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Abstract: Conventional data augmentation (DA) techniques, which have been used to improve
the performance of predictive models with a lack of balanced training data sets, entail an effort to
define the proper repeating operation (e.g., rotation and mirroring) according to the target class
distribution. Although DA using generative adversarial network (GAN) has the potential to overcome
the disadvantages of conventional DA, there are not enough cases where this technique has been
applied to medical images, and in particular, not enough cases where quantitative evaluation was
used to determine whether the generated images had enough realism and diversity to be used for DA.
In this study, we synthesized 18F-Florbetaben (FBB) images using CGAN. The generated images were
evaluated using various measures, and we presented the state of the images and the similarity value of
quantitative measurement that can be expected to successfully augment data from generated images
for DA. The method includes (1) conditional WGAN-GP to learn the axial image distribution extracted
from pre-processed 3D FBB images, (2) pre-trained DenseNet121 and model-agnostic metrics for
visual and quantitative measurements of generated image distribution, and (3) a machine learning
model for observing improvement in generalization performance by generated dataset. The Visual
Turing test showed similarity in the descriptions of typical patterns of amyloid deposition for each of
the generated images. However, differences in similarity and classification performance per axial level
were observed, which did not agree with the visual evaluation. Experimental results demonstrated
that quantitative measurements were able to detect the similarity between two distributions and
observe mode collapse better than the Visual Turing test and t-SNE.

Keywords: Alzheimer’s disease; deep learning; data augmentation; generative adversarial network;
positron emission tomography

1. Introduction

Approximately 50 million people worldwide have dementia, and nearly 10 million new cases
occur each year. This number is expected to increase to 82 million by 2030 and 152 million by
2050 [1,2]. Alzheimer’s disease (AD), which is present in 70% of patients with dementia, is the most
prevalent dementia-causing illness. It degrades memory and, thinking skills and eventually renders a
person unable to maintain an independent life [3]. From a neuropathological point of view, the main
factor responsible for the symptoms of AD are intracellular neurofibrillary tangles and extracellular
amyloid plaques [4–7]. Positron emission tomography (PET) is an ultrasensitive and non-invasive
molecular imaging technique used to detect functional activity within organs that are expected to be
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disease-related by observing the spatiotemporal distribution of radiotracers [8]. Currently, tau-PET,
which observes neurofibrillary tangles, is only used for research purposes [9], but amyloid-PET, which
has been approved by the Food and Drug Administration, is used as a clinically important indicator in
the diagnosis of dementia [10]. In particular, as specific changes in beta amyloid (Aβ) deposition within
the brain are reported to occur earlier than changes in glucose metabolism, gross cortical atrophy, or
other biomarkers, PET and related techniques are expected to provide important biomarkers that can
be used for early diagnosis and prediction of AD [4,5].

In analytical research for medical imaging, statistical analysis and machine learning (ML)
represent informative analytical techniques that have provided new understanding and insight into
the pathological characteristics of disease [11,12]. In particular, deep learning (DL) technology, which
is a type of ML, has recently successfully been applied to various medical imaging techniques,
and has demonstrated its potential to address diverse problems such as classification [13,14],
segmentation [15,16], detection [17–19], and reconstruction [20–22]. Most DL-based models achieve
high abstraction or predict posterior probabilities for a certain class by finding the proper combination
of non-linear operations. In this process, the deeply stacked model parameters connecting the input to
the output (deep neural network) are fitted to “appropriate training set” to create a function that is
general enough to make predictions. Therefore, in DL technology, the generalization performance
encourages the practitioner to obtain (1) sufficient numbers, (2) balanced numbers for each class
distribution, and (3) correctly labeled training sets for supervised learning problems [13,18]. However,
in most research environments, including medicine, it is difficult to obtain large number of relevant and
highly qualified dataset that can provide these rich experiences. As a result, the DL research community
has also conducted a variety of studies in which a given problem with constraints was solved using a
small number of training datasets or datasets with incomplete or roughly drawn labels [16,23,24].

Augmenting a given training data, which is known as data augmentation (DA), is frequently
used across domains to improve the generalization capabilities of DL models. DA techniques have
been utilized in various DL-based image classification tasks because they are intuitive and easy to
implement [25,26]. The conventional DA for image data repeatedly applies a pre-defined operation
(e.g., translation, rotation, or mirroring) to the input images in a training set, which allows the target
model to be trained to learn additional features that are robust to changes in the operation. If the
image generated as a result of such a DA operation is sufficiently homogeneous with the training
data, it could also be expected to prevent overfitting caused by a relatively heavy DL-based model
compared to the size of the insufficient training set [24]. However, there are some limitations to consider
before applying the existing conventional DA techniques to medical images. First, the experimenter
must decide which transformations to apply to the original data so that the data generated by the
transformation is similar with that of the real distribution. In other words, the distribution of the
transformed dataset must maintain homogeneity for the class to which it belongs, and heterogeneity
for other classes to which it does not belong. Second, changes in conventional DA in multi-dimensional
data such as images do not sufficiently simulate the distributions of various lesions. It is difficult to
simulate new patterns of lesions just by applying the iterative operations of conventional DA to given
medical images. For example, when the lesion is diffuse, such as in the deposition of Aβ, it is difficult
to define various types of the lesion using iterative operations.

In the same vein, another interesting DA is based on the generative adversarial network (GAN),
which synthesizes data to be used as training data through a generative model that learns the data
distribution instead of defining operations in advance [27,28]. The GAN utilizes two modules,
discriminator and generator, that compete with each other to learn fake distributions that mimic the real
distribution [29]. Ideally, if the GAN can generate a real distribution, the generated distribution could
show the boundaries between heterogeneous groups and have the potential to improve generalization
of the target model by identifying similar patterns that are not in the training set [27]. However, previous
studies on GAN-based DA have rarely considered evaluating and selecting samples quantitatively,
and in some cases, performance has deteriorated or been minimal after GAN-based DA [24,28].
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Therefore, to successfully drive a stable GAN-based DA, determining whether to enhance the
training set using the generated set based on quantitative evaluation could help to preserve and
reliably improve the performance of the target model. However, no GAN-synthesized brain images
have been evaluated using recently reported quantitative measurements [30] instead of traditional
approaches [29,31], although some simple results of visual evaluations have been reported [32].
Furthermore, according to our investigation, studies on a GAN-based synthetic medical imaging were
not addressed with a quantitative evaluation as well as a visual assessment of a brain PET for diagnosis
and prognosis of dementia. In this study, we created a conditional GAN to improve the Aβ estimation
model and performed a quantitative evaluation to confirm the similarity that can be expected to
improve the generalization performance. This method includes (1) conditional WGAN-GP to learn
each axial image distribution extracted from pre-processed 3D FBB images, (2) pre-trained DenseNet121
and model-agnostic metrics to visually and quantitatively measure the generated images, and (3) ML
models such as support vector machine (SVM) and neural network (NN) for observing generalization
performance after using of generated images for DA. Finally, we will upload the weights of GAN models,
and the source code for our experiments (https://github.com/kang2000h/GAN_evaluation) so that the
experiments we performed have reproducibility and persistence for related works (Supplementary
Materials).

2. Materials and Methods

2.1. Experiment

A data flow diagram is shown in Figure 1 that illustrates the process of obtaining GAN to improve
the target model using augmented FBB amyloid brain PET image data and measuring the reality of the
generated data and its suitability for use in data augmentation. First, raw PET images obtained from a
PACS running at DAUH undergo pre-processing. The pre-processed images were examined, and 3D
images from patients that were Aβ negative or Aβ positive were divided using a 1:1 ratio into training
and test sets. The training set was used to select and train GAN models that generated images of both
groups. In this experiment, the similarity between the images generated from the trained GAN model
and the real images was evaluated using a Visual Turing test, distribution with t-SNE, and 3 quantitative
metrics. The metrics selected to measure a similarity of a given data distribution in this experiment
used recently reported model-agnostic metrics [30,33] including Maximum mean discrepancy (MMD),
Fréchet inception distance (FID), and The 1-nearest neighbor classifier (1-NN) leave-one-out (LOO)
accuracy instead of traditional approaches in which the their limits are reported [34]. Finally, the
generalization performance of the target model was measured by comparing the performance of a
target model that was trained using only the training set with the augmented target model that was
trained using both the training and generated sets.

Appl. Sci. 2020, 3, x FOR PEER REVIEW 4 of 21 

 

Figure 1. Data flow diagram summarizing the experimental process. 

The tool used in this experiment was written using Python 3.6.9 (Python Software Foundation, 

Wilmington, DE, USA), and Keras 2.2.4, and OpenCV 4.1.2.30 libraries were mainly used. DenseNet 

was used as a feature extractor, and finetuned weights were provided by the Keras library. The 

experimental environment ran on Linux Ubuntu 16.04 LTS with 4 NVIDIA GeForce GTX TITAN XP 

GPU. 

2.2. Data Acquisition and Pre-Processing 

The FBB PET/CT images used in this study were collected retrospectively from images taken at 

the Department of Nuclear Medicine, Dong-A University Hospital (DAUH) from November 2015 to 

May 2018. The Institutional Review Board of Dong-A University Hospital reviewed and approved 

this study protocol (DAUHIRB-17-108). Each FBB image was confirmed by a nuclear medicine 

physician after collection to ensure that the Aβ distribution labels were accurate. The labeling work 

performed for our experimental data was based on the brain amyloid plaque load (BAPL) scoring 

system for reading existing FBB images. Four areas of the brain including the frontal lobe, temporal 

lobe, parietal lobe, and posterior cingulate were observed in the axial plane and scored based on the 

amount of Aβ deposited on the gray matter against the white matter [35,36]. All subjects 

photographed in this study received clinical diagnosis by DAUH, a neurologist. There were 298 

participants in the data group, which included 160 typical Aβ negatives and 138 typical Aβ positives. 

Detailed demographic data are presented in Table 1. The FBB PET images used in this experiment 

were taken using a Biograph 40mCT Flow PET/CT scanner (Siemens Healthcare, Knoxville, TN, USA) 

and reconstructed via UltraHD-PET (TrueX-TOF). The participants were photographed 90 min after 

an FBB (NeuraCeq, Piramal, Mumbai, India) dose of 300 mBq was intravenously injected and images 

were taken 20 min after Helical CT with a 0.5 s rotation time at 100 kVp and 228 mAs. The raw PET 

images used in this experiment were resliced from a field of view of 408 × 408 × 168 (mm) and stored 

in the DICOM format in the DAUH PACS. 

Table 1. Demographics of subjects who were photographed with FBB images retrospectively collected 

at Dong-A University Hospital. 

Variable Division Aβ Negative Aβ Positive Total p-Value 

# data 160 138 298  

Sex 
Male 56 61 117 

0.102 
Female 104 77 181 

Figure 1. Data flow diagram summarizing the experimental process.

https://github.com/kang2000h/GAN_evaluation


Appl. Sci. 2020, 10, 2628 4 of 19

The tool used in this experiment was written using Python 3.6.9 (Python Software Foundation,
Wilmington, DE, USA), and Keras 2.2.4, and OpenCV 4.1.2.30 libraries were mainly used. DenseNet was
used as a feature extractor, and finetuned weights were provided by the Keras library. The experimental
environment ran on Linux Ubuntu 16.04 LTS with 4 NVIDIA GeForce GTX TITAN XP GPU.

2.2. Data Acquisition and Pre-Processing

The FBB PET/CT images used in this study were collected retrospectively from images taken at
the Department of Nuclear Medicine, Dong-A University Hospital (DAUH) from November 2015 to
May 2018. The Institutional Review Board of Dong-A University Hospital reviewed and approved this
study protocol (DAUHIRB-17-108). Each FBB image was confirmed by a nuclear medicine physician
after collection to ensure that the Aβ distribution labels were accurate. The labeling work performed
for our experimental data was based on the brain amyloid plaque load (BAPL) scoring system for
reading existing FBB images. Four areas of the brain including the frontal lobe, temporal lobe, parietal
lobe, and posterior cingulate were observed in the axial plane and scored based on the amount of Aβ
deposited on the gray matter against the white matter [35,36]. All subjects photographed in this study
received clinical diagnosis by DAUH, a neurologist. There were 298 participants in the data group,
which included 160 typical Aβ negatives and 138 typical Aβ positives. Detailed demographic data are
presented in Table 1. The FBB PET images used in this experiment were taken using a Biograph 40mCT
Flow PET/CT scanner (Siemens Healthcare, Knoxville, TN, USA) and reconstructed via UltraHD-PET
(TrueX-TOF). The participants were photographed 90 min after an FBB (NeuraCeq, Piramal, Mumbai,
India) dose of 300 mBq was intravenously injected and images were taken 20 min after Helical CT
with a 0.5 s rotation time at 100 kVp and 228 mAs. The raw PET images used in this experiment
were resliced from a field of view of 408 × 408 × 168 (mm) and stored in the DICOM format in the
DAUH PACS.

Table 1. Demographics of subjects who were photographed with FBB images retrospectively collected
at Dong-A University Hospital.

Variable Division Aβ Negative Aβ Positive Total p-Value

# data 160 138 298

Sex
Male 56 61 117

0.102Female 104 77 181
Age 67.76 ± 9.09 69.56 ± 8.07 68.58 ± 8.67 0.0916

Diagnosis
NC 1 + SCD 2 58 4 62

<0.0001 *MCI 3 74 25 99
AD 4 28 109 137

Education(y) 9.27 ± 4.23 10.07 ± 4.11 9.64 ± 4.19 0.0802
K-MMSE 5 25.24 ± 3.77 20.42 ± 4.61 22.98 ± 4.82 <0.0001 *

1 NC: Normal Control. 2 SCD: Subjective Cognitive Decline. 3 MCI: Mild Cognitive Impairment. 4 AD: Alzheimer’s
Disease. 5 Korean version of Mini-Mental State Examination. *: statistically significant with 99% level of confidence.

The pre-processing steps, including co-registration and spatial and count normalization for the
brain images applied in this experiment, were performed based on statistical parametric mapping 8 [37].
Rigid co-registration was first performed on each PET image and the corresponding CT image with
respect to the center. An in-house PET template was created using CT images from 21 patients without
typical AD and 9 patients with typical AD along the MNI space. Spatial normalization was performed
on each PET image using the generated PET template [38–40]. Then, stochastic cerebellar masks for
the PET templates were obtained from PMOD3.6 (PMOD Technologies Ltd., Zurich, Switzerland) and
the Hammers brain atlas [41], and these were used to perform count normalization based on cerebellar
intensity [42]. After pre-processing, the input data for the Aβ classifier was extracted and only the
15–50 th axial images so that only the axial plane that was read by the nuclear medicine physician was
examined. Finally, a 95 × 79 × 36 image representing the Aβ distribution of each subject was used as
an input for the GAN and target classifier models.



Appl. Sci. 2020, 10, 2628 5 of 19

2.3. Target Model to Enhance with Generated Set

Before elucidating the design of a generative model in Section 2.4, we first defined the target
model for which the images created from the generative model in this experiment will be trained.
Previous studies [43,44] have shown that the performance of the ML/DL-based classification system
for the Aβ distribution on FBB amyloid PET image data obtained from DAUH was 92.38% and 93.37%,
respectively. Brain images generated using various modalities such as Magnetic Resonance Imaging
(MRI), CT, and PET maintain spatial, and, depending on the conditions, temporal information of
more than 3-dimensions. Therefore, various designs can be adopted depending on the features and
pathological characteristics of the target lesion [45]. When evaluating PET images for the presence of
FBB amyloid, the nuclear medicine physician makes a reading decision based on the contrast of gray
matter observed through the axial plane of the FBB Aβ PET. Therefore, in a previous study [43,44,46],
the BAPL score of a given FBB PET was estimated based on the Aβ distributions found at each axial
level, also known as regional cortical tracer uptake (RCTU), instead of extracting the features from the
3D information according to the current process used by physicians.

In this experiment, we used the main method described in previous studies as target classifier to
observe the effectiveness of GAN-based DA with visual and quantitative similarity. Therefore, the
object classifier used in this experiment consists of a feature extractor to reduce features from the
2D axial plane and a classifier to predict the Aβ distribution from the extracted features. We used
DenseNet [47], a well-known convolutional neural network (CNN) structure, as the feature extractor,
and the support vector machine (SVM) [48] and neural network (NN) as the classifiers. Figure 2
shows the simplified structure of the target model used in our experiment. Transfer learning is a
technique that applies a model that has learned data in a specific field to similar or completely different
fields, and is used in medical image classification using DL-based classifiers to report interesting
results [13,14]. It is a way to reuse the weights of a finetuned CNN model that are mostly trained
with ImageNet datasets [49]. In particular, In a case that an input medical image is a originally gray
scale (e.g., ultrasonography, MRI, and PET), previous studies which use the conversion of gray to
RGB reports feasible performance even with an unknown artifacts and increased complexity [50,51].
Although the input of the target model was FBB PET images which is originally a gray scale version
of a real PET image, the channels of the input data were transformed into a color channel using the
OpenCV-python library to match the channel size of the finetuned DenseNet model for a continuity and
reproducibility of previous studies [43,44,46]. Target model training and model selection validation
were performed using 4-fold nested cross-validation and Bayesian optimization for SVM. The search
space for hyper-parameters for SVM was set to kernel functions in (Linear, RBF, Poly), C in [1, 100],
gamma in [0.0001, 0.1], and for NN was deterministically set to 3 hidden layers with 128,128, and 64
nodes, respectively; Adam optimizer with β1 = 0.9, β2 = 0.999, and without decay; 300 epochs; and
learning rate 0.00005.
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2.4. Generative Adversarial Network for Data Augmentation

The target classifier we chose performs inferences on the 2D axial images, while the prediction
for the Aβ distribution for a subject should reflect the 36 axial planes placed on the transverse axis.
Therefore, to assist the target classifier, the GAN model must understand all of the Aβ deposition
patterns for the 36 axial plane levels, with the anatomical information matched to each level. Thus,
we followed the structure of the discriminator and generator of the Deep Convolutional Generative
Adversarial Network (DCGAN) [52] to learn and infer the Aβ deposition patterns on a axial plane
level, and trained each of the axial levels from 0 to 35 to which the input image belongs using
additional condition labels [53]. Repeatedly stacked blocks were used to construct a network structure
for both generator and discriminator, and the inputs for each module multiplied by the encoded
vector for each axial level label stored in an embedding matrix and then entered the stacked network.
A generator produced an image from a noise vector of size 300 sampled from a normal distribution,
and a discriminator estimated a score for the similarity of the two distributions from real and generated
images as a critic. The generator consisted of first hidden layer with 8192 nodes connected to the noise
vector, and 5 layers of blocks which had up-sampling, convolution, batch normalization, and activation
function. The activation function of the last block was tanh instead of ReLU which other blocks had.
The discriminator had 4 layers of blocks which had convolution, batch normalization, leaky ReLU
(α = 0.2), and dropout layer (p = 0.25). And a global average pooling and a dense layer followed the
blocks ahead. The structure of the GAN model used in this experiment is shown in Figure 3.
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negative or positive dataset were used for training independent generator (G) and discriminator (D)
with a condition indicating an axial level label (CG and CD).

The GAN learns a function that connects the target distribution directly from the input distribution
without any estimation of the probability density function for the target domain. GAN has a mechanism
in which the two models, Generator G and Discriminator D, learn from each other competitively [29]
via Equation (1):

min
G

max
D

V(D, G) = Ex∼Pr [log D(x)] + Ez∼Pz(z)[log(1−D(G(z)))]. (1)

Discriminator D predicts the probability that the received data belongs to the real distribution Pr.
To maximize V(D, G), D should ideally predict 0 for the generated data G(z) from Generator G, which
learns the parameters such that D(G(z)) = 1 to minimize V(D, G).
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In our experiments implementing Wasserstein GAN (WGAN) and the loss, the input image X of
the discriminator fw parameterized by w, called critic in the original paper [54], and the input vector Z
of Generator Gθ parameterized by θ, are in the real spaces RD×D and Rd, respectively. Since the image
synthesized by Generator Gθ follows the distribution Pg, and Pg is also the same as Gθ(Pz), then

X ∈ RD×D, Z ∈ Rd, (2)

fw : X, c→ (0, 1), (3)

Gθ : Z, c→ X, (4)

x ∈ X, x̃ ∈ Gθ(z, c), z ∈ Z. (5)

Let the given PET image samples be Sr = {xr
1, . . . , xr

m, . . . , xr
n}, which is i.i.d, and the training set

for the GAN and target model is the axial plane xr
p = {xaxial

r
1, . . . , xaxial

r
p} extracted from Sr and are on

Pr. xaxial
r
p has two labels, an Aβ class yAβ ∈ [0, 1] and an axial label class ySlice ∈ [0, 35], respectively.

We aimed to obtain a generative model Gθ that produces Pg that is sufficiently close to Pr.
In the previously reported WGAN [54], a weight clipping method was used to simply implement

a Discriminator fw following the 1-Lipschitz constraint with a gradient between two points less than 1.
Gradient penalty (GP) loss [55] was proposed to reduce the length of time needed to reach an optimality
when the weights are too large or too small. We challenged the model to satisfy the constraints by
adding a regularization term (Equation (10)) to the Wasserstein loss (Equation (9)) so that the gradient
norm is 1 through the weighted average between the points sampled from Pr and Pg via Equation (6):

x̂ = εx + (1− ε)x̃, (6)

L = Lwasserstein loss + Lgradient panelty, (7)

Lwasserstein loss = E [ fw(x, ySlice)] − E[ fw(Gθ(z), ySlice), (8)

Lgradient panelty = λ
(
‖∇x̂ fw(x̂, ySlice)‖2 − 1

)2
. (9)

Model optimization was performed by joint loss L (Equation (7)) for both fw and Gθ, and each of
the parameters w and θ were optimized by RMSProp [56], respectively, via Equations (10) and (11):

θ← −∇θ
1
m

m∑
i = 1

[ fw
(
x̃, ySlicei

)
], (10)

w← ∇w

[
1
m

∑m
i = 1 fw

(
xi, ySlicei

)
−

1
m

∑m
i = 1 fw

(
x̃i, ySlicei

)
+ 1

m
∑m

i = 1 λ
(
‖∇x̂ fw

(
x̂, ySlicei

)
‖

2
− 1

)2
]
. (11)

To augment Aβ negative and positive images for each class, the GAN model was constructed as
two independent models, and the generated images were used as training data for the target model to
improve the generalization.

2.5. Performance Metrics

Visual and quantitative metrics were used to evaluate the degree of similarity between the
images generated by the generator and the test set. The generated images were visually evaluated
by comparing them with real images in test set using the Visual Turing test [32] and observing the
distribution of image features using the t-SNE [57]. In the quantitative evaluation, features were
extracted from the image, and the similarity between the extracted feature distributions was measured
using 3 model-agnostic metrics. All feature extraction processes were performed using the finetuned
DenseNet121 model. Because each image contained many slices, representative images were selected
at equal intervals from all 36 images at low levels (beginning in the region where the cerebellum was
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observed). We selected 6 representative axial planes to cover the four brain regions required by the
BAPL scoring system.

2.5.1. Visual Turing Test and Feature Visualization

In the Visual Turing test, 2 parameters, a specific Aβ group (negative or positive) and a slice of the
level to be evaluated, were determined, and then 40 samples were randomly extracted for each of the
real and generated images. Using a GUI program written in the Python tkinter library, the randomly
extracted real and generated images were presented at the same time to the evaluator who was asked
to select the images that they thought were real. The GUI program was developed and tested on
Windows 10 and installed in the Department of Nuclear Medicine, DAUH to allow physicians and
researchers to participate in the Visual Turing Test. The results of the test were an accuracy estimated
from the number of real images the evaluator found exactly.

Feature visualization begins by extracting features from the real and generated images for each
class label. The extracted feature by DenseNet121 model were 1024-D, and reduced in 2-D using t-SNE
(perplexity = 40.0). This feature extraction was followed by centering the mean to zero and scaling
to unit variance. This process was performed for the Aβ groups and at each axial view level for the
training, test, and generated set to observe the distribution.

2.5.2. Quantitative Measure

We used model-agnostic metrics reviewed in Xu et al. [30] to quantitatively measure the similarity
of the distribution between real and generated images in our experiments. The 3 metrics ρ used in
this experiment measure the similarity between Pr and Pg. It has been reported that the feature space
is more advantageous for measuring the similarity of the distribution than the pixel space, and the
selection of features to be extracted is also crucial [30]. Thus, for an arbitrary feature extractor Φ(.), the
metric can be described as follows:

ρ(Φ(Pr), Φ
(
Pg

)
). (12)

MMD measures how different Pr and Pg are for a given empirical kernel function k. The higher
the measured value, the more the two inputs are interpreted as being different [58]. We used Gaussian
functions as kernel functions,

MMD2
[
Pr, Pg

]
= Ex, x′∼Pr [k(xi, x′i)] + Ex, x′∼Pr

[
k
(
x̃i, x̃′i

)]
− 2Ex̃,̃x′∼Pg

[
k
(
xi, x̃′i

)]
,

= 1
nm

∑n
i = 1

∑m
j = 1

[
k(xi, x′i) + k

(
x̃i, x̃′i

)
− 2k

(
xi, x̃′i

)]
.

FID is the Fréchet distance (d) between the Gaussian distribution with mean (mr, Cr) obtained
from Pr and the Gaussian distribution with mean

(
mg, Cg

)
obtained from Pg [59,60]. FID uses features

extracted from a trained network structure, such as an inception network, to measure the similarity
between the distributions. The FID is defined as

FID2
[
Pr, Pg

]
= d2

(
(mr, Cr),

(
mg, Cg

))
,

=
∣∣∣∣∣∣mr −mg

∣∣∣∣∣∣2
2 + Tr

(
Cr + Cg − 2

(
CrCg

)1/2
)
.

The 1-NN classifier proposed by [61] as a binary classifier for two sample test statistics sets the
label of the real image to 0 and the label of the generated image to 1, and can measure the similarity of
the generated images by estimating the LOO accuracy. The closer the LOO accuracy is to 50%, the closer
Pr is to Pg. As shown in [30], the LOO accuracy of 1-NN can be used to detect the tendency of mode
collapse, which is difficult to detect with the human eye without special training and careful model
selection. It can also robustly measure the similarity between distributions with small transformations
in the feature space.
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2.6. Statistical Analysis

The data collected in this experiment were statistically analyzed using MedCalc software version
18.9.1. First, for the experimental data collected retrospectively, we examined whether there was
a bias involved in the formation of the Aβ distribution, other than for the diagnosis or result of
cognitive function test that could be estimated based on Aβ deposited in the cerebrum. After applying
the GAN-based DA, we statistically evaluated differences in the generalization performance of the
ML-based model for each axial plane.

Discrete variables such as age, education, and K-MMSE that were used in the calculation of
demographic data were first analyzed using the Kolmogorov-Smirnov normality test before applying
the Mann-Whitney U test or t-test was applied to determine if there were differences between the
distributions of Aβ groups. For continuous variables such as generalization performance, the difference
in the distribution of the accuracy measured per axial level before and after GAN-based DA was
analyzed using the same statistical tests that were used to evaluate discrete variables. Categorical
variables, such as diagnostic results, were examined using the Chi-squared test. The statistical
significance level αwas 0.01, and a two-sided test was performed.

3. Results

First, we statistically confirmed that there was no bias in the other variables except for the
distribution of each patient’s disease and its dependent variables (K-MMES) in the experimental
dataset used in this study. Then, we used quantitative measurements to examine the generalization
performance of ML models. Figure 4 shows the real pre-processed images and the GAN-based
generated images that were randomly extracted without cherry picking. Sections 3.2 and 3.3 provide a
detailed explanation of the results for the representative axial planes showing the temporal lobe (TL),
frontal lobe (FL), posterior cingulate and precuneus (PP1 and PP2), and parietal lobe (PL1 and PL2),
instead of the total results for all 36 slices.
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Figure 4. Pre-processed FBB PET image and randomly picked real and generated images by the
generator selected from our experiment.

3.1. Demographic Data

As shown in Table 1, the demographic data summarizes the p-values that represent statistically
significant differences in age, sex, education, K-MMSE, and diagnosis. The Mann-Whitney test was
performed on age, education, and K-MMSE data because the Kolmogorov-Smirnov test showed
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no normality (pK-MMSE < 0.0001, page = 0.0916, peducation = 0.0802). The chi-squared test showed no
significant difference in the sex ratio between the two groups (psex = 0.105), and only the distribution of
diagnosis was significantly different between the two groups (pdiagnosis < 0.0001). Therefore, it can be
assumed that the FBB image data sets used in the experiments were collected without any bias in age,
gender, or years of education, except for the actual disease diagnosis and cognitive function.

3.2. Visual Turing Test

We performed the Visual Turing test [32] on real and generated images to evaluate how similar
the FBB images that were generated by the GAN were to real images, and the results are shown in
Figure 5. The proportions matched at the FL, PP2, and PL2 levels in the Aβ-negative group, and the FL
and PP2 levels in the positive group did not exceed 50%. The axial level that visually demonstrated
the greatest similarity in the Aβ-negative group was the TL level (60%), and it was the PP1 level (67%)
in the Aβ-positive group. Although there was a difference in relative similarities among representative
axial planes, all of them were shown to be similar with the real images.Appl. Sci. 2020, 3, x FOR PEER REVIEW 11 of 21 
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Figure 5. The results of Visual Turing test used to validate the similarity between real and generated FBB
amyloid images. (A) Each pie chart represents the proportion of real images which an experimenter find
correctly (blue) with the proportion of real images which the experiment when the real and generated
images are simultaneously output to the experimenter per a representative axial level including temporal
lobe (TL), frontal lobe (FL), posterior cingulate/precuneus 1 (PP1), posterior cingulate/precuneus 2
(PP2), parietal lobe 1 (PL1) and parietal lobe 2 (PL2). (B) A graph showing the accuracy (y-axis) with
which an experimenter correctly distinguishes real images from real and generated images according
to representative axial level (x-axis).

3.3. Feature Visualization

To observe the overall distribution between real and generated images in each Aβ-negative
and positive image, we acquired the image features extracted using the DenseNet121 model from
the input image observed at any axial plane level. The t-SNE technique was used to observe a
two-dimensionally reduced distribution. Figure 6 shows scatter plots that visualize the features
reduced by t-SNE. The distribution of training and test images in the Aβ-negative group almost
overlapped in all representative axial planes. However, although the FBB images used in the
experiments were representative typical Aβ-negative and positive cases, the Aβ-positive images in
the training or test datasets rarely appeared in the distribution of negative groups (FL, PP1, PP2, and
PL2). In addition, the real images from the Aβ-negative group were not included in the Aβ-positive
distribution. The distribution of GAN-generated images used to augment the training dataset primarily
overlapped with the distribution of real images at the PP1 and PP2 levels for both the Aβ-negative and
positive datasets, and no sample invading other class distributions was seen.



Appl. Sci. 2020, 10, 2628 11 of 19
Appl. Sci. 2020, 3, x FOR PEER REVIEW 12 of 21 

 

Figure 6. Feature visualization comparing the distribution between real and generated images 

according to brain amyloid distribution using t-SNE. Each scatter plot represents feature visualization 

according to a representative axial level including (A) temporal lobe (TL), (B) frontal lobe (FL), (C) 

posterior cingulate/precuneus 1 (PP1), (D) posterior cingulate/precuneus 2 (PP2), (E) parietal lobe 1 

(PL1) and (F) parietal lobe 2 (PL2). 

3.4. Quantitative Measurements 

Figure 7 shows the similarity between the real and generated set 𝜌(Ф(ℙ𝑟_𝑡𝑒𝑠𝑡) , Ф(ℙ𝑔 )) and 

between the training and test set 𝜌(Ф(ℙ𝑟_𝑡𝑟𝑎𝑖𝑛), Ф(ℙ𝑟_𝑡𝑒𝑠𝑡)) measured over the entire axial level. 

Instead of changing the scale to [0, 1], the values on the graphs in Figure 7 are the values directly 

calculated from a metric. 𝜌(Ф(ℙ𝑟_𝑡𝑒𝑠𝑡), Ф(ℙ𝑔)) and 𝜌(Ф(ℙ𝑟_𝑡𝑟𝑎𝑖𝑛), Ф(ℙ𝑟_𝑡𝑒𝑠𝑡)) were compared for both 

the Aβ and axial level classes. Contrary to the results of visual evaluation, the similarity of GAN-

based synthetic images differed over axial level classes regardless of the metric used, and generally 

the lower and higher the axial level, the lower the similarity. Ideally, the similarity between real 

distributions should not vary with Aβ or axial level class, but diverse variance existed according to 

the metrics used. In MMD and FID, the change within each range for 𝜌(Ф(ℙ𝑟_𝑡𝑒𝑠𝑡), Ф(ℙ𝑔)) was 

greater than that of 𝜌(Ф(ℙ𝑟_𝑡𝑟𝑎𝑖𝑛) , Ф(ℙ𝑟_𝑡𝑒𝑠𝑡 )). Meanwhile, when the 1-NN LOO accuracy was 

evaluated, the difference in the ranges of 𝜌(Ф(ℙ𝑟_𝑡𝑟𝑎𝑖𝑛) , Ф(ℙ𝑟_𝑡𝑒𝑠𝑡 )) and 𝜌(Ф(ℙ𝑟_𝑡𝑒𝑠𝑡) , Ф(ℙ𝑔 )) 

appeared relatively small. The MMD and 1-NN LOO accuracies were the apparent similarities 

between 𝜌(Ф(ℙ𝑟_𝑡𝑟𝑎𝑖𝑛), Ф(ℙ𝑟_𝑡𝑒𝑠𝑡)) and 𝜌(Ф(ℙ𝑟_𝑡𝑒𝑠𝑡), Ф(ℙ𝑔)) at the axial level; however, similar FID 

measurements were obtained at or near the 22-th axial level. 

Figure 6. Feature visualization comparing the distribution between real and generated images according
to brain amyloid distribution using t-SNE. Each scatter plot represents feature visualization according
to a representative axial level including (A) temporal lobe (TL), (B) frontal lobe (FL), (C) posterior
cingulate/precuneus 1 (PP1), (D) posterior cingulate/precuneus 2 (PP2), (E) parietal lobe 1 (PL1) and (F)
parietal lobe 2 (PL2).

3.4. Quantitative Measurements

Figure 7 shows the similarity between the real and generated set ρ(Φ(Pr_test), Φ(Pg)) and between
the training and test set ρ(Φ(Pr_train), Φ(Pr_test)) measured over the entire axial level. Instead of
changing the scale to [0, 1], the values on the graphs in Figure 7 are the values directly calculated from
a metric. ρ(Φ(Pr_test), Φ(Pg)) and ρ(Φ(Pr_train), Φ(Pr_test)) were compared for both the Aβ and axial
level classes. Contrary to the results of visual evaluation, the similarity of GAN-based synthetic images
differed over axial level classes regardless of the metric used, and generally the lower and higher
the axial level, the lower the similarity. Ideally, the similarity between real distributions should not
vary with Aβ or axial level class, but diverse variance existed according to the metrics used. In MMD
and FID, the change within each range for ρ(Φ(Pr_test), Φ(Pg)) was greater than that of ρ(Φ(Pr_train),
Φ(Pr_test)). Meanwhile, when the 1-NN LOO accuracy was evaluated, the difference in the ranges of
ρ(Φ(Pr_train), Φ(Pr_test)) and ρ(Φ(Pr_test), Φ(Pg)) appeared relatively small. The MMD and 1-NN LOO
accuracies were the apparent similarities between ρ(Φ(Pr_train), Φ(Pr_test)) and ρ(Φ(Pr_test), Φ(Pg)) at
the axial level; however, similar FID measurements were obtained at or near the 22-th axial level.
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3.5. Generalization Test 

Figure 7. Quantitative measurements to estimate synthetic similarity between real and generated
images with respect to each axial level of pre-processed FBB imaging.

Table 2 compares the similarity values between ρ(Φ(Pr_train), Φ(Pr_test)) and ρ(Φ(Pr_test), Φ(Pg))
measured in the representative axial plane using MMD, FID, and 1-NN LOO. When evaluating
Aβ-negative images according to quantitative metrics, the representative axial levels that appeared the
most similar to real images were PL1 (MMD: 0.2284), PP2 (FID: 6.8253), and PP1 (1-NN LOO accuracy:
0.8562), and each of the metrics identified different levels as the most similar. A set of generated
Aβ-positive images, meanwhile, were similar to real images in PP2, regardless of the selection of
quantitative metrics (MMD: 0.1865, FID: 5.8919, 1-NN LOO accuracy: 0.7391). For all 3 metrics, the
GAN model used in the experiment produced more realistic synthetic images for Aβ-positive images
than the Aβ-negative images.

Table 2. Comparison of synthetic similarity using quantitative measurements of amyloid negative and
positive images.

Label Metric TL(4th) FL(10th) PP1(16th) PP2(22nd) PL1(28th) PL2(34th) Avg(SD)

Aβ (−)
t/o 1

MMD 0.0990 0.0983 0.0822 0.0911 0.0896 0.0813 0.0902(0.00)
FID 5.6293 5.4589 5.6456 5.7796 6.2149 6.4051 5.8556(0.37)

1-NN accuracy 0.4565 0.4928 0.4130 0.4855 0.5507 0.4928 0.4819(0.05)

Aβ (+)
t/o

MMD 0.1239 0.1120 0.1104 0.1130 0.1036 0.1144 0.1129(0.01)
FID 6.3801 6.2410 6.4176 6.6572 6.8022 7.5409 6.6732(0.47)

1-NN accuracy 0.4203 0.4493 0.4928 0.4855 0.5435 0.4420 0.4722(0.04)

Aβ (−)
o/g 2

MMD 0.3779 0.3245 0.2849 0.2317 0.2284 0.3054 0.2921(0.06)
FID 9.4479 7.9763 7.9686 6.8253 7.2652 8.2666 7.9583(0.90)

1-NN accuracy 0.9625 0.9125 0.8562 0.8687 0.8625 0.9375 0.9000(0.04)

Aβ (+)
o/g

MMD 0.2860 0.2482 0.2123 0.1865 0.3289 0.2645 0.2544(0.05)
FID 7.4191 6.8910 6.7300 5.8919 7.6111 7.197 6.9566(0.61)

1-NN accuracy 0.8261 0.7391 0.6522 0.6233 0.7536 0.8551 0.8418(0.07)
1 t/o: Similarity between training and test set. 2 o/g: Similarity between test set and generated set. TL: Temporal
lobe. FL: Frontal lobe. PP: Posterior cingulate/Precuneus. PL: Parietal Lobe. Bold represents the axial level with the
highest similarity.

3.5. Generalization Test

To statistically evaluate the differences in generalization performance for each axial level before
and after GAN-based DA, we built one model (non-augmented) that was trained using only the
training set and another model (augmented) that was trained using both the training and generated
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sets. The model was evaluated independently for each axial level class using the same test set.
The Mann-Whitney U test was used because the given distribution was not found to exhibit normality.

Figure 8 shows a comparison of the generalization performance of the target model based on
ML with and without the data generated in the training set. Regardless of the augmentation, the
classification performance of the target model tended to decrease at both ends. In both models, SVM
and NN, GAN-based DA was performed independently at each axial level, resulting in a statistically
significant improvement in generalization performance. Thus, DA was confirmed to work with
stronger evidence in the NN-based model rather than the SVM-based model (median-SVM: 0.943 to
0.956, p < 0.0454; median-NN: 0.946 to 0.963, p < 0.0047).
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Figure 8. Comparison of the generalization performance of ML-based classifiers before and after
GAN-based data augmentation. (A) Changes of generalization performance (y-axis) of support vector
machine and neural network observed at each axial level (x-axis); (B) Difference in generalization
performance (y-axis) of ML models before and after GAN-based data augmentation (x-axis). Each ML
model for the axial level generally improved with statistical evidence after data augmentation.

4. Discussion

4.1. Medical Image Synthesis with Quantitative Measurements

In a previous study [62] dealing with the synthesis of brain-structured MRI, a GAN structure that
appropriately augments the input image domain is proposed, and some related studies comparing
the performance of each generalization when the training steps of various classifiers were enhanced
using generated images have been reported [27,28,32,63–65]. These previous studies on GAN-based
DA in the medical imaging field have emphasized the design of the applied GAN and the improved
generalization of the target model that was trained using the augmented dataset. However, these
studies only included qualitative visual evaluation, and the reasons for quantitatively evaluating the
generated images before applying the GAN include:

1. The practitioner cannot predict what the samples generated from GAN will look like until they
are confirmed, unlike conventional DA.

2. It is not easy to visually evaluate how similar the real distribution is to the generated distribution.
3. Models trained without validation of augmented data may learn data that is characteristics of

diseases but falls outside of a given class with an arbitrary label.

In particular, medical images can be interpreted differently because of diverse disease distributions,
then quantitative evaluation of generated medical images is important. In our study, the comparison
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of various classifiers was excluded, but we focused on the need for visual and quantitative evaluation
of the data generated from GAN.

Evaluating the synthetic DA data is to examine how identical the generated distributions are
to real distributions rather than how identical the generated samples are. The classic approach is to
estimate the real distribution using Parzen window estimation to measure the average log-likelihood
of the generated samples [29]. This method has the advantage of being intuitive, but a recent study
has shown that the estimated log-likelihood at higher dimensional space is not realistic, and above
all, this study proves that it does not give a meaningful value that correlates to the reality of the
given sample [34]. Another widely known method is the inception score (IS) [31], which uses the
average KL divergence between P(y

∣∣∣x) and P(y) from the class label distribution estimated from
the input images by an arbitrary finetuned model (e.g., inception network) to measure the quality
and diversity. This method is also intuitive and is known to be correlated with human judgment,
but it has the disadvantages of not detecting overfitting for samples the predictive model entirely
memorizes, mode collapse for a distribution the model does not learn, or not accounting for a model
trapped into bad mode [66]. To overcome these shortcomings, some variants of the inception score with
KL divergence have been reported, including modified IS [67], mode score [68], and AM Score [66].
Several approaches for defining new distances in feature space have also been reported [30], including
MMD [58], FID [60], and Wasserstein distance [54].

In general, the expected effects from GAN-based DA techniques include (1) generating samples
that follow the same distribution as that of the real images to ensure that there are no insufficient
datasets, or (2) generating similar but realistic samples to train the model on the creative pattern.
In our experiment, we demonstrated the quantitative similarity of the generated images so that we
should expect to see effect (1) using the GAN that was trained with loss to minimize the Wasserstein
distance between the real and generated distributions. Evaluating medical image synthesis or DA
using quantitative measurements may be useful for providing a baseline for future studies, or for
determining the direction of next future experiments in practical studies.

4.2. Comparison between t-SNE and Quantitative Measurements

The distribution of features extracted from t-SNE in Figure 6 shows that the Aβ-positive samples
of the training set infiltrated the negative distribution at specific axial levels (PP1, PP2, and PL2).
However, in the quantitative evaluation of all the axial levels of the real images, there was some variance
within each metric and axial level but a consistent overall similarity (Figure 7). The quantitative
metrics used in this experiment represented the similarity between the given datasets as a scalar
value ρ(Φ(Pr), Φ(Pg)), and it could be difficult to explain the similarity and distribution of a few
outliers or individual samples, whereas t-SNE has the advantage of providing intuitive information
about the distribution of individual samples. In internal observations, however, the Aβ-positive
training set samples found in the negative distribution were typical Aβ-positive images, unlike the
visualization. The similarity between the real images ρ(Φ(Pr_train), Φ(Pr_test)), represented by the
quantitative evaluation (MMD, FID, and 1-NN LOO accuracy) used in this experiment, seems to
represent physicians’ visual assessment rather than t-SNE in that it is measured in the same feature
space using the DenseNet121.

Comparing the real test Pr_test and the generated set Pg using the Visual Turing test (Figure 5)
demonstrated that, although Pg was quite similar to Pr_test for the overall axial levels, t-SNE showed
dissimilar distributions at lower and higher axial levels, and the results of the quantitative evaluation
also seem to agree with the trend shown by t-SNE (Figure 7, Table 2). This suggests that t-SNE and
quantitative measures can be used to determine the tendency of mode collapse of generated medical
images that are difficult to find or define in visual assessment. Therefore, in the comparison between
real and generated sets of medical images, the analysis using DenseNet121 trained with ImageNet and
t-SNE still appears to be useful along with the quantitative evaluation method.
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4.3. Comparison between Model-Agnostic Metrics

As shown in Figure 7, MMD and FID were able to distinguish the similarity between the real and
generated sets ρ(Φ(Pr_test), Φ(Pg)) at the middle axial level and the both end levels. In contrast, the
1-NN LOO accuracy exhibited a smaller variance in the ρ(Φ(Pr_test), Φ(Pg)) for each axial level than the
MMD and FID shown, and even the variance of ρ(Φ(Pr_test), Φ(Pg)) for Aβ-negative images is greater
than ρ(Φ(Pr_train), Φ(Pr_test)) (Table 2). The 1-NN LOO accuracy demonstrates that the variance that
occurs in the similarity estimation is larger than that of MMD and FID in identical datasets owing to
the nature of the estimation of classification performance, which is sensitive to the number of data [69].

MMD and 1-NN LOO accuracy showed clear differences in ρ(Φ(Pr_test), Φ(Pg)), whereas FID had
some axial level at which there was no difference between ρ(Φ(Pr_train), Φ(Pr_test)) and ρ(Φ(Pr_test),
Φ(Pg)) (Figure 7). This suggests that the distribution of medical image samples for which the FID
measures the similarity is not suitable for measuring with the FID using the Gaussian kernel, which also
suggests that proper care should be taken when measuring the similarity for medical image synthesis.

4.4. Role of Quantitative Measurements in Future Generative Data Augmentation Work

After applying GAN-based DA to the Aβ predictive model and observing statistical evidence
that the GAN used in our experiment can usually improve the generalization performance at an
axial level, we found some challenges that may represent directions for future work. As shown in
Figure 8, the generalization performance after DA shows the results of applied DA regardless of the
similarity of the generated set. Consequently, after the DA of our experiment, both increases and
decreases in performance were observed when measuring the generalization performance along the
axial levels. In a previous study, the performance of the target model decreased when the training
data was augmented using GAN [24]. This may be caused by mode collapse, which makes the target
model more confused. However, in the case of our experiment, the possibility that variance is large
in the process of estimating the performance of the target classifiers cannot be excluded due to the
small data set. Accordingly, we statistically verify the difference in bias of generalization performance.
As a result, it seems that the performance is improved from the viewpoint of the whole slice after
applying GAN-based DA. In our experiments, there might be some variance due to the small size of
the small dataset.

In terms of stable DA, we need proper means to prevent or predict situations where the performance
is reduced by the applied DA, which is required when the generated set is produced not by simple
user-defined operations like conventional DA but by a complex function that is difficult to predict.
In other words, excluding generated data that is not suitable for DA may be advantageous for stable
performance improvement. Studying the quantitative evaluation of DA seems to play an important
role in the detection of factors degrading the generalization performance and in assessing the suitability
of the training dataset for augmentation.

5. Conclusions

In this study, we synthesized 18F-Florbetaben Aβ PET images using GAN and visually
and quantitatively evaluated the real and generated images. The similarity of the images that
could statistically augment Aβ images was quantitatively measured for Aβ-negative (MMD:0.2284,
FID:6.8253, 1-NN LOO accuracy:0.8562) and positive images (MMD:0.01865, FID:5.8919, 1-NN LOO
accuracy:0.6233). We enhanced SVM/NN-based classifier using Aβ images generated by GAN
(median-SVM, 0.943–0.956, median-NN, 0.946–0.963). The experimental results demonstrated that
quantitative measurements were able to detect the similarity between the two distributions and to
observe mode collapse better than the Visual Turing test and t-SNE.

Supplementary Materials: The following are available online at https://github.com/kang2000h/GAN_evaluation,
source code, model structure, weights, and figures used in this study and paper.

https://github.com/kang2000h/GAN_evaluation
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