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Abstract: Datum transformations are a fundamental issue in geodesy, Global Positioning System
(GPS) science and technology, geographical information science (GIS), and other research fields. In this
study, we establish a general total least squares (TLS) theory which allows the errors-in-variables
model with different constraints to formulate all transformation models, including affine, orthogonal,
similarity, and rigid transformations. Through the adaptation of the transformation models to the
constrained TLS problem, the nonlinear constrained normal equation is analytically derived, and the
transformation parameters can be iteratively estimated by fixed-point formulas. We also provide the
statistical characteristics of the parameter estimator and the unit of precision of the control points.
Two examples are given, as well as an analysis of the results on how the estimated quantities vary
when the number of constraints becomes larger.

Keywords: total least squares; Gauss–Newton algorithm; errors-in-variables; affine/orthogonal/
similarity/rigid transformations; constraints; general algorithm

1. Introduction

Transformations are a frequently encountered procedure in geodesy, Global Positioning System
(GPS) science and technology, geographical information science (GIS), and other scientific fields.
For example, (1) a 3D similarity transformation is usually applied to transform GPS- (World Geodetic
System 84) WGS84-based coordinates to those in a local coordinate system using a bunch of common
points with coordinate values in both systems. (2) In GIS, digital data produced by tracing old paper
maps over a digitizing tablet need to be converted from the tablet’s non-georeferenced plane data into
georeferenced plane data that can be georegistered with other digital data layers. (3) For the purpose
of monitoring a whole dam, the combining of multiple point clouds from different laser stations is
needed by transformations. This process is called registration of the scans/images in photogrammetry
and remote sensing. (4) In computer vision, mapping a single shape obtained from one sensor to
a single shape obtained from another by computing an appropriate transformation between them
makes the image 3D visible.

A common approach to solving the transformation problem is the least squares (LS) adjustment
of the transformation parameters from a redundant set of nonlinear forms of the Gauss–Markov (GM)
model. However, the GM model assumes that only the coordinates of the target points are random in
the observation vector within the GM model. It is obvious that uncertainties from the source coordinate
system are missing in the coefficient matrix within the GM model [1,2].

Taking the uncertainties in the coefficient matrix into account, the symmetric transformation
problems are referred to as the errors-in-variables (EIV) model, and the LS estimation within the EIV
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model is called total least squares (TLS) estimation [3–8]. There are several classes of methods to obtain
TLS solutions: 1) Procrustes analysis (e.g., [9,10]); 2) quaternions (e.g., [5,11,12]); (3) the Lagrange
approach (e.g., [8,13–16]); and 4) unconstrained optimization (e.g., [3,17,18]). From the numerical
point of view, although the analytical method is available for certain special covariance matrices [19],
transformation problems are solved by iterative methods in general, for example, the Gauss–Helmert
model, the iterative GM model, or the sequential quadratic program (SQP).

Although the aforementioned transformation problems have been successfully addressed, they all
focus on the similarity transformations. When we incorporate constraints into the EIV model, all kinds
of transformations, including affine, orthogonal, and rigid types, can be formulated. [17] proposed
SQP to provide the constrained TLS solution for certain types of transformations. [13] implemented
variance component estimation for the EIV model with constraints. However, no one has solved the
constrained TLS problem using a Gauss–Newton (GN)-type solver, which is much easier than SQP,
and the statistical characteristics of the parameter estimates are straightforwardly available.

In this paper, we propose a constrained TLS algorithm by iteratively using the constrained TLS
normal equation. The algorithm is suitable for solving all kinds of transformation problems, either in
2D or in 3D. Furthermore, the statistical characteristics of the parameter estimates are explicitly given
by the inverted constrained normal matrix.

The remainder of this paper is organized as follows: First, we give the mathematical formulation of
the constrained TLS problem and its relation to the transformation models in Section 2. Second, we solve
the TLS problem algebraically using Lagrange multipliers in Section 3. Third, in Section 4, we design
the unconstrained and constrained TLS algorithm for all kinds of transformations. Two examples
are given in Section 5 to demonstrate the performance of the proposed robust methods in 2D and 3D.
Finally, we draw conclusions in Section 6.

2. Adaptation of the Transformation Models to the Constrained/Unconstrained TLS Problem

In the following, we introduce the constrained TLS problem and the transformation models in 2D and
3D, and finally, all types of the coordinate transformations which adapt to the constrained/unconstrained
EIV model.

2.1. The Constrained TLS Problem

Let us start with the functional part of the errors-in-variables model with constraints:

y
n×1
− ey=

(
A− EA

n×u

)
ξ

u×1

subject to c
s×1

(ξ) = 0
(1)

In the above equation, y and ey are the observation vector and its associated random error
vector, respectively. The coefficient matrix A is random or partly random, and the matrices EA are
the associated random error matrices. Vector ξ is the unknown parameter vector. The constraints
c

s×1
(ξ) = 0 are available.

The stochastic part of the EIV model to describe the statistical properties of all random errors is as
follows:

e :=
[

vec(EA)

ey

]
=

 eA
un×1
ey

 ∼ ([
0
0

]
, σ2

0Q
)
. (2)

The complete error vector e is defined by a vectorization operator which reshapes the matrix EA

to the long vector eA by column order. The symbol σ2
0 represents the unknown unit variance. Matrix Q

is the non-negative definite cofactor matrix of the error vector e.
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2.2. Adaptation of 2D Transformations to the Functional Model of the TLS Problem

The 2D affine transformation with six unknown parameters for a single point is introduced as:

[
xt, yt

]T
≈

[
m1 cosα −m2 sin(α+ ε)

m1 sinα m2 cos(α+ ε)

][
xs, ys

]T
+

[
∆x ∆y

]T
. (3)

[
xt, yt

]
are the coordinates of the target system, while

[
xs, ys

]
are the coordinates of the

source system. m1 and m2 are the scale factors, α+ ε and α are the rotation angles, and
[

∆x ∆y
]

are the translations. The sign ≈ is used as we omit the random errors in the equation for the sake of
simple formulation.

When all six parameters are replaced by ξ =
[
vecT

(
Ξ2×2

)
,
[
ξ∆x ξ∆y

]]T
, the above equation is

rewritten as: [
xt, yt

]T
≈ Ξ2×2

[
xs, ys

]T
+

[
ξ∆x ξ∆y

]T
(4)

with transformation matrix Ξ2×2 =

[
ξ11 ξ12
ξ21 ξ22

]
. vecT is the row vectorization operator according to

the row order, i.e., the nth row stacks after the (n-1)th row.
Considering all control points, the unconstrained EIV model of the affine transformation in 2D

can be given by: [
xT

t yT
t

]T
≈

[
I2 ⊗

[
xs ys

]
, I2 ⊗ 1

]
ξ. (5)

Equation (5) explicitly defines the matrix A and the vector y in Eq (1) for all other transformations
in 2D.

The operator ⊗ denotes the Kronecker Product.
[

xs ys

]
and

[
xt yt

]
are the source x and

y coordinate vectors and the target x and y coordinate vectors, respectively, for all control points.
The vector 1 denotes the vector of ones with length the control point number.

The orthogonal, similarity, and rigid transformation models for the single point:

[
xt, yt

]T
≈

[
m1 cosα −m2 sinα
m1 sinα m2 cosα

][
xs, ys

]T
+

[
∆x ∆y

]T
, (6)

[
xt, yt

]T
≈

[
m cosα −m sinα
m sinα m cosα

][
xs, ys

]T
+

[
∆x ∆y

]T
, (7)

[
xt, yt

]T
≈

[
cosα − sinα
sinα cosα

][
xs, ys

]T
+

[
∆x ∆y

]T
, (8)

are simplified versions of Equation (3). Moreover, it is obvious that Equations (6)–(8) can be reformulated
using Equation (3) with three different type constraints, respectively:

ξ11ξ12 + ξ21ξ22 = 0, (9)

ξ2
11 + ξ2

12 − ξ
2
21 − ξ

2
22 = 0, ξ11ξ21 + ξ12ξ22 = 0, (10)

ξ2
11 + ξ2

12 − ξ
2
21 − ξ

2
22 = 0, ξ11ξ21 + ξ12ξ22 = 0, ξ2

11 + ξ2
12 − 1 = 0. (11)

Equation (5) explicitly defines the matrix A and the vector y in Equation (1) for all other
transformations in 2D.

When the original unknown parameters are fewer in the transformation models, the number of
constraints increases.
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2.3. Adaptation of 3D Transformations to the Functional Model of the TLS Problem

In full analogy with the 2D affine transformation model (5), the 3D affine transformation model
can be explicitly extended as follows:[

xT
t yT

t zT
t

]T
≈

[
I3 ⊗

[
xT

s yT
s zT

s

]
, I3 ⊗ 1

]
ξ (12)

with ξ =
[
vecT

(
Ξ3×3

)
,
[

∆x ∆y ∆z
]]T

.
Equation (12) explicitly defines the matrix A and the vector y in equation (1) for all other

transformations in 3D.
When the other three kinds of transformations are considered, the three, five, and six constraints:

ξ11ξ21 + ξ12ξ22 + ξ13ξ23 = 0, ξ11ξ31 + ξ12ξ32 + ξ13ξ33 = 0, ξ31ξ21 + ξ32ξ22 + ξ33ξ23 = 0 (13)

ξ2
11 + ξ2

12 + ξ2
13 − ξ

2
31 − ξ

2
32 − ξ

2
33 = 0, ξ2

21 + ξ2
22 + ξ2

23 − ξ
2
31 − ξ

2
32 − ξ

2
33 = 0

ξ11ξ21 + ξ12ξ22 + ξ13ξ23 = 0, ξ11ξ31 + ξ12ξ32 + ξ13ξ33 = 0, ξ31ξ21 + ξ32ξ22 + ξ33ξ23 = 0
(14)

ξ2
11 + ξ2

12 + ξ2
13 − ξ

2
31 − ξ

2
32 − ξ

2
33 = 0, ξ2

21 + ξ2
22 + ξ2

23 − ξ
2
31 − ξ

2
32 − ξ

2
33 = 0

ξ2
11 + ξ2

12 + ξ2
13 − 1 = 0, ξ11ξ21 + ξ12ξ22 + ξ13ξ23 = 0

ξ11ξ31 + ξ12ξ32 + ξ13ξ33 = 0, ξ31ξ21 + ξ32ξ22 + ξ33ξ23 = 0
(15)

can be correspondingly incorporated for orthogonal, similarity, and rigid transformations, respectively.

2.4. Adaptation of the Transformation Models to the Stochastic Model of the TLS Problem

In Sections 2.2 and 2.3, we showed that the four kinds of transformation models can be formulated
using a constrained or unconstrained EIV model. In order to adapt the stochastic part of the EIV model,
we propagate the covariance matrix of the observed coordinates in both the source and target systems
to the covariance matrix of the EIV model for all 2D cases:

D(e) = σ2
0Q =

[
F2D 0

0 I

]
D
([

xT
s yT

s xT
t yT

t

]T
)[ F2D 0

0 I

]T

(16)

where D denotes the dispersion operator, and the Jacobian matrix for 2D is:

F2D =
∂vec(A)

∂
[

xT
s yT

s

] =
∂vec

([
I2 ⊗

[
xs ys

]
, I2 ⊗ 1

])
∂
[

xT
s yT

s

] .

Similarly, we give the stochastic model of the EIV model for all kinds of 3D transformations:

D(e) = σ2
0Q =

[
F3D 0

0 I

]
D
([

xT
s yT

s zT
s xT

t yT
t zT

t

]T
)[ F3D 0

0 I

]T

(17)

where D denotes the dispersion operator, and the Jacobian matrix for 3D is:

F3D =
∂vec(A)

∂
[

xT
s yT

s zT
s

] =
∂vec

([
I3 ⊗

[
xs ys zs

]
, I3 ⊗ 1

])
∂
[

xT
s yT

s zT
s

] . (18)
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3. A Fixed-Point Solution to the Constrained TLS Problem

In order to solve the constrained TLS optimization problem:

min eTQ−1e
subject to y−Aξ+ EAξ− ey = 0
and c(ξ) = 0,

(19)

the traditional Lagrange approach [20] is applied as follows:

Φ(e,λ,ξ,µ) = eTQ−1e + 2λT
(
y−Aξ+ EAξ− ey

)
+ 2µTc(ξ)

= eTQ−1e + 2λT(y−Aξ+ Be) + 2µTc(ξ),
(20)

where λ and µ are the vectors of the Lagrange multipliers associated with the functional part of the
EIV model and the constraints, respectively. The matrix Bn×n(u+1) =

[
ξT
⊗ In,−In

]
is expressed via

Kronecker product operator.
By calculating the first derivative of Equation (21), the necessary condition of the objective function

(20) is given as follows:
1
2
∂Φ
∂ξ

∣∣∣∣∣
ξ̂,

~
e,

^
λ,

^
µ

= −AT
^
λ+

~
E

T
A

^
λ+

^
C

T
^
µ=0 (21)

1
2
∂Φ
∂e

∣∣∣∣∣^
ξ,

~
e,

^
λ
= Q−1~

e +
^
B

T ^
λ=0 (22)

1
2
∂Φ
∂λ

∣∣∣∣∣^
ξ,

~
e
= y−A

^
ξ+

^
B

~
e = 0 (23)

1
2
∂Φ
∂µ

∣∣∣∣∣^
ξ
= c

(
^
ξ

)
= 0 (24)

with C = C(ξ) := ∂c(ξ)/∂ξT.
From Equation (23), we know that

~
e = −Q

^
B

T ^
λ. (25)

By inserting Equation (26) into Equation (24), the vector of the Lagrange multipliers is:

^
λ =

^
BQ

^
B

T−1(
y−A

^
ξ

)
. (26)

Combining Equations (23) and (27), the error vector can be predicted:

~
e = −Q

^
B

T^
BQ

^
B

T−1(
y−A

^
ξ

)
, (27)

which also implies that the error matrix
~
EA is predicted.

Equations (22) and (25) are immediately reformulated by:

(~
EA −A

)T
^
BQ

^
B

T−1(
y−A

^
ξ

)
+

^
C

T
^
µ=0

c
(

^
ξ

)
= 0

(28)
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which is equivalent to:

(
A−

~
EA

)T
^
BQ

^
B

T−1(
A−

~
EA

)^
ξ+

^
C

T
^
µ=

(
A−

~
EA

)T
^
BQ

^
B

T−1(
y−

~
EA

^
ξ

)
c
(

^
ξ

)
= 0.

(29)

In order to simplify the above equation,

^
N :=

(
A−

~
EA

)T
^
BQ

^
B

T−1(
A−

~
EA

)
^
n :=

(
A−

~
EA

)T
^
BQ

^
B

T−1(
y−

~
EA

^
ξ

) (30)

are defined.
Now, we establish the constrained nonlinear normal equation of the constrained TLS problem:


^
N

^
C

T

^
C 0




^
ξ
^
µ

 =


^
n

^
C

^
ξ− c

(
^
ξ

)  (31)

and the corresponding solution is:


^
ξ
^
µ

 =


^
N

^
C

T

^
C 0


−1

^
n

^
C

^
ξ− c

(
^
ξ

) . (32)

When no constraints are available (e.g., for affine transformation), the estimator of the unknown
parameter is

^
N

^
ξu =

^
n. (33)

The estimator of the unknown parameter can be expressed alternatively as:

^
ξ = f

(
^
ξ

)
=

^
ξu − ĈT

(
ĈN̂−1ĈT

)−1(
Ĉξ̂u − Ĉξ̂+ c

(
ξ̂
))

(34)

where
^
ξ = f

(
^
ξ

)
denotes that the solution is of fixed-point type and can therefore be solved iteratively.

Furthermore, the statistical properties of the estimator can be also approximately given by:

Qξ̂ξ̂ = N̂−1
− N̂−1ĈT

(
ĈN̂−1ĈT

)−1
ĈN̂−1, (35)

σ̂2
0 =

(
y−Aξ̂

)T(
B̂QB̂T)−1(

y−Aξ̂
)

n− u+s
, (36)

D
(
ξ̂
)
= σ̂2

0Q^
ξ

^
ξ

. (37)

4. Algorithm Design

In this part, we summarize the developed formulas to present the general algorithm for all kinds
of 3D coordinate transformations. The coordinates of the source system

[
xs ys zs

]
, the coordinates
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of the target system
[

xt yt zt

]
, and the corresponding stochastic information are given as input

data. Note that the algorithm for 2D transformations is the simplified version of the 3D case and is
therefore omitted here.

Through Equation (12), the coefficient matrix A and the observation vector y can be established as:

y =
[

xT
t yT

t zT
t

]T

A =
[
I3 ⊗

[
xT

s yT
s zT

s

]
, I3 ⊗ 1

] (38)

According to Equation (18), we propagate the cofactor matrix Q of the matrix vec
([

A y
])

by
the dispersion matrix of the target and source coordinates. The a priori dispersion matrix of the target
and source coordinates is usually given by the instrument precision or the precision determined by
adjustment in the previous period.

The transformation kinds define the constraints. For affine transformation, no constraints are
available. For orthogonal, similarity, and rigid transformations, the constraints are defined according
to (13), (14), and (15), respectively.

After the abovementioned preprocessing, we can present the input for the computation:
Input (the available conditions):

3 Coefficient matrix A with dimensions n× u.
3 Observation vector y with dimensions n× 1.
3 Cofactor matrix Q with dimensions (u + 1)n× (u + 1)n.
3 If constraints exist, multiple quadratic constraints c(ξ) = 0 are given.

From the given input, we calculate the initial value of the parameter vector using
^
ξ

0

=
(
ATA

)−1
ATy.

As soon as the initial values for the parameter vector are obtained, the iterative procedure starts
with the following steps:

â Create the matrix
^
Bn×n(u+1) =

^
ξ

T

⊗ In,−In

.
â Calculate the error vector

~
e according to Equation (28) and reshape the error matrix

~
EA.

â Create the Jacobian matrix
^
C = ∂c

(
^
ξ

)
/∂

^
ξ

T

, if constraints exist.

â Create the normal matrix and the normal vector.

u If constraints exist, the normal matrix and the normal vector are given by the left-hand
side and the right-hand side of Equation (32), respectively.

u If no constraints exist, the normal matrix and the normal vector are given by the left-hand
side and the right-hand side of Equation (34), respectively.

â Calculate the estimates of the unknown parameter.

u If constraints exist, we calculate
^
ξ according to Equation (33) or (35).

u If no constraints exist, we calculate
^
ξ according to Equation (34).

When

∥∥∥∥∥∥^
ξ

i

−
^
ξ

i−1∥∥∥∥∥∥ ≤ ε (a suitably small positive value), the iteration terminates. Then, we provide

the precision evaluation, that is, we 1) calculate the cofactor matrix of
^
ξ by Equation (36); 2) calculate

the posterior unit variance σ̂0 by Equation (37); and 3) calculate the variance–covariance matrix of
^
ξ by

Equation (38).
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Finally, we present the estimate of the parameter vector
^
ξ :=

^
ξ

i

and the corresponding
variance–covariance matrix as the final output. In order to illustrate the entire computation process,
we give the following flow chart of the algorithm for all kinds of transformations in Figure 1.

Figure 1. A flow chart of the constrained/unconstrained total least squares algorithm for all kinds of
coordinate transformations.
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5. Numerical Examples

In this part, two numerical examples are provided to verify the proposed constrained TLS
algorithm. In the first example, data from [21] presents a typical photogrammetry problem which
consists of the 2-D coordinates that were measured and respectively calibrated of four side fiducial
marks in a photograph, as seen in Table 1. Here, the coordinates in the target system xt, yt (“Calibrated
Coordinates”) and the coordinates in the source system xs, ys (“Measured Coordinates”) are presented
in Figure 2 to clarify their positions, and we regard them as equally weighted uncorrelated observations.
The similarity transformation for a dataset was adjusted for the EIV model before by [22] and by [6]
in two different parameterizations, i.e., either with or without shift/translation parameters, all in 2D.
They both need complicated preprocessing, i.e., either the reduction of parameters or the selection
of independent random elements within the coefficient matrix. Furthermore, these authors only
implemented the similarity transformation.

Table 1. The common points of the 2D transformation.

Point No. xt yt xs ys

1 −117.478 0 17.856 144.794
2 117.472 0 252.637 154.448
3 0.015 −117.41 140.089 32.326
4 −0.014 117.451 130.40 267.027

Figure 2. The positions of the source and target coordinates in the 2D transformations.

By applying Algorithm 1 to the data set of Table 1, the estimated 2D transformation parameters
for all kinds of transformations and the TLS objective function were determined and are presented in
Table 2. The four parameters are completely different in the transformation matrix Ξ2×2 in the affine
and orthogonal transformations, whereas the four parameters are pairwise different in the similarity
and rigid transformations. The results successfully correspond with the transformation models, as the
affine and orthogonal transformations have different scale factors. The estimated values of the objective
functions become larger and larger from the affine transformation to the rigid transformation (see
the last row of Table 2), since more and more constraints are considered. The standard deviation
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of the parameter estimates is given in Table 3. The table reveals that the precision of the parameter
estimates becomes higher with more constraints. However, in the last row of Table 3, the transformation
models expressed by larger numbers of constraints do not provide larger estimates of the unit standard
deviation, which depends on both the redundant number and the objective function values.

Table 2. Estimates of the 2D transformation parameters.

Parameter

Affine Orthogonal Similarity Rigid

ξ̂11 0.99902905 0.99902817 0.99900748 0.99915487
ξ̂12 0.04111867 0.04109721 0.04109806 0.04110413
ξ̂21 −0.04107747 −0.04109892 −0.04109806 −0.04110413
ξ̂22 0.99898590 0.99898678 0.99900748 0.99915487
∆ x̂ −141.26879 −141.26546 −141.26279 −141.28363
∆ŷ −143.93120 −143.92843 −143.93164 -143.95288

Objective 0.00061868 0.00063141 0.00064325 0.00124379

Table 3. Precision evaluation of the 2D transformation parameters.

Standard Deviation

Affine Orthogonal Similarity Rigid

ξ̂11 1.4969 × 10−4 1.2342 × 10−4 7.6328 × 10−5 3.9027 × 10−6

ξ̂12 1.4974 × 10−4 8.7393 × 10−5 7.6328 × 10−5 9.4866 × 10−5

ξ̂21 1.4969 × 10−4 8.7397 × 10−5 7.6328 × 10−5 9.4866 × 10−5

ξ̂22 1.4974 × 10−4 1.2346 × 10−4 7.6328 × 10−5 3.9027 × 10−6

∆x̂ 3.2661 × 10−2 2.3286 × 10−2 1.7817 × 10−2 1.7641 × 10−2

∆ŷ 3.2661 × 10−2 2.4474 × 10−2 1.7817 × 10−2 1.7445 × 10−2

σ̂0 0.017588 0.014508 0.012681 0.015772

In the second example, a dataset for 3D transformations, shown in Table 4, was given by the
Coordinate Systems Analysis Team (CSAT) at the National Geospatial-Intelligence Agency [9]. CSAT
preserves and releases a set of datum transformation parameter estimates for different countries via the
CSAT website. Felus and Burtch provided the adjustment result for similarity transformation based on
Procrustes analysis on the assumption that the covariance matrix must be expressed by the Kronecker
product. Here, we implemented our proposed algorithm for all kinds of transformations by applying
the dataset in Table 4. It is important to note that our algorithm can adjust the dataset with an arbitrary
covariance matrix, which is beyond the inherent assumption in Procrustes analysis.

Table 4. The common points of the 3D transformation.

Point No. xs ys zs xt yt zt

80,601 5,234,251.25 905,003.2011 3,518,869.674 5,233,991.482 905,003.106 3,519,305.459
32,127 5,218,851.932 919,148.9749 3,537,928.348 5,218,595.021 919,152.324 3,538,363.627
80,600 5,220,818.669 772,128.3613 3,569,828.606 5,220,565.466 772,130.563 3,570,253.01
32,136 5,148,067.252 803,912.306 3,668,491.426 5,147,806.722 803,921.322 3,668,928.371
80,598 5,081,676.23 771,786.8122 3,765,023.787 5,081,410.788 771,799.426 3765460.689
80,597 5,022,479.06 955,283.5487 3,801,754.143 5,022,218.176 955,297.254 3,802,185.975

With the dataset in Table 4, four types of 3D transformation models were adjusted for the six
control points. The estimation results for the affine, orthogonal, similarity, and rigid transformations
are presented in Table 5, Table 6, Table 7, and Table 8, respectively. The results indicate that the
translation parameters differ significantly among the distinct transformation models, whereas the
estimated elements within the transformation matrix change slightly, which matches the precision
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analysis in Table 9. The other analysis results are almost the same as the 2D results in that the values
of the objective function become larger with more constraints, the precision is higher with more
constraints, and the variation of the estimates σ̂0 has no rule.

Table 5. Estimates of the 3D affine transformation parameters.

Shift Parameters The Transformation Matrix

∆x̂ 4274.5307 0.999438051 −0.000101814 −0.000425541
∆ŷ −5094.8874 0.000622535 1.000112976 0.000493015
∆ẑ −17,013.5695 0.002199299 0.000407742 1.001581580

Objective Function 58.5720

Table 6. Estimates of the 3D orthogonal transformation parameters.

Shift Parameters The Transformation Matrix

∆x̂ −1956.3996 1.000224798 0.000041651 0.000137955
∆ŷ 168.5691 −0.000041663 0.999993142 0.000016147
∆ẑ 1495.9485 −0.000137998 −0.000016154 0.999907421

Objective Function 85.6586

Table 7. Estimates of the 3D similarity transformation parameters.

Shift Parameters The Transformation Matrix

∆x̂ −293.3670 1.000010668 0.000021228 -0.000010763
∆ŷ 40.7974 −0.000021228 1.000010668 0.000018196
∆ẑ 354.7273 0.000010763 −0.000018196 1.000010668

Objective Function 115.2651

Table 8. Estimates of the 3D rigid transformation parameters.

Shift Parameters The Transformation Matrix

∆x̂ −238.3801 1.000000000 0.000021228 -0.000010763
∆ŷ 49.9133 −0.000021228 1.000000000 0.000018196
∆ẑ 393.5986 0.000010763 −0.000018196 1.000000000

Objective Function 123.4189

Table 9. Precision evaluation of the 3D transformation parameters.

Standard Deviation

Affine Orthogonal Similarity Rigid

ξ̂11 1.5382 × 10−3 1.3051 × 10−4 1.2094 × 10−5 4.7351 × 10−10

ξ̂12 2.7840 × 10−4 2.3529 × 10−5 2.1435 × 10−5 2.1236 × 10−5

ξ̂13 1.1019 × 10−3 9.3074 × 10−5 1.3800 × 10−5 1.3672 × 10−5

ξ̂21 1.5387 × 10−3 2.3536 × 10−5 2.1436 × 10−5 2.1236 × 10−5

ξ̂22 2.7849 × 10−4 2.4293 × 10−5 1.2094 × 10−5 3.6525 × 10−10

ξ̂23 1.1022 × 10−3 1.6879 × 10−5 1.7551 × 10−5 1.7388 × 10−5

ξ̂31 1.5399 × 10−3 9.3131 × 10−5 1.3800 × 10−5 1.3672 × 10−5

ξ̂32 2.7869 × 10−4 1.6878 × 10−5 1.7551 × 10−5 1.7388 × 10−5

ξ̂33 1.1031 × 10−3 6.8095 × 10−5 1.2094 × 10−5 3.4510 × 10−10

∆x̂ 1.2180 × 104 1.0182 × 103 82.2330 53.1347
∆ŷ 1.2184 × 104 1.6745 × 102 1.5756 × 102 1.5576 × 102

∆ẑ 1.2193 × 104 7.2344 × 102 85.3863 72.4568
σ̂0 3.1244 3.0851 3.2371 3.2070
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6. Conclusions and Outlook

In this contribution, we presented transformation models in the context of the TLS method,
developed the corresponding algorithm based on constrained nonlinear normal equations, and
provided a statistical assessment of the TLS adjustment results, including the cofactor matrix of the
parameter estimator and the a posteriori variance factor.

In the adaptation of the transformation problems to the EIV model, we explicitly expressed the
functional and stochastic models by the source and target coordinates and emphasized the differences
between the transformations distinguished only by the quadratic constraints. The adaptations to 2D
and 3D are quite similar. In particular, the structure of the matrix A and the vector y need to be enlarged
by the z coordinates in the assigned place. For the adaptation, it is important to note that the number
of constraints equals the number of the transformation matrix minus the number of independent
parameter numbers. The number of constraints fixes the degree of freedom in the model.

After formulating the transformation models using an unconstrained or constrained EIV
model, Lagrange multipliers were applied to provide the first-order necessary conditions of the
TLS optimization. After some rearrangements, the constrained nonlinear normal equations were
established, based on which the Newton-type iterative procedure could be implemented. The further
advantage of the formulation of the constrained nonlinear normal equations is that one can explicitly
compute the cofactor matrix and the variance factor, unlike with other existing methods, e.g., the
sequential quadratic program.

We applied the proposed algorithm to selected examples so as to present and explain the
adjustment results of all transformations with regard to the objective function value and statistical
characteristics. We showed that with more available constraints, the objective function values are
larger and the cofactors of the parameter estimates are smaller. The numerical results correspond to
the theoretical inference.

This algorithm is not only valid for the case of many geodetic datum conversion problems, but
also for other applications (photogrammetry, GIS, etc.) where the scale changes may be different or be
fixed to one, which will justify the use of suitable constraints within the EIV model.

Furthermore, we hope that the discussed model and the developed algorithm contribute to
convincing many—not only geodetic—researchers that the benefits arising from the use of orthogonal
regression analysis outweigh the additional effort. From the methodological point of view, our TLS
estimation can be generalized to any M- or L-type estimation, which will be promising in robustifying
data processing for large data sets such as point clouds.
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