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Abstract: In this paper, we develop an optimised state-of-the-art 2D U-Net model by studying
the effects of the individual deep learning model components in performing prostate segmentation.
We found that for upsampling, the combination of interpolation and convolution is better than the
use of transposed convolution. For combining feature maps in each convolution block, it is only
beneficial if a skip connection with concatenation is used. With respect to pooling, average pooling is
better than strided-convolution, max, RMS or L2 pooling. Introducing a batch normalisation layer
before the activation layer gives further performance improvement. The optimisation is based on
a private dataset as it has a fixed 2D resolution and voxel size for every image which mitigates the
need of a resizing operation in the data preparation process. Non-enhancing data preprocessing
was applied and five-fold cross-validation was used to evaluate the fully automatic segmentation
approach. We show it outperforms the traditional methods that were previously applied on the
private dataset, as well as outperforming other comparable state-of-the-art 2D models on the public
dataset PROMISE12.

Keywords: convolutional neural networks; medical image application; prostate segmentation;
magnetic resonance imaging; MRI

1. Introduction

Radiation therapy (radiotherapy) is a cancer treatment that uses ionizing radiation to kill cancer
cells or control the growth of tumours. It is a very common procedure to treat all stages of prostate
cancer. However, this procedure can also damage the normal cells around the cancer cells putting the
surrounding organs at risk of post-treatment complications [1]. In the case of prostate cancer, the main
objective is to deliver a maximum dose of radiation to the prostate and minimise the dose received by
the bladder and rectum [2]. For this reason, accurate prostate segmentation is required.

Manual labelling of an organ can be a time consuming and very challenging process. It involves
one or more experts scanning through the dataset and labelling the organ. As a result, labels produced
by experts are usually subject to intra- and inter-expert variability as a result of the varying expertise
levels [3], i.e., an expert may segment a specific image differently, if done more than once, or different
experts may segment the same image differently [4].
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Automatic segmentation can speed up the segmentation process as well as minimise the intra- and
inter-expert variability problem [5,6]. In order to perform automatic prostate segmentation on MRI
(Magnetic Resonance Imaging) images there are two main methods traditionally employed: atlas-based
and deformable model-based methods [7]. In the atlas-based method, a set of images and their
corresponding labels are combined together after non-rigid registration (NRR) to create a reference
atlas and a corresponding labelled structure. The atlas image, in this case, contains the prostate and its
surrounding tissue with the corresponding labelled structure representing the probability of a voxel being
a part of the prostate. The NRR of the atlas to the new, unseen MRI scan is used to obtain the segmentation
of the prostate of a new patient [7]. In the deformable model-based method, a good initialisation of the
model is required. The model can be initialised by atlas-based segmentation [7,8], where a surface is
extracted from a thresholded probabilistic segmentation and the model is deformed to closely match the
organ boundary by the use of the grey-level information of the image. The grey-level model is developed
offline with one-dimensional grey-level profiles taken along the normals of each vertex of the surface for
the images. A distance metric is then used to match the profiles of the model and the profiles extracted
from the case image [7]. As both methods either rely on the atlas-based method or good initialisation,
they are prone to errors [9] and can be time consuming [7].

In recent years, machine learning-based algorithms have made positive contributions in prostate
segmentation tasks [10–13]. Machine learning algorithms have the ability to automatically detect different
patterns from the given data or information provided to the model [14]. Deep learning is a class of
machine learning algorithms that model high-level abstraction by using several processing layers of
transformations [15]. It uses an architecture of multi-level linear and non-linear operations (i.e., layers) to
learn complex functions that can represent high-level abstractions [16]. It automatically learns hierarchical
features of an input that carry different semantics on different levels [16]. Unlike the traditional machine
learning algorithms, this feature-learning ability allows the system to learn complex functions that map
the input to the output directly from the data without relying on handcrafted features [17].

Deep learning algorithms based on the convolutional neural network (CNN) such as the Fully
Convolutional Network (FCN) [18], U-Net [19] and DenseNet [20] have achieved outstanding results
in prostate segmentation tasks [21–27]. The CNN utilises a number of convolutional and pooling layers
for extracting features automatically. The purpose of the convolutional layers is to apply different
filters to produce different translation equivariance features [28]. Pooling layers apply non-linear filters
to extract the most significant features and make the extracted features translation invariant [28].

Image segmentation based on deep learning algorithms use either patches of an input image
or the entire image. Both approaches output a likelihood map that gives the probability of a given
pixel being a part of the object to be segmented [26]. In some applications, a patched-based approach
is preferable to reduce memory requirement and allow the user to provide a more balanced sample
proportion for the training [29]. In other applications, it is more preferable to use the entire image as
the input to give more contextual information [26]. Both approaches are able to produce state-of-the-art
results on different organ segmentation applications [26].

Deep learning models incorporate a number of different layers and variables that we will denote
in the sequel as components. All the components can be adjusted according to the application. It is
important to understand which components are beneficial for the deep learning model to perform
prostate segmentation. However, many studies often present their works in the final form [21–25]
or incorporate post-processing methods into their pipeline to obtain more accurate segmentation
results [26,30,31]. As a result, the effect of each component on the overall performance is hard to
distinguish and/or unknown.
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Many deep learning models have been used to perform medical segmentation tasks. In general,
the most successful models are based on 3D neural networks, which include the fusion of 2D/3D
models. There are many 3D networks such as, but not limited to, Hybrid Discriminative Network
(HD-Net) [32], V-Net [33] and 3D Dense U-Net [34]. In this paper we are considering only 2D networks
as the number of components to optimise over is significantly less than in the 3D case. Furthermore,
a greater understanding of the contribution of each component is more easily obtained when the
complexity of the model is kept as small as possible.

In this paper, we optimise a basic 2D U-Net model [19] for prostate segmentation based on a
private dataset [35] of T2 weighted MR images with a fixed 2D resolution and voxel size across the
whole dataset. This allow us to mitigate the possibility of artefacts caused by resizing operation in the
data preparation process that may ultimately affect the optimisation process. Performance evaluation
of different model architectures will be presented that provide an insight into the contribution of each
deep learning model component in a prostate segmentation application.

Performance of the optimised model is evaluated on both a private dataset [35] and the public
dataset, PROMISE12 [36], of T2 weighted MR images. With respect to the private dataset, we show
the improvement achieved when compared to the traditional segmentation methods [35,37] that
were previously applied. As well we compare the performance of the optimised model to other
state-of-the-art 2D models on the PROMISE12 dataset. Furthermore, challenges due to inter-expert
variability associated with the dataset are discussed to address a problem that is often overlooked in
medical imaging segmentation. We provide suggestions on how the optimised model could be used to
help with this problem.

In Section 2, we discuss background material for the deep learning model components that are
considered in the optimised model. In Section 3, we describe the approach for the optimised network
architecture and configuration. In Section 4, we train the optimised model and evaluate its performance
in comparison to the traditional segmentation methods on the private dataset and to state-of-the-art
2D models on the public dataset, PROMISE12 [36]. In Section 5, we discuss the challenges associated
with the dataset as well as make suggestions to address the problem and to further improve the
segmentation results. Conclusions are drawn in Section 6.

2. Background

In this section, we describe the deep learning model components considered in the sequel for the
development of a 2D model for performing prostate segmentation.

2.1. Structure

Here, we will refer to structure as the overall shape of the architecture. For the task of
segmentation, the deep learning model structures that are often adopted are FCN and U-Net
type structures. U-Net consists of two FCN-like structures that are cascaded in the form of an
encoder-decoder (autoencoder) structure. The encoder is used for feature extraction and the decoder
is used for feature mapping to the original input resolution. The main difference between the FCN
and U-Net structures is that the FCN does not learn the mapping of the high-level features to the
original input resolution in a step-by-step manner as it relies only on the feature extraction part of
the network to make the final classification. Although both these structures are able to produce good
results on different organ segmentation tasks [26], many works on prostate segmentation show success
using U-Net as their base model [21–25]. Moreover the basic U-Net has been used successfully for the
segmentation of different parts of the prostate [27].
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2.2. The Convolution Layer

Convolution layers use a set of small parameterised filters, sometimes referred to as kernels,
to perform convolution operations to produce different feature maps of their input [38]. Generally,
in the state-of-the-art 2D models [18,19,39], the filter is based on a 3× 3 matrix. Larger filters, such
as a 5× 5 matrix, can also be used in semantic segmentation to mitigate the contradiction between
classification and localisation [40]. For example, in the classification problem, the model is required to
be invariant to the transformation of the input image, while in the localisation problem, a model has to
be transformation-sensitive to perform localisation [40].

The convolution layers can be used in the form of a transposed convolution or in combination
with an interpolation layer. Transposed convolution (i.e., deconvolution) is obtained by reversing
the forward and backward passes of a convolution [41]. Unlike the fixed interpolation methods
(e.g., nearest-neighbour, bilinear interpolation), the transposed convolution filter weights can actually
be learnt. Transposed convolution is known to produce checkerboard artifacts [42] that can be
completely avoided by combining interpolation and convolution layers [43]. When a convolution
layer is combined with an interpolation layer it can also improve upsampling. Note that transposed
convolution can also improve the upsampling process.

A convolution layer with a stride greater than one (i.e., strided-convolution) can be used to
replace a pooling layer (described in Section 2.3) to perform downsampling in CNN without loss in
accuracy [44]. Here stride refers to the number of pixels the parameterised filter shifts at a time in a
convolution operation.

2.3. The Pooling Layer

Pooling layers are used to reduce the dimension (i.e., downsample) of the input and introduce
translational invariances in the network [38]. The most common type of pooling layer in CNN-based
models is the max pooling layer which is used to extract significant features from the previous layer by
taking the maximum value in each filter kernel. Max pooling can also be considered as a nonlinear
filtering operation. Unlike linear filters that have poor performance in removing non-additive noise
and tend to blur edges of an image [45], nonlinear filters usually remove noise as well as preserving
the significance of the features of an image [45,46]. However, linear-filter-based pooling layers, such as
average pooling or strided-convolution, are sometimes used in place of max pooling with success in
certain applications [44]. Other pooling layers include the L2 and RMS, where the L2-norm and RMS
value are the output of the layer respectively.

2.4. Feature Maps

Convolution layers produce feature maps that consist of local features at each pixel location.
The spatial resolution of the feature maps tend to reduce in size when more convolution and pooling
layers are added. Reduction of spatial resolution in the feature maps can be compensated by a
progressive increase in the number of feature maps, i.e., representations [47]. The number of feature
maps reflects the capacity of the network to implement useful feature extractors (i.e., filters) for
certain applications. However, the larger the number of feature maps, the more expensive the memory
requirement and computation time becomes. Therefore, the number of feature maps should be adjusted
according to the complexity of the task to be completed and the resources available.

2.5. The Activation Layer

Activation layers are typically applied after convolution layers in order to decide whether a
particular neuron should be activated or not. Nonlinear activation functions, e.g., a rectified linear unit
(ReLU), a leaky ReLU or a parametric ReLU [48], are used to enable the network to approximate most
nonlinear functions.
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The ReLU is a nonlinear function defined by

f (x) =

{
x if x > 0

0 if x ≤ 0.
(1)

The ReLU restricts the activation of the neuron when the input is less than or equal to zero, which
simplifies the network and reduces the computational time during the training process. This advantage
however, comes with an issue, i.e., since the gradient of the ReLU function in the negative region of
x is zero, once the neuron is inactive, the neuron will not be activated again throughout the training
process (i.e., dying ReLU problem [49]).

A Leaky ReLU (LReLU) attempts to solve the dying ReLU problem by setting the gradient of the
negative region as a small constant value, c, i.e.,

f (x) =

{
x if x > 0

cx if x ≤ 0,
(2)

where, for example, c = 0.1.
Although the LReLU (and other modified ReLU activation functions) are shown to be superior to

ReLU [48], many state-of-the-art models [18,19,39] still use ReLU as it produces satisfactory results
and is simple to implement.

2.6. Dropout Layer

Dropout is a regularisation technique to prevent overfitting. The idea is to train different models
simultaneously and use the average of the predictions to improve the generalisation of the model.
The operation involves randomly removing neurons at a defined rate during training so the weights of
the network are tuned based on different connectivity variations of the network [50].

2.7. Batch Normalisation Layer

The batch normalisation layer normalises the input by subtracting the mean and dividing by the
standard deviation for each training batch. This operation reduces the need of Dropout as well as
speeding up the training process [51]. However, applying normalisation to the input of each layer may
change the representation of the original input, e.g., normalising the input of a sigmoid function may
constrain the input to be within the linear region of the sigmoid function. Therefore, extra parameters
that control the scale and shift of the normalised value are implemented in the batch normalisation
layer to be learnt along with the other model parameters. These extra parameters enable the restoration
of the original value if it produces better results than the normalised value [51].

Batch normalisation layers can be applied before or after an activation layer [51]. However, it is
suggested [51] that applying the batch normalisation layer before the activation layer produces a more
stable distribution. An earlier study has applied batch normalisation successfully to the output of the
activation layer [52].

2.8. Skip Connections

Skip connections were originally implemented by ResNet [53] to address the degradation problem
of training accuracy in deep networks. They help to prevent the deep model from having a high
training error when compared to a shallow counterpart, as it simplifies the training when the additional
complexity introduced by redundant layers in the network is not required [53]. An element-wise
summation layer is used at the end of a skip connection hence keeping the dimension of the output
layer fixed such that it adds neither additional parameters nor computational complexity [53].
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In U-Net [19], the skip connections are used to pass the features from one layer to another layer
which are then combined with a concatenation instead of summation. The idea is to maintain the
preceding layer information and re-use it in the later layer to achieve better performance.

3. Materials and Methods

In this section, we investigate several deep learning model architectures to determine the
components that can improve the performance of a 2D U-Net for prostate segmentation. The deep
learning model components discussed in Section 2 are considered in this section.

3.1. Dataset

For the optimisation of the 2D U-Net model, we use a private dataset [35], which is collected
following ethical approval and informed consents. The dataset is obtained without an endorectal coil,
using a Siemens Skyra 3.0 Tesla magnet located at the Calvary Mater Newcastle Hospital, Australia.
The dataset consisted of 41 prostate, T2 weighted, MRI scans with three expert manual delineations on
each scan. Furthermore, each scan contains 320× 320× 60 voxels with a voxel size of 0.625× 0.625×
2 mm. For the performance evaluation in Section 3.2, the second expert label is used for both training
and testing as this expert has the highest mean Dice’s similary coefficient (DSC) score against the
majority voting [54]. This will also reduce the labelling bias on the smaller volumes of the organ to be
segmented, as majority voting tends to be biased.

3.2. Performance Evaluation

In this study, Dice’s similary coefficient (DSC) is used to evaluate the performance of each model.
The DSC is the intersection of the predicted (P) regions and the ground truth (GT) over their average
size [55], given by

DSC =
2|P ∩ GT|
|P|+ |GT| . (3)

Five-fold cross-validation is used for the evaluation of the model on the entire dataset. First, one
scan is extracted to be used as the validation set and the remaining 40 scans are shuffled randomly and
then divided into 5 folds. Every fold consists of 32 scans for the training set and 8 scans for the test set.
The average (Avg) DSC score is the mean score of the five-fold cross-validation.

3.3. Model Architecture

We use a U-Net architecture [56] for our base model. As discussed in Section 2.1, U-Net has equal
downsampling and upsampling layer pairs in the network forming an autoencoder network structure
that can be beneficial for organ segmentation. We begin with what we denote as UNet_S, a simplified
U-Net model that uses a quarter of the number of feature maps used in the U-Net of [56]. The model
architecture is shown in Figure 1.

The UNet_S consists of 3× 3 convolution and ReLU activation layers in each convolution block
(Conv Block), see Figure 2a. For downsampling, a 2× 2 max pooling layer with stride 2 is used.
For upsampling, a combination of a nearest-neighbour interpolation and 2× 2 convolution with ReLU
activation layers (Interp+Conv) are used. Skip connections concatenate the same resolution feature
maps from the encoder to the decoder, but none are within the convolution block. There are 2 drop out
layers with drop out rates of 0.5 after the fourth and fifth convolution block. Lastly, a 1× 1 convolution
layer with sigmoid activation is used to produce a probability map.

We use 6 phases of evaluation to determine the optimised model: downsampling and upsampling
component modification, skip connection implementation, drop out rate adjustment, batch normalisation
implementation, pooling layer selection, activation function selection and batch normalisation placement.
Table 1 shows the main components of each model being compared in this section.



Appl. Sci. 2020, 10, 2601 7 of 20

D
ecoderEn

co
de

r

3 x 3 Convolution

ReLU Activation

1 x 1 Convolution

Sigmoid Activation

Input 320 x 320 x 1 Output 320 x 320 x 1

Conv Block

Conv Block

Conv Block

Max pooling

Max pooling

Conv Block

Max pooling

Max pooling

Conv Block

Conv Block

Conv Block

Conv Block

Interp + Conv

Interp + Conv

Interp + Conv

Interp + Conv

Conv Block
20 x 20 x 256

320 x 320 x 16

160 x 160 x 32

80 x 80 x 64

40 x 40 x 128

320 x 320 x 16

160 x 160 x 32

80 x 80 x 64

40 x 40 x 128

320 x 320 x 2

320 x 320 x 1

Dropout

Dropout

Figure 1. UNet_S architecture, the base model.

Table 1. Model architecture details.

Phase Network
Components

Downsampling Upsampling Skip Connection Drop out Batch Normalisation Activationwithin Conv Block

UNet_S Max Pooling Interp+Conv ? - 0.5 - Relu

1 UNet_S1 Max Pooling Transposed Conv ∗ - 0.5 - Relu

UNet_S2 Strided Conv † Interp+Conv ? - 0.5 - Relu

2

UNet_S.1 Max Pooling Interp+Conv ? Summation 0.5 - Relu

UNet_S1.1 Max Pooling Transposed Conv ∗ Summation 0.5 - Relu

UNet_S2.1 Strided Conv † Interp+Conv ? Summation 0.5 - Relu

UNet_S.2 Max Pooling Interp+Conv ? Concatenation 0.5 - Relu

UNet_S1.2 Max Pooling Transposed Conv ∗ Concatenation 0.5 - Relu

UNet_S2.2 Strided Conv † Interp+Conv ? Concatenation 0.5 - Relu

3 UNet_S.2.1 Max Pooling Interp+Conv ? Concatenation 0 - Relu

4 UNet_S.2.0.1 Max Pooling Interp+Conv ? Concatenation 0.5 Before Activation Relu

5
UNet_S.2.0.1.1 Avg Pooling ‡ Interp+Conv ? Concatenation 0.5 Before Activation Relu

UNet_S.2.0.1.2 RMS Pooling Interp+Conv ? Concatenation 0.5 Before Activation Relu

UNet_S.2.0.1.3 L2 Pooling Interp+Conv ? Concatenation 0.5 Before Activation Relu

6 UNet_S.2.0.1.1.1 Avg Pooling ‡ Interp+Conv ? Concatenation 0.5 Before Activation LRelu

UNet_S.2.0.1.1.2 Avg Pooling ‡ Interp+Conv ? Concatenation 0.5 After Activation Relu
? Interp+Conv refers to nearest-neighbour interpolation and convolution layer. ∗ Transposed Conv refers
to transposed convolution layer. † Strided Conv refers to strided-convolution layer. ‡ Avg Pooling refers to
average pooling layer.
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In phase 1 of the evaluation, we investigate the performance of the convolution layers in
performing upsampling and downsampling. Model UNet_S1 is UNet_S where nearest-neighbour
interpolation and convolution (Interp+Conv) is replaced with transposed convolution, while model
UNet_S2 is UNet_S where max pooling is replaced with 2× 2, 2-strided-convolution. As can be
seen from the DSC results shown in Table 2 phase 1, the UNet_S downsampling and upsampling
components produce the highest DSC score and hence are still preferable.

For phase 2, we considered the use of a skip connection in each convolution block to improve
the performance of the models in phase 1 (i.e., UNet_S, UNet_S1 and UNet_S2). Two configurations
of the skip connection are considered in each convolution block of the model. Models UNet_S.1,
UNet_S1.1 and UNet_S2.1 have skip connections with element-wise summation (Figure 2b), whilst
models UNet_S.2, UNet_S1.2 and UNet_S2.2 have skip connections with concatenation (Figure 2c).
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Figure 2. Skip connection configurations in a convolution block. (a) Original convolution block in
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UNet_S1.1 and UNet_S2.1; (c) Skip connection with concatenation in UNet_S.2, UNet_S1.2 and
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As can be seen from Table 2 phase 2, the skip connections with element-wise summation decreases
the performance of UNet_S.1, UNet_S1.1 and UNet_S2.1 models as compared to the UNet_S model.
On the other hand, the skip connections with concatenation improves the performance of UNet_S.2,
UNet_S1.2 and UNet_S2.2 models as compared to UNet_S model.

From phases 1 and 2, we conclude that the original downsampling and upsampling configurations
with a concatenation skip connection in each convolution block, UNet_S.2, performs better than the
other configurations (see Table 2). Since the phase 2 results correspond with the phase 1 results, where
the modified UNet_S is better than the corresponding UNet_S1 and UNet_S2, we perform the next
modifications only on the best model.

In phase 3, we modify the dropout rate from a value of 0.5 to 0 to confirm the theory discussed in
Section 2.6. As can be seen from Table 2 phases 2 and 3, the model with the original dropout rate of 0.5,
UNet_S.2, still performs better when compared to the modified version, UNet_S.2.1, with a dropout
rate of 0.

In phase 4, we investigate the effect of batch normalisation on the best model, UNet_S.2. In model
UNet_S.2.0.1, the batch normalisation layers are placed in between the convolution and activation
layers as shown in Figure 3b.

Figure 2. Skip connection configurations in a convolution block. (a) Original convolution block in
UNet_S, UNet_S1 and UNet_S2; (b) Skip connection with element-wise summation in UNet_S.1,
UNet_S1.1 and UNet_S2.1; (c) Skip connection with concatenation in UNet_S.2, UNet_S1.2 and
UNet_S2.2.

As can be seen from Table 2 phase 2, the skip connections with element-wise summation decreases
the performance of UNet_S.1, UNet_S1.1 and UNet_S2.1 models as compared to the UNet_S model.
On the other hand, the skip connections with concatenation improves the performance of UNet_S.2,
UNet_S1.2 and UNet_S2.2 models as compared to UNet_S model.

From phases 1 and 2, we conclude that the original downsampling and upsampling configurations
with a concatenation skip connection in each convolution block, UNet_S.2, performs better than the
other configurations (see Table 2). Since the phase 2 results correspond with the phase 1 results, where
the modified UNet_S is better than the corresponding UNet_S1 and UNet_S2, we perform the next
modifications only on the best model.

In phase 3, we modify the dropout rate from a value of 0.5 to 0 to confirm the theory discussed in
Section 2.6. As can be seen from Table 2 phases 2 and 3, the model with the original dropout rate of 0.5,
UNet_S.2, still performs better when compared to the modified version, UNet_S.2.1, with a dropout
rate of 0.

In phase 4, we investigate the effect of batch normalisation on the best model, UNet_S.2. In model
UNet_S.2.0.1, the batch normalisation layers are placed in between the convolution and activation
layers as shown in Figure 3b.
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model UNet_S.2. (b) Batch normalisation layer implementation after each convolution layer in model
UNet_S.2.0.1.

As can be seen from Table 2 phase 4, including batch normalisation layers in model UNet_S.2.0.1
improves on the previous best result, UNet_S.2. The use of the batch normalisation layer also increases
the speed of training and reduces training problems related to local minima.
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batch normalisation layer after each activation layer (as shown in Figure 4) in model UNet_S.2.0.1.1.2.
The results are shown in Table 2 phase 6. It can be observed that neither the modification of the ReLU
to the LReLU nor the change in position of the batch normalisation layer with the ReLU layer improves
on the performance of the UNet_S.2.0.1.1 model.
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Figure 3. Batch normalisation layer implementations. (a) Original convolution and activation layers in
model UNet_S.2. (b) Batch normalisation layer implementation after each convolution layer in model
UNet_S.2.0.1.

As can be seen from Table 2 phase 4, including batch normalisation layers in model UNet_S.2.0.1
improves on the previous best result, UNet_S.2. The use of the batch normalisation layer also increases
the speed of training and reduces training problems related to local minima.

As discussed earlier, max pooling is a type of nonlinear filter that preserves the most significant
features (lines, edges, etc.) of the previous layer. However, the prostate does not have a well-defined
boundary, hence a different pooling layer may perform better segmentation. Therefore, in phase 5,
we replace the max pooling layer in the UNet_S.2.0.1 model with average pooling (UNet_S.2.0.1.1),
RMS pooling (UNet_S.2.0.1.2) and L2 pooling (UNet_S.2.0.1.3) layers.

The model with the average pooling layer, UNet_S.2.0.1.1, is shown to perform better than the
UNet_S.2.0.1, UNet_S.2.0.1.2 and UNet_S.2.0.1.3 models as can be observed in Table 2 phase 5.

Finally, we investigate options for the activation and batch normalisation layers on the best model,
UNet_S.2.0.1.1. As discussed in Section 2.5, the ReLU may cause the neurons in the model to die,
which can be overcome by the LReLU. Hence, we replace the ReLU activation layers with LReLU
activation layers in UNet_S.2.0.1.1.1. We also investigate the network performance when applying the
batch normalisation layer after each activation layer (as shown in Figure 4) in model UNet_S.2.0.1.1.2.
The results are shown in Table 2 phase 6. It can be observed that neither the modification of the ReLU
to the LReLU nor the change in position of the batch normalisation layer with the ReLU layer improves
on the performance of the UNet_S.2.0.1.1 model.
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Table 2. Model architecture optimisation results.

Phase Network 5-Fold Cross-Validation DSC (%)

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg

UNet_S 85.28 86.86 83.36 86.16 81.53 84.64

1 UNet_S1 85.26 83.04 79.66 81.43 79.16 81.70

UNet_S2 85.07 85.25 80.20 81.18 80.84 82.51

2

UNet_S.1 84.40 86.30 80.29 80.49 82.98 82.89

UNet_S1.1 83.37 84.22 78.04 82.05 79.35 81.41

UNet_S2.1 83.70 82.53 79.19 82.68 82.03 82.03

UNet_S.2 85.46 88.01 82.91 84.76 84.89 85.21

UNet_S1.2 85.43 84.67 79.06 80.60 83.13 82.58

UNet_S2.2 85.28 81.63 81.08 84.35 80.33 82.53

3 UNet_S.2.1 82.31 84.97 80.11 84.08 81.47 82.59

4 UNet_S.2.0.1 84.33 87.26 82.80 88.79 84.73 85.58

5
UNet_S.2.0.1.1 84.02 88.87 83.97 89.23 85.07 86.23

UNet_S.2.0.1.2 84.55 84.71 81.36 87.38 83.98 84.40

UNet_S.2.0.1.3 84.12 87.55 82.80 88.92 84.17 85.51

6 UNet_S.2.0.1.1.1 81.68 83.89 79.45 88.06 84.00 83.41

UNet_S.2.0.1.1.2 84.64 87.95 82.68 87.75 84.68 85.54

Therefore, our final model is the UNet_S.2.0.1.1, which is a simplified UNet with a concatenation
skip connection in each convolution block, with a 2× 2 average pooling layer used for downsampling
and a batch normalisation layer placed between each convolution and ReLU activation layer.

3.4. Optimised Network Architecture

The configuration of the optimised network, model UNet_S.2.0.1.1, is shown in Figure 5.
The network starts with a 320× 320× 1 input layer followed by a batch normalisation layer. Each
convolution block consists of 3× 3 convolution layers, batch normalisation layers and ReLU activation
layers. A skip connection with a concatenation is used to pass the feature maps between the outputs
of the activation layers in a convolution block so as to combine the feature maps. The concatenated
feature maps are passed deeper into the encoder as well as to the decoder to improve the spatial
information in the higher level feature maps. A 2× 2 average pooling layer is used to downsample the
feature maps from a resolution of 320× 320 to 20× 20. A dropout layer, with a dropout rate of 0.5,
is applied after the fourth and fifth convolution blocks. The Interp+Conv layers consist of a nearest
neighbour interpolation followed by 2× 2 convolution, batch normalisation and ReLU activation
layers. The final classification layer consists of 1× 1 convolution, batch normalisation and sigmoid
activation layers.
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Figure 5. Optimised model architecture (UNet_S.2.0.1.1).

4. Results

In this section, we explain the training process and the results of the optimised network on both
the private and the PROMISE12 [36] datasets.
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4.1. Implementation on the Private Dataset

The same dataset (scan dimension of 320× 320× 60 voxels with voxel size of 0.625× 0.625× 2 mm)
used for the model evaluation (Section 3) is used for both training and testing in this section. However,
instead of using labels from one expert as the label of the prostate, we use the majority voting of
the labels from 3 experts, as used in the other studies [35,37] we are comparing with, to extract the
consensus label of the prostate for training.

4.1.1. Training on the Private Dataset

The training process consists of 2 non-enhancing preprocessing steps, data portioning/balancing
and normalisation. To minimise bias on the weight tuning in the training process, an equal portion of
the data has to be used for training. In this case, we use an equal number of slices with and without
prostate labels. We extract all the 2D scan slices in a volume that have a prostate label, then randomly
select an equal number of the 2D scan slices that do not have a prostate label. For the normalisation,
we subtract the mean of the whole training set from each voxel of the training, validation and test sets,
then divide it by one standard deviation of the training set.

An Adam optimiser [57] is used with a 10−4 learning rate and a binary cross entropy loss
function [58], given by

Loss = −(yi log f (xi, θ) + (1− yi) log (1− f (xi, θ))), (4)

where f (xi, θ) is the network prediction on sample i in a range between 0 and 1 and yi is the ground
truth of sample i in binary (0 or 1). The model is developed with Keras [59]. Both training and testing
are performed on 4 Gb GeForce GTX 960 GPU with Intel(R) Core(TM) i5-3550 CPU @3.30 GHz and
16 Gb RAM. The training time per epoch is approximately 275 s, while testing time is 2.85 s per case
and 0.0474 s per slide.

4.1.2. Results on the Private Dataset

The performance difference between the optimised method and three traditional prostate
segmentation methods [35,37] is presented in this section. The three prostate segmentation methods
that were used in previous studies are the multi-atlas [35], multi-object weighted and standard
(unweighted) deformable model approaches [37].

Five-fold cross-validation mean DSC, median DSC, average symmetric surface distance (ASD)
and Hausdorff distance are used for the evaluation of the model performance to ensure that the
segmentation errors are reasonable for the application, i.e., treatment planning.

The ASD is the average Euclidean distance from all the points on the predicted region boundary,
BP, to the ground truth region boundary, BGT , and from all the points on the BGT to the BP [55],
given by

ASD =

(
∑x∈BP

d(x, BGT) + ∑y∈BGT
d(y, BP)

)
|BP|+ |BGT |

, (5)

where the Euclidean distance from a voxel x to a set of voxels A is given by

d(x, A) = min
y∈A

d(x, y), (6)

with the Euclidean distance between 2 voxels (e.g., voxel x and y) denoted by d(x, y).
The Hausdorff distance measures the maximum distance from a point in set A to the nearest point

in set B [55], given by
dH(A, B) = max

x∈A
min
y∈B

d(x, y). (7)
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Examining the score for the whole dataset, the optimised model gives a mean DSC of 87.38%,
median DSC of 88.19%, median ASD of 0.72 mm and median Hausdorff of 4 mm. As shown in the
Table 3, the optimised model outperforms the traditional methods by at least 7% and 6% in mean and
median DSC respectively, 1.32 mm in median ASD and 5.6 mm in median Hausdorff distance.

Table 3. Performance comparison between the optimised model and traditional methods.

Method Mean Median Median Median
DSC DSC ASD (mm) Hausdorff (mm)

Multi-atlas 0.80 0.82 2.04 13.3

Weighted 0.79 0.81 2.08 9.6

Unweighted - 0.70 3.20 12.9

UNet_S.2.0.1.1 0.87 0.88 0.72 4

As can be seen in Figure 6, the optimised model performed well on all the cross-validation folds
by having DSC scores in the range of 0.73 to 0.94, where the third quartile of the five folds are at least
0.9 and only 4 out of 40 predictions (2 in fold 1, 1 in fold 3, 1 in fold 5) get a DSC score below 0.81.
All of the mean DSC scores are at least 0.86 and the median DSC scores are at least 0.87. Without the
outliers, the minimum DSC scores of 4 cross-validation folds are all 0.84 and above (fold 2, 3, 4 and 5),
which is above the mean and the median DSC scores achieved by the traditional methods.

Figure 6. Box-and-whisker plot of the optimised model five-fold cross-validation Dice’s similary
coefficient (DSC) scores. All the mean and median DSC scores are at least 0.86 and 0.87 respectively (the
best mean and median DSC scores achieved by the traditional method are 0.80 and 0.82 respectively in
this dataset).

Excluding the obvious outliers in Figure 6, we present the best and worst predictions of the
segmentation in Figure 7a,b respectively. These prediction volumes have DSC scores of 0.94 and 0.73.
It is easily observed that the prediction volume with a DSC score of 0.94 is very similar to the ground
truth segmented volume. We note that even for the worst case, the majority of the prediction volume
still overlapped well with the ground truth segmented volume having a DSC score of 0.73.
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(a) (b)

Figure 7. Prostate segmentation results by the optimised model. Model prediction in red, while the
ground truth in green. (a) Prediction with DSC score of 0.94; (b) Prediction with DSC score of 0.73.

4.2. Implementation on the PROMISE12 Dataset

The PROMISE12 dataset consists of 80 T2-weighted MR images of the prostate. It is collected with
different acquisition protocols (e.g., different slice thickness, with/without endorectal coil) from multiple
centres and vendors. The training set consists of 50 T2-weighted MRI scans with a single prostate label
(i.e., reference segmentation). The test set consists of 30 T2-weighted MRI scans without any label.

4.2.1. Training on the PROMISE12 dataset

In addition to the 2 non-enhancing preprocessing steps, data portioning/balancing and
normalisation, performed in Section 4.1.1, 2D resizing to a fixed size of 320× 320 has to be performed
in this dataset as the MRI scans come in 2 different sizes (e.g., 320× 320 and 512× 512).

The same optimiser, learning rate and binary cross entropy loss function, as described in
Section 4.1.1, are used for the training. The same development environment, as in Section 4.1.1,
is used for both training and testing. The training time per epoch is approximately 200 s, while the
testing time is 2.85 s per case and 0.0474 s per slide.

4.2.2. Results on the PROMISE12 Test Set

In this section, the performance of the optimised network was evaluated on the PROMISE12 test
set and compared to the state-of-the-art models on the PROMISE12 leaderboard by submitting the
model predictions to the MICCAI PROMISE12 grand-challenge website where the scores are generated
by the organiser. Here, the test set mean DSC and PROMISE12 overall score [36] are used for the
evaluation of the models. The performance results of different methods as well as the model type,
preprocessing and postprocessing details are presented in the Table 4. Further details of the results can
be obtained from the MICCAI PROMISE12 grand-challenge website [36].

In Table 4, the optimised model is compared with the top 12 state-of-the-art 2D models on the
PROMISE12 leaderboard, all the 3D and combination of the 2D/3D models have been excluded from
the table as they are not directly comparable to the model structure in this paper. From the models
shown in the table, we will discuss in the sequel why some of these should be excluded from a direct
comparison with our model due to a number of factors such as enhancing pre/post-processing and a
stacked model structure.
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Table 4. Performance comparison between the optimised model and state-of-the-art models on the
PROMISE12 test set.

Rank Team Model Model Pre- Post- Mean Overall

Type Processing DSC (%) Score

35 u3004443 Z-Net Single Yes Yes 90.50 87.8068

59 hkuandrewzhang Z-Net Single Yes No 90.24 87.3217(Revised_U-net)

86 wanlichen (WNet) W-Net [60] Stacked No No 89.96 86.5028

92 sho89512 U-Net w/ Single No No 88.98 86.3676Dense Dilated Block

95 fumin RUCIMS (U-Net w/ Single Yes No 88.75 86.2589Dense Dilated Block)

122 Indri92 (This paper) UNet_S.2.0.1.1 (U-Net) Single No No 89.00 85.4954

140 ddd52317102008 Adversial Network Adv. Net. No No 87.90 84.5935

163 mirzaevinom MBIOS (U-Net) Single Yes No 88.06 83.6633

167 ppppppppjw U-Net w/ Dense Block Single No No 86.80 83.5027

168 michaldrozdzal UdeM 2D (ResNet) Stacked No Yes 87.42 83.4522

179 mariabaldeon AdaResU-Net [61] Single Yes No 86.51 82.7937

194 wanlichen (WNet) U-Net w/ Single No No 86.29 82.1644skip connection

As shown, both of the Z-Nets perform better as compared to our optimised model in terms of
both mean DSC and overall score. However, both Z-Nets use either enhancing pre-processing or
post-processing to improve the model performance. Therefore, the Z-Nets results are incomparable
with our optimised model as we do not employ any enhancing pre- or post-processing. On the other
hand, W-Net does not use any enhancing pre- or post-processing and it has a mean DSC of 0.8996
and overall score of 86.5028. However, W-Net is a stacked U-Net, i.e., it utilises a double U-Net to
perform the segmentation, hence it is not comparable with our optimised model that consists of a
single U-Net. Similar with our approach, sho89512 uses a single U-Net structure model and does not
employ any enhancing pre- or post-processing method. However, although it performs better in the
overall score (86.3676 vs. 85.4954), it performs slightly worse than the optimised model in the mean
DSC (0.8898 vs. 0.89). As can be seen from Table 4, our optimised model performs significantly better
compared to the rest of the 2D U-Net-based models with (e.g., MBIOS, UdeM 2D and AdaResU-Net)
or without (e.g., U-Net with dense block and U-Net with skip connection) the use of enhancing pre-
and post-processing. Note that, it also performs better than the adversial network.

Most importantly, the optimised model is seen to be better than U-Net (MBIOS), U-Net with
residual connection (Udem 2D) and U-Net with skip connection (by wanlichen (WNet)) as a result
of the optimisation. Another key point to note is that the optimised model performs better than the
U-Net with dense block (by ppppppppjw), and only slightly worse than U-Net with dense dilated
block (by sho89512 and fumin).

5. Discussion

In deep learning applications, the model architecture tends to be the main focus as it defines the
capability and capacity of a network to extract features and learn. Often a very complicated model is
developed (e.g., stacked, ensemble, hybrid, etc.) without understanding the full capability of a single
U-Net structure and the components within. For a deep learning model with supervised learning, data
quantity and label quality should also be of a primary focus. For example, it is known that medical
imaging data labelling is always subject to intra- and inter-expert variability, that cannot be avoided,
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hence larger data sets are required in order to obtain the best result. To highlight the inter-expert
variability problem, we show the inter-expert DSC score (between experts 1 and 2, 1 and 3, and 2 and
3) for the segmentation of the prostate in the box-and-whisker plot, Figure 8a, of the private dataset
where it can be observed that the range of variability is very large. Also, it can be seen from the
box-and-whisker plot in Figure 8b that the optimised model is shown to perform better than any given
expert and almost as well as the other experts with respect to the majority voting label.

In future work, we suggest that an automatic segmentation model could be used to provide basic
guidance for the expert to produce a larger dataset so that a more robust model can be developed.
Furthermore, a combination of Multiparametric MRI (such as T1w, T2w, ADC and PDw) can be
considered as input to the neural network model to provide more initial features (i.e., information) for
the network to perform the segmentation as it has been shown to be significantly beneficial in prostate
segmentation [27,62] and prostate cancer detection [63]. Furthermore, integration of Attention Gates
(AGs) [64] and Squeeze-and-Excitation (SE) blocks [65,66] are shown to increase the performance of
the U-Net model in performing segmentation [64,66] and could be considered as another component
for optimisation in the U-Net structure as performed in this paper. In addition, optimisation of the
components for 3D neural network models would be a logical and next step to further the work in
this paper as it processes 3D input and extracts 3D features, which can be beneficial for performing
volumetric medical image segmentation [34].

(a) (b)

Figure 8. Box-and-whisker plots. (a) Inter-expert DSC scores to highlight the inter-expert variability
problem; (b) DSC scores of the 3 experts and the model against the majority voting label to show that
the optimised model performance is within the performance range of the experts.

6. Conclusions

In this paper, we develop an optimised 2D U-Net model to perform prostate segmentation,
without the need of any enhancing pre- or post-processing. We also establish the importance of
individual components within the U-Net model to perform prostate segmentation. Compared to
transposed convolution, we found that interpolation and convolution results in a better performance
for upsampling. Within each convolution block, the combination of feature maps with a skip connection
is only beneficial with a concatenation operation. For pooling, the use of average pooling brings
significant improvement as compared to the strided-convolution, max, RMS or L2 pooling. Including
a batch normalisation layer before the activation layer also brings further improvement in the model
performance. We show that the optimised model in this paper outperforms traditional segmentation
methods on the private dataset by approximately 6% and 7% in median and mean DSC score
respectively. Furthermore, it outperforms (in terms of DSC) other comparable state-of-the-art 2D
models on the PROMISE12 public dataset. In addition, we discuss the intra-and inter-expert label
variability and the effect on the model performance, as well as provide suggestions to reduce the
associated errors.
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