 EXIT-CODE 0(128)
9 END(DATE) 20181029050924 20 FAILED 0(128)

10 WAIT(s) 444543 21 OMP_NUM_THREADS 1
11 RUN(s) 35852 22 TASK_NUM 0

This study confirms that the utilization of idle resources is effectively used when the large-scale
job is submitted in Tachyon2. It extracts statistical data and analyzes patterns of large-scale jobs using
thousands of cores or more from the job log of Tachyon2 stored in the form of Table 2.

2.4. Analysis of Job Execution Logs

This section describes the way to optimize resource utilization through the analysis of large-scale
jobs. It was mentioned that the Tachyon2 system is composed of 3200 compute nodes and has 8 cores
per node. In total, it consists of 25,600 cores. The scheduler divides resource groups through queues.
In this system, queue groups are largely divided into two types: public queues and private queues [21].
The public queue is used by various researchers to share computational resources through competition,
and the exclusive queue is assigned to groups for specific mission-oriented research. The size of
the computational resources allocated to the public queue and the exclusive queue can be changed
depending on the purpose of the study.

This experiment focused on log data from public queues used through resource competition and
conducted experiments for statistical analysis of the data. The first approach extracted the number of
large-scale jobs using more than 2000 cores over a two-year period on a monthly basis. As shown in
Figure 3, the number of large-scale jobs is being gradually increased and more than 4000 cores were
concentrated from November 2016 to March 2017. Figure 4 shows the trend of available resources
during the same period. The All Available Resources (core) shows the size of the resources allocated to
the public queue. As discussed in Section 2.3, the exclusive policy was used in the Tachyon2 system.
Therefore, the difference between Idle Resources (cores) and Avail Resources (Cores) represents the sum of
the total number of unused resources and the number of cores of unused nodes. The usage statistics of
the Tachyon2 system during the period are as follows.

- Statistic results of the resource usage (January 2016–December 2017)

• Average waiting time (Tready): 9.3 h
• Average turnaround time (Tready): 15.3 h
• Average node usage rate: 85.69%

As shown in the summary, the average waiting time for public queues reaches 9.3 hours. However,
the actual overall node utilization is only about 85%. This means that even though about 15% of the
nodes were available, resources could not be used efficiently due to scheduling load. In other words,
as shown in Figures 3 and 4, when a large-scale job is submitted, it waits until the required resources
are available. In the meantime, even if a small job can be executed, it should wait if the priority is low.
Therefore, even if a job requires a small number of resources and is performed shortly if the job priority
is low, it must wait until the large-scale job is finished, even if there is an available resource.

Appl. Sci. 2020, 10, 2634 6 of 14
Appl. Sci. 2020, 10, 2634 6 of 14

Figure 3. Statistics of the large-scale jobs counts.

Figure 4. Statistics of the public queue available nodes.

The algorithm adopted by default in the scheduler is the First Come First Serve (FCFS) method,
where the first arriving task in time is executed first. FCFS is the best way to ensure fairness of job
order, but fragmentation occurs as the size of the computed resource increases, limiting the efficient
use of resources. [22].

All jobs have their priorities. Such priorities are given, in general, based on arrival time. In
addition, all jobs have different resource requirements. Therefore, it should be emphasized that actual
available resources are not used if a high priority job holds those resources. Moreover, it is also noted
that such available resources cannot be fragmented and shared for lower priority jobs. Figures 3 and
4 show the trend of increasing available resources as the number of large-scale operations increases
towards the end of 2016 and early 2017.

The most extreme way to reduce resource fragmentation is to allocate the shortest job first, which
is called the Shortest Job First (SJF) algorithm [23]. Such an algorithm prioritizes small jobs according
to fragmented resources. This can improve resource utilization and improve overall performance,
but it does not guarantee the fairness of job order. Therefore, it is worth noting that, in the worst case,
the algorithm might result in the starvation problem for large-scale jobs. In that sense, the scheduling
policy should be used in a way that combines FCFS and SJF considering resource size and job
characteristics [24].

Most job scheduling policies simply use an FCFS method in which jobs submitted first to the
queue are executed first. The backfilling algorithm is an excellent method for solving the resource
fragmentation, but only simple and passive techniques are applied in a site-level service

0

5,000

10,000

15,000

20,000

25,000

30,000

20160101 20160131 20160301 20160331 20160430 20160530 20160629 20160729 20160828 20160927 20161027 20161126 20161226 20170125 20170224 20170301 20170425 20170501 20170624 20170724 20170823 20170922 20171022 20171121 20171221

All Available Resources (cores) Avail Resources (cores) Idle Resources (cores)
Cores

Date (yyyymmdd)

Figure 3. Statistics of the large-scale jobs counts.

Appl. Sci. 2020, 10, 2634 6 of 14

Figure 3. Statistics of the large-scale jobs counts.

Figure 4. Statistics of the public queue available nodes.

The algorithm adopted by default in the scheduler is the First Come First Serve (FCFS) method,
where the first arriving task in time is executed first. FCFS is the best way to ensure fairness of job
order, but fragmentation occurs as the size of the computed resource increases, limiting the efficient
use of resources. [22].

All jobs have their priorities. Such priorities are given, in general, based on arrival time. In
addition, all jobs have different resource requirements. Therefore, it should be emphasized that actual
available resources are not used if a high priority job holds those resources. Moreover, it is also noted
that such available resources cannot be fragmented and shared for lower priority jobs. Figures 3 and
4 show the trend of increasing available resources as the number of large-scale operations increases
towards the end of 2016 and early 2017.

The most extreme way to reduce resource fragmentation is to allocate the shortest job first, which
is called the Shortest Job First (SJF) algorithm [23]. Such an algorithm prioritizes small jobs according
to fragmented resources. This can improve resource utilization and improve overall performance,
but it does not guarantee the fairness of job order. Therefore, it is worth noting that, in the worst case,
the algorithm might result in the starvation problem for large-scale jobs. In that sense, the scheduling
policy should be used in a way that combines FCFS and SJF considering resource size and job
characteristics [24].

Most job scheduling policies simply use an FCFS method in which jobs submitted first to the
queue are executed first. The backfilling algorithm is an excellent method for solving the resource
fragmentation, but only simple and passive techniques are applied in a site-level service

0

5,000

10,000

15,000

20,000

25,000

30,000

20160101 20160131 20160301 20160331 20160430 20160530 20160629 20160729 20160828 20160927 20161027 20161126 20161226 20170125 20170224 20170301 20170425 20170501 20170624 20170724 20170823 20170922 20171022 20171121 20171221

All Available Resources (cores) Avail Resources (cores) Idle Resources (cores)
Cores

Date (yyyymmdd)

Figure 4. Statistics of the public queue available nodes.

The algorithm adopted by default in the scheduler is the First Come First Serve (FCFS) method,
where the first arriving task in time is executed first. FCFS is the best way to ensure fairness of job
order, but fragmentation occurs as the size of the computed resource increases, limiting the efficient
use of resources. [22].

All jobs have their priorities. Such priorities are given, in general, based on arrival time. In addition,
all jobs have different resource requirements. Therefore, it should be emphasized that actual available
resources are not used if a high priority job holds those resources. Moreover, it is also noted that such
available resources cannot be fragmented and shared for lower priority jobs. Figures 3 and 4 show the
trend of increasing available resources as the number of large-scale operations increases towards the
end of 2016 and early 2017.

The most extreme way to reduce resource fragmentation is to allocate the shortest job first, which
is called the Shortest Job First (SJF) algorithm [23]. Such an algorithm prioritizes small jobs according
to fragmented resources. This can improve resource utilization and improve overall performance, but
it does not guarantee the fairness of job order. Therefore, it is worth noting that, in the worst case,
the algorithm might result in the starvation problem for large-scale jobs. In that sense, the scheduling
policy should be used in a way that combines FCFS and SJF considering resource size and job
characteristics [24].

Most job scheduling policies simply use an FCFS method in which jobs submitted first to the
queue are executed first. The backfilling algorithm is an excellent method for solving the resource
fragmentation, but only simple and passive techniques are applied in a site-level service environment.

Appl. Sci. 2020, 10, 2634 7 of 14

Nurion system, the next generation of the Tachyon2 system that was the background of this study,
uses Portable Batch System (PBS) as a scheduler [25].

PBS uses the backfill_depth parameter, which is the number of backfill targets, for the top jobs with
the highest priority among the queued job list [26]. PBS can backfill only a few lower priority jobs
(backfill_depth) based on the highest priority parent job in the list of held jobs.

In addition, when a specific event occurs, the scheduler updates the resource status and the job
profile, which is called a scheduling cycle [27]. The events that trigger the scheduling cycle include
a certain period of time when submitting and terminating a job, when a scheduling server starts,
and when a new configuration of a scheduler is applied, and so on. In the batch scheduler, the job size
consists of the number of processors and the execution time, where the execution time is estimated
by the user and specified in the job script and then submitted to the scheduler. Therefore, the actual
job execution time can often be terminated earlier than the expected time. In this case, if the job ends
earlier than expected, resource fragmentation occurs again and the backfill target (backfill_depth) job
fills up. If this situation repeats and small jobs continue to be backfilled, eventually, the top job will
not run and will lead to starvation. In general, to avoid this starvation, production level systems set
the backfill_depth value very low to adjust the number of backfill operations. In the case of the Nurion
system, the value is set to 3 or less. Because of this weakness, if the scheduler limits the number of
backfill jobs to a setting like backfill_depth, it will not be able to take full advantage of fragmented
resource utilization. Therefore, in this study, the simulation is performed by utilizing all fragmentation
resources without limiting the number of jobs that can be backfilled as follows.

3. Backfilling Algorithm

Backfilling scheduling is a method of rearranging the order when a small job cannot be performed
due to a relatively large predecessor job This aims to improve performance by placing small-scale jobs
that can be executed first, while maintaining fairness. In order to apply this algorithm, the user must
specify the size and execution time of the task.

This algorithm can improve performance with fairness. In backfilling scheduling, the execution
time and size of each job must be specified. In this work, we traced and analyzed the job logs executed
by the scheduler. As a result, we identify the idle resources that have not been used for a certain
period of time and perform an experiment to optimize resource utilization by applying a backfilling
algorithm [28].

The conservative backfilling algorithm is a basic version, and it adheres to the FCFS scheme, which
is the basic principle of scheduling, and running first when a subordinate job satisfies a fragmented
resource. In general, batch jobs submitted to the scheduler have attributes for required resources and
execution time. The backfilling algorithm also has these two properties. For this mechanism, there are
two data structures. The first is a list structure that stores jobs and execution time of the queue list and
the second is the resource processor profile to be used.

This algorithm requires no latency for prior jobs due to subordinate jobs but cannot guarantee the
planned sequence of jobs if the preceding job is terminated earlier than the expected time. Therefore,
there is a more advanced algorithm for this, which is called EASY (the Extensible Argonne Scheduling
System) backfilling [28,29]. However, the experiment in this study simulates the performance
improvement through backfilling at a fixed time for a large-scale job and therefore excludes the
case where the job ends before the expected time. Figure 5 and Algorithm 1 show the conservative
backfilling algorithm and how it works, respectively.

The 1st priority queued job does not have enough resources to run, so it will be scheduled after the
two running jobs (a) and (b) have ended. The 2nd priority queued job finds the available resource point
(t1), as indicated by the dotted line in Figure 5. Then, from this point t1 to the end of the execution, it
checks whether it is possible to free up resources. However, at t2, the 1st priority queued job is waiting
and the 2nd priority queued job will delay it. The 2nd priority queued job can potentially free up
resources if only one predecessor is terminated. However, the execution time of this job delays the

Appl. Sci. 2020, 10, 2634 8 of 14

predecessor, so a new start point must be found. In other words, it is a mechanism that prevents future
arrivals from delaying previous pending operations. Finally, the 3rd priority queued job is backfilling
because there is enough gap to do the job.

Appl. Sci. 2020, 10, 2634 8 of 14

future arrivals from delaying previous pending operations. Finally, the 3rd priority queued job is
backfilling because there is enough gap to do the job.

Figure 5. Conservative backfilling.

Algorithm 1: Conservative backfilling

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

data: ∙Running job is Ji,
Queued job Qj(p, t) - Qj(p) is required processors, Qj(t) is required time
Total available resource of system is S
Total used resource at time ti is P(ti)

for queued job Qj ∈ Q do

Sort by execution time(∀J)
 if S-P(ti) ≥ Qj (p) then

 if ti – ti-1 > Qj (t) then
 JobAllocation();

 P(ti) ← P(ti) +Qj (p); // Resource update
 Ti+1 ← Ti +Qj (t); // New time stamp insert
 For time stamp index from Ti+1 to Tend do

IncreaseIndex(Ti+1);
end for
j ← j + 1;

 else
i ← i + 1;

 next;
 end if
 else

i ← i + 1;
 next;
 end if
end for

4. Simulation and Results

In our experiment, we have simulated certain large-scale jobs that were run on Tachyon2. This
system has a scheduling formula based on the job size weighting, but the backfilling algorithm is not
applied. Figure 6 shows the scenario of the conservative backfilling algorithm applied to Tachyon2.
As discussed, the queued job has two properties, which are the resource and time requirements [30].
Here, it is assumed that the priority is higher as the number is smaller. If large-scale job #0 is inserted
into the queue list, it should wait until it has a suitable resource. The conservative backfilling can
execute low priority jobs (box #1~#6) first during the waiting time of job #0. Job #6 has a lower priority

Figure 5. Conservative backfilling.

Algorithm 1: Conservative backfilling

data: ·Running job is Ji,
Queued job Qj(p, t) − Qj(p) is required processors, Qj(t) is required time
Total available resource of system is S
Total used resource at time ti is P(ti)

1 for queued job Qj ∈ Q do
2 Sort by execution time(∀J)
3 if S-P(ti) ≥ Qj (p) then
4 if ti − ti−1 > Qj (t) then
5 JobAllocation();
6 P(ti)← P(ti) + Qj (p); // Resource update
7 Ti+1 ← Ti + Qj (t); // New time stamp insert
8 For time stamp index from Ti+1 to Tend do
9 IncreaseIndex(Ti+1);

10 end for
11 j← j + 1;
12 else
13 i← i + 1;
14 next;
15 end if
16 else
17 i← i + 1;
18 next;
19 end if
20 end for

4. Simulation and Results

In our experiment, we have simulated certain large-scale jobs that were run on Tachyon2. This
system has a scheduling formula based on the job size weighting, but the backfilling algorithm is not
applied. Figure 6 shows the scenario of the conservative backfilling algorithm applied to Tachyon2. As
discussed, the queued job has two properties, which are the resource and time requirements [30]. Here,

Appl. Sci. 2020, 10, 2634 9 of 14

it is assumed that the priority is higher as the number is smaller. If large-scale job #0 is inserted into
the queue list, it should wait until it has a suitable resource. The conservative backfilling can execute
low priority jobs (box #1~#6) first during the waiting time of job #0. Job #6 has a lower priority than #5,
but it runs first because the available resources are acquired first and do not delay predecessor #5.

Appl. Sci. 2020, 10, 2634 9 of 14

than #5, but it runs first because the available resources are acquired first and do not delay
predecessor #5.

Figure 6. Applying backfilling to available resources before the large-scale job.

As shown in the graphs of Figures 3 and 4, the simulation is performed by selecting the job that
were the main cause of the increase in the number of available nodes due to large-scale operation.
This job was a large-scale job that required 2048 nodes (16,384 cores, 8 cores/node), and the job ran
after waiting about 40 hours and 16 minutes. During the waiting time, the computing nodes are
emptied to match the requested resources of the job, as shown in Figure 7.

Figure 7. Increase in available resources for the resource allocation of large jobs.

As a result, the latency of the entire subordinated job increases (Jobtat). If a small job with a low
priority leapfrogs first for the resources that are emptied during the waiting time, it can use the
resources efficiently. When a job is submitted to the scheduler, it has a unique job ID, submission
time, resource requirements, execution, and queue status, as shown in Figure 8 (a). The queue status
indicates whether the job is currently waiting (qw), running (r), pending (h), or terminating (e). This

Figure 6. Applying backfilling to available resources before the large-scale job.

As shown in the graphs of Figures 3 and 4, the simulation is performed by selecting the job that
were the main cause of the increase in the number of available nodes due to large-scale operation. This
job was a large-scale job that required 2048 nodes (16,384 cores, 8 cores/node), and the job ran after
waiting about 40 hours and 16 minutes. During the waiting time, the computing nodes are emptied to
match the requested resources of the job, as shown in Figure 7.

Appl. Sci. 2020, 10, 2634 9 of 14

than #5, but it runs first because the available resources are acquired first and do not delay
predecessor #5.

Figure 6. Applying backfilling to available resources before the large-scale job.

As shown in the graphs of Figures 3 and 4, the simulation is performed by selecting the job that
were the main cause of the increase in the number of available nodes due to large-scale operation.
This job was a large-scale job that required 2048 nodes (16,384 cores, 8 cores/node), and the job ran
after waiting about 40 hours and 16 minutes. During the waiting time, the computing nodes are
emptied to match the requested resources of the job, as shown in Figure 7.

Figure 7. Increase in available resources for the resource allocation of large jobs.

As a result, the latency of the entire subordinated job increases (Jobtat). If a small job with a low
priority leapfrogs first for the resources that are emptied during the waiting time, it can use the
resources efficiently. When a job is submitted to the scheduler, it has a unique job ID, submission
time, resource requirements, execution, and queue status, as shown in Figure 8 (a). The queue status
indicates whether the job is currently waiting (qw), running (r), pending (h), or terminating (e). This

Figure 7. Increase in available resources for the resource allocation of large jobs.

As a result, the latency of the entire subordinated job increases (Jobtat). If a small job with a
low priority leapfrogs first for the resources that are emptied during the waiting time, it can use the

Appl. Sci. 2020, 10, 2634 10 of 14

resources efficiently. When a job is submitted to the scheduler, it has a unique job ID, submission time,
resource requirements, execution, and queue status, as shown in Figure 8a. The queue status indicates
whether the job is currently waiting (qw), running (r), pending (h), or terminating (e). This information
can be checked with a command such as qstat provided by the scheduler. The simulation procedure is
performed as follows:

1O Extract jobs that do not exceed 2048 nodes between submission time and start time (Waiting time,
Tready) during subordinated jobs, as shown in Figure 8a;

2O Backfilling is performed on the extracted jobs, as shown in Figure 8b. Each timestamp specifies
the available idle processors (total number of cores);

3O Resource profile update

- Scans the profile (request resource) and finds the first point in the available processor.
This operation is performed for the job to be backfilled in 1O.

- Starting from this point, it continues to scan the processor to see if it is available as
a profile (request resource) until the job is terminated as expected. Figure 8 shows
the updated resources profile. Conservative backfill does not delay the start time of
predecessors. Therefore, job 3029155 is excluded because it ends after the start time of the
target job. Moreover, job 2019182 is out of resources due to the backfill operation in front.
The calculation process is shown in Appendix A.

Appl. Sci. 2020, 10, 2634 10 of 14

information can be checked with a command such as qstat provided by the scheduler. The simulation
procedure is performed as follows:

① Extract jobs that do not exceed 2048 nodes between submission time and start time (Waiting
time, Tready) during subordinated jobs, as shown in Figure 8(a);

② Backfilling is performed on the extracted jobs, as shown in Figure 8 (b). Each timestamp specifies
the available idle processors (total number of cores);

③ Resource profile update
- Scans the profile (request resource) and finds the first point in the available processor. This

operation is performed for the job to be backfilled in ①.
- Starting from this point, it continues to scan the processor to see if it is available as a profile

(request resource) until the job is terminated as expected. Figure 8 shows the updated resources
profile. Conservative backfill does not delay the start time of predecessors. Therefore, job
3029155 is excluded because it ends after the start time of the target job. Moreover, job 2019182
is out of resources due to the backfill operation in front. The calculation process is shown in
Appendix A.

(a) Extraction of backfilling enabled jobs.

(b) Job profile (resource, time), update, and exception handling of out of resource jobs.

Figure 8. Applying backfilling for a large-scale job.

Resource Efficiency can be obtained as Equations (3) ~ (5). The backfilling job has two properties
(Resource usage (P) and Runtime (T)), as shown in Figure 5. The resource efficiency by backfilling
scheduling is measured as follows:

JobID Priority Q Status Submit Time Usage (Cores) Execution Time Expected End Time
3028615 0.51397 qw 10/16/2016 19:11:05 128 12:00:00 10/17/2016 7:11:05
3028616 0.51397 qw 10/16/2016 19:11:12 128 12:00:00 10/17/2016 7:11:12
3028618 0.51396 qw 10/16/2016 19:11:32 128 12:00:00 10/17/2016 7:11:32
3028619 0.51396 qw 10/16/2016 19:11:37 128 12:00:00 10/17/2016 7:11:37
3028620 0.51396 qw 10/16/2016 19:11:47 128 12:00:00 10/17/2016 7:11:47
3028621 0.51396 qw 10/16/2016 19:11:54 128 12:00:00 10/17/2016 7:11:54
3028622 0.51396 qw 10/16/2016 19:11:59 128 12:00:00 10/17/2016 7:11:59
3029153 0.51419 qw 10/16/2016 21:41:54 4096 12:00:00 10/17/2016 9:41:54
3029154 0.51419 qw 10/16/2016 21:41:58 4096 12:00:00 10/17/2016 9:41:58
3029155 0.51419 qw 10/16/2016 21:42:04 4096 12:00:00 10/17/2016 9:42:04
3029157 0.51176 qw 10/16/2016 21:52:34 512 12:00:00 10/17/2016 9:52:34
3029163 0.51166 qw 10/16/2016 21:59:35 512 12:00:00 10/17/2016 9:59:35
3029182 0.51373 qw 10/16/2016 22:12:09 4096 12:00:00 10/17/2016 10:12:09

Figure 8. Applying backfilling for a large-scale job.

Appl. Sci. 2020, 10, 2634 11 of 14

Resource Efficiency can be obtained as Equations (3)–(5). The backfilling job has two properties
(Resource usage (P) and Runtime (T)), as shown in Figure 5. The resource efficiency by backfilling
scheduling is measured as follows:

Backfilling jobs: B1(P1, T1), ···, Bn(Pn, Tn) (3)

Resource Efficiency =
n∑

i=1

PiTi (4)

R(128cores× 12hours) × 7jobs + (4, 096cores× 12hours) × 2jobs
+(512cores ∗ 12hours) × 2jobs
= 72, 192seconds (Reduced overall job execution time)

(5)

Backfill scheduling recognizes the status of jobs and resources every scheduling cycle event
covered in Section 2.4 and attempts scheduling policy. This is because, as mentioned above, the status
of the job changes continuously depending on the user’s intention or the state of the system. In this
study, the simulation was performed while reflecting the job profile for each timestamp. The target job
of the experiment was shortened by about 20 hours through a backfill compared to FCFS. If this study
is applied to other similar large-scale jobs, the resource efficiency is much higher and the overall job
execution time (Jobtat) can be greatly reduced.

5. Conclusions and Future Work

Parallel computing is a suitable solution for solving large-scale problems. The main content of
this study is to optimize the order of jobs executed in the Tachyon2 system to efficiently use the entire
available resources. This experiment analyzed the actual logs of job execution using the converted
log in the Tachyon2 system. Note that the average utilization of the Tachyon2 system is about 85.6%
and the average wait time is about 9.3 hours. This can be seen as a fragmentation of resources that
occur during scheduling. Of course, it is not possible to use all the resources perfectly to reflect both
usage and execution time. However, it is possible to minimize resource fragmentation occurring
during job scheduling and to make resource utilization more efficient by analyzing the jobs performed
on the computational resources. Such utilization can be more improved by studying and applying
the appropriate scheduling algorithms. One way is to analyze the statistics of large-scale operations,
which are gradually increasing in the Tachyon2 system, to grasp the user’s success rate, execution
time, and resource size. Based on the statistical results, the backfill scheduling algorithm is studied
and simulated to reduce resource fragmentation in Tachyon2. This study effectively used available
resources and reduced turnaround time for backfilled tasks. In the end, we improved the performance
of the overall scheduler.

This paper focuses on the simulation of the backfill scheduling algorithm that analyzes the
supercomputer’s job statistics and targets cases of inefficient resource use. Although it is useful to
understand how to improve the utilization of an actively working system, it is necessary for us to
apply the various scheduling algorithms to the current system and analyze the work execution history
continuously and repeatedly as future work. In that sense, research is needed to apply advanced
algorithms that reflect when a job is done earlier than expected or when available resources are
suddenly added. Such research will optimize resource utilization and reduce overall user latency.
In this experiment, our main target system was the Tacyon2 supercomputer. As of writing, the next
generation of KISTI’s 5th supercomputer Nurion consists of 8400 compute nodes based on many-core
architectures and production services launched in December 2018. Therefore, it is worth evaluating
newly delivered supercomputers with the same approach to find the resource underutilization problem,
ultimately providing more resources to scientists for better and faster scientific outcomes.

Appl. Sci. 2020, 10, 2634 12 of 14

Author Contributions: Conceptualization, J.Y.; Methodology, J.Y., S.-Y.N. and C.P.; Data curation, J.Y.; Software,
J.Y.; Validation, J.Y., S.-Y.N. and H.Y.; Investigation, J.Y. and C.P.; Writing—Original Draft Preparation, J.Y.;
Writing—Review & Editing, J.Y. and S.-Y.N.; Supervision, H.Y.; Project administration, T.H.; Funding acquisition,
T.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been performed as a subproject of Project No. K-19-L02-C01-S01 (The National
Supercomputing Infrastructure Construction and Service) supported by the KOREA INSTITUTE of SCIENCE and
TECHNOLOGY INFORMATION(KISTI).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Jobs with a lower priority than the larger job being simulated in the queue are listed in Figure 8a.
These jobs are targeted for backfilling jobs and should not delay the start time of the original job. This
is the basic principle of a conservative algorithm. Each job has its own resource requirements, such as
the number of processes and the execution time. The scheduler calculates resource usage at regular
intervals (time stamp), and this time is performed for each scheduling cycle mentioned in the previous
text. Idle Resources in Figure A1 shows the total resources available when resources are allocated or
released by a task.

For example, when the first backfilling job (Job ID: 3028615) requests 128 cores, it allocates resources
from the start time to the end time and update Idle Resources. In the case of the backfilling job (Job ID:
3029154), the job is submitted at 21:42:04 and requests 4096 resources, but, at that point, there is not
enough resources. After about 2 hours, the available resources are released at 00:00, but this job cannot
be backfilled because the 12-hour execution time delays the original job.

Appl. Sci. 2020, 10, 2634 12 of 14

Funding: This research has been performed as a subproject of Project No. K-19-L02-C01-S01 (The National
Supercomputing Infrastructure Construction and Service) supported by the KOREA INSTITUTE of SCIENCE
and TECHNOLOGY INFORMATION(KISTI).

Conflicts of Interest: The authors declare no conflict of interest

Appendix A

Jobs with a lower priority than the larger job being simulated in the queue are listed in Figure 8
(a). These jobs are targeted for backfilling jobs and should not delay the start time of the original job.
This is the basic principle of a conservative algorithm. Each job has its own resource requirements,
such as the number of processes and the execution time. The scheduler calculates resource usage at
regular intervals (time stamp), and this time is performed for each scheduling cycle mentioned in the
previous text. Idle Resources in Figure A1 shows the total resources available when resources are
allocated or released by a task.

For example, when the first backfilling job (Job ID: 3028615) requests 128 cores, it allocates
resources from the start time to the end time and update Idle Resources. In the case of the backfilling
job (Job ID: 3029154), the job is submitted at 21:42:04 and requests 4096 resources, but, at that point,
there is not enough resources. After about 2 hours, the available resources are released at 00:00, but
this job cannot be backfilled because the 12-hour execution time delays the original job.

Figure A1. Selecting backfill jobs and updating job profiles.

References

1. Troger, P.; Rajic, H.; Haas, A.; Domagalski, P. Standardization of an API for Distributed Resource
Management Systems. In Proceedings of the Seventh IEEE International Symposium on Cluster Computing
and the Grid (CCGrid ’07), Rio De Janeiro, Brazil, 14–17 May 2007; pp. 619–626.

2. Marco, C.; Fabio, C.; Alvise, D.; Antonia, G.; Alessio, G.; Francesco, G.; Luca, P. The glite workload
management system. In Journal of Physics; Conference Series; IOP Publishing: Bristol, UK, 2010; Volume 219
062039.

3. Abawajy, J.H. An efficient adaptive scheduling policy for high-performance computing. Future Gener.
Comput. Syst. 2009, 25, 364–370.

Figure A1. Selecting backfill jobs and updating job profiles.

Appl. Sci. 2020, 10, 2634 13 of 14

References

1. Troger, P.; Rajic, H.; Haas, A.; Domagalski, P. Standardization of an API for Distributed Resource Management
Systems. In Proceedings of the Seventh IEEE International Symposium on Cluster Computing and the Grid
(CCGrid ’07), Rio De Janeiro, Brazil, 14–17 May 2007; pp. 619–626.

2. Marco, C.; Fabio, C.; Alvise, D.; Antonia, G.; Alessio, G.; Francesco, G.; Luca, P. The glite workload
management system. In Journal of Physics; Conference Series; IOP Publishing: Bristol, UK, 2010; Volume 219,
p. 062039.

3. Abawajy, J.H. An efficient adaptive scheduling policy for high-performance computing. Future Gener.
Comput. Syst. 2009, 25, 364–370. [CrossRef]

4. Sodani, A. Knights landing (knl): 2nd generation intel®xeon phi processor. In Proceedings of the IEEE Hot
Chips 27 Symposium (HCS), Cupertino, CA, USA, 22–25 August 2015; pp. 1–24.

5. Östberg, P.O.; Espling, D.; Elmroth, E. Decentralized scalable fairshare scheduling. Future Gener. Comput. Syst.
2013, 29, 130–143. [CrossRef]

6. Yoon, J.; Hong, T.; Kong, K.; Park, C. Improving the job success rate through analysis of user logs in HPC.
J. Digit. Contents Soc. 2015, 16, 691–697. [CrossRef]

7. National Institute of Supercomputing and Networking, KISTI. Available online: http://www.ksc.re.kr
(accessed on 11 February 2020).

8. Das, A.; Mueller, F.; Hargrove, P.; Roman, E.; Baden, S. Doomsday: Predicting which node will fail when on
supercomputers. In Proceedings of the SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, Dallas, TX, USA, 11–16 November 2018; pp. 108–121.

9. Pallickara, S.; Pierce, M. Swarm: Scheduling large-scale jobs over the loosely-coupled hpc clusters.
In Proceedings of the 2008 IEEE Fourth International Conference on eScience, Indianapolis, IN, USA,
7–12 December 2008; pp. 285–292.

10. Shanley, T. InfiniBand Network Architecture; Addison-Wesley Professional: Boston, MA, USA, 2003.
11. Chaubal, C. Scheduler Policies for Job Prioritization in the Sun N1 Grid Engine 6 System; Technical Report;

Sun Microsystems, Inc.: Santa Clara, CA, USA, 2005.
12. Lipari, D. The SLURM Scheduler Design. In Proceedings of the SLURM User Group Meeting, Barcelona,

Spain, 9 Octeber 2012; Volume 52, p. 52.
13. Lumb, I.; Smith, C. Scheduling attributes and Platform LSF. In Grid Resource Management; Springer: Boston,

MA, USA, 2004; pp. 171–182.
14. Bode, B.; Halstead, D.M.; Kendall, R.; Lei, Z.; Jackson, D. The Portable Batch Scheduler and the Maui

Scheduler on Linux Clusters. In Proceedings of the Annual Linux Showcase & Conference, Atlanta, GA,
USA, 10–14 October 2000.

15. Kannan, S.; Roberts, M.; Mayes, P.; Brelsford, D.; Skovira, J.F. Workload Management with Loadleveler; IBM
Redbooks: Armonk, NY, USA, 2001; Volume 2, p. 58.

16. Iqbal, S.; Gupta, R.; Fang, Y.C. Planning considerations for job scheduling in HPC clusters. Dell Power Solution.
2005, 133–136.

17. Kettimuthu, R.; Subramani, V.; Srinivasan, S.; Gopalasamy, T.; Panda, D.K.; Sadayappan, P. Selective
preemption strategies for parallel job scheduling. In Proceedings of the International Conference on Parallel
Processing, IEEE, Vancouver, BC, Canada, 21 August 2002; pp. 602–610.

18. Sabin, G.; Kochhar, G.; Sadayappan, P. Job fairness in non-preemptive job scheduling. In Proceedings of
the International Conference on Parallel Processing, ICPP 2004, Montreal, QC, Canada, 15–18 August 2004;
pp. 186–194.

19. Naik, V.K.; Squillante, M.S.; Setia, S.K. Performance analysis of job scheduling policies in parallel
supercomputing environments. In Proceedings of the 1993 ACM/IEEE conference on Supercomputing,
Portland, OR, USA, 19 December 1993; pp. 824–833.

20. Yoon, J.; Hong, T.; Park, C.; Yu, H. Analysis of Batch Job log to improve the success rate in HPC Environment.
In Proceedings of the International Conference on Convergence Technology, Seoul, Korea, 10–12 July 2013;
pp. 209–210.

21. Rasley, J.; Karanasos, K.; Kandula, S.; Fonseca, R.; Vojnovic, M.; Rao, S. Efficient queue management for
cluster scheduling. In Proceedings of the Eleventh European Conference on Computer Systems, London,
UK, 18–21 April 2016; pp. 1–15.

http://dx.doi.org/10.1016/j.future.2006.04.007
http://dx.doi.org/10.1016/j.future.2012.06.001
http://dx.doi.org/10.9728/dcs.2015.16.5.691
http://www.ksc.re.kr

Appl. Sci. 2020, 10, 2634 14 of 14

22. Schwiegelshohn, U.; Yahyapour, R. Analysis of first-come-first-serve parallel job scheduling. In Proceedings
of the SODA, San Francisco, CA, USA, 25–27 January 1998; Volume 98, pp. 629–638.

23. Hovestadt, M.; Kao, O.; Keller, A.; Streit, A. Scheduling in HPC resource management systems: Queuing vs.
planning. In Workshop on Job Scheduling Strategies for Parallel Processing; Springer: Berlin, Germany, 2003;
pp. 1–20.

24. Yuan, Y.; Wu, Y.; Zheng, W.; Li, K. Guarantee strict fairness and utilize prediction better in parallel job
scheduling. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 971–981. [CrossRef]

25. Etsion, Y.; Tsafrir, D. A Short Survey of Commercial Cluster Batch Schedulers; School of Computer Science and
Engineering, The Hebrew University of Jerusalem: Jerusalem, Israel, 2005; Volume 44221, pp. 2005–2013.

26. Klusáček, D.; Chlumský, V. Planning and metaheuristic optimization in production job scheduler.
In Job Scheduling Strategies for Parallel Processing; Springer: Cham, Switzerland, 2015; pp. 198–216.

27. Henderson, R.L. Job scheduling under the portable batch system. In Workshop on Job Scheduling Strategies for
Parallel Processing; Springer: Berlin, Germany, 1995; pp. 279–294.

28. Feitelson, D.G.; Weil, A.M.A. Utilization and predictability in scheduling the IBM SP2 with backfilling.
In Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel
and Distributed Processing, Orlando, FL, USA, 30 March–3 April 1998; pp. 542–546.

29. Srinivasan, S.; Kettimuthu, R.; Subramani, V.; Sadayappan, P. Characterization of backfilling strategies for
parallel job scheduling. In Proceedings of the International Conference on Parallel Processing Workshop,
Vancouver, BC, Canada, 21 August 2002; pp. 514–519.

30. Lucarelli, G.; Mendonca, F.; Trystram, D.; Wagner, F. Contiguity and locality in backfilling scheduling.
In Proceedings of the 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
Shenzhen, China, 4–7 May 2015; pp. 586–595.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPDS.2013.88
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System Configuration
	System Overview
	Batch Job Scheduler
	Job Execution Logs
	Analysis of Job Execution Logs

	Backfilling Algorithm
	Simulation and Results
	Conclusions and Future Work
	
	References

