
applied
sciences

Article

Online Intrusion Scenario Discovery and Prediction
Based on Hierarchical Temporal Memory (HTM)

Kai Zhang 1,*, Fei Zhao 1 , Shoushan Luo 1, Yang Xin 1,2,*, Hongliang Zhu 1 and Yuling Chen 2

1 National Engineering Laboratory for Disaster Backup and Recovery, Information Security Center, School of
Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China;
zhaofei15206@126.com (F.Z.); buptlou@bupt.edu.cn (S.L.); zhuhongliang@bupt.edu.cn (H.Z.)

2 Guizhou Provincial Key Laboratory of Public Big Data, Guizhou University, Guizhou 550025, China;
ylchen3@gzu.edu.cn

* Correspondence: kaikai4006@163.com (K.Z.); yangxin@bupt.edu.cn (Y.X.)

Received: 2 March 2020; Accepted: 7 April 2020; Published: 10 April 2020
����������
�������

Abstract: With the development of intrusion detection, a number of the intelligence algorithms (e.g.,
artificial neural networks) are introduced to enhance the performance of the intrusion detection
systems. However, many intelligence algorithms should be trained before being used, and retrained
regularly, which is not applicable for continuous online learning and analyzing. In this paper, a new
online intrusion scenario discovery framework is proposed and the intelligence algorithm HTM
(Hierarchical Temporal Memory) is employed to improve the performance of the online learning
ability of the system. The proposed framework can discover and model intrusion scenarios, and the
constructed model keeps evolving with the variance of the data. Additionally, a series of data
preprocessing methods are introduced to enhance its adaptability to the noisy and twisted data.
The experimental results show that the framework is effective in intrusion scenario discovery, and the
discovered scenario is more concise and accurate than our previous work.

Keywords: intrusion detection; intrusion scenario discovery; attack prediction; correlation analysis;
IDS alerts; HTM; Hierarchical Temporal Memory

1. Introduction

Since the beginning of this century, cyberattacks have threatened users and organizations.
They have become more complex and sophisticated with the development of computer networks.
Nowadays, multistep attacks mostly aim at stealing important data from organizations and leads to
serious data security problems.

A multistep attack, also called a multistage attack, intrusion scenario, refers to the ensemble of
steps taken by one or several attackers with a single specific objective inside the network, containing at
least two distinct actions [1]. The multistep attack consists of multiple single-step attacks which can be
detected by the IDS (intrusion detection system), however, the multistep attack is not easy to discover,
having some difficulties:

(1) Although the IDS is efficient in detecting the single-step attack, it can hardly reveal the logical
relations among these single-step attacks.

(2) The real attack is a small probability event, and the most dangerous attacks happen only rarely,
which mean that in each dataset we have only a few examples of attacks. This problem in
intrusion detection research, called the “rare data problem” [2], seems even worse when multistep
attacks are considered.

Appl. Sci. 2020, 10, 2596; doi:10.3390/app10072596 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-1585-3439
http://www.mdpi.com/2076-3417/10/7/2596?type=check_update&version=1
http://dx.doi.org/10.3390/app10072596
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 2596 2 of 17

(3) IDS sensors could miss some steps of a multistep attack because these steps may appear normal to
them [3]. Thus, we cannot assume that the important alerts related to the real attack will always
be there.

(4) High data redundancy and volumes will slow down the analysis process, which is a significant
challenge for the development of systems working in real time.

In this paper, an intrusion scenario discovery framework is proposed to tackle these difficulties by
data preprocessing and online correlation analysis. The proposed framework was designed based on
the following considerations:

First, the framework is a totally online system and has no offline mining or learning part; it is
different from other multistep attack detection systems [4,5] that need offline processing. The HTM
algorithm can learn the association patterns of intrusion actions in real time and the learned patterns
will evolve with the incoming data over time, which is a good characteristic for online learning because
it provides a continuous learning mechanism for our framework. However, the “short-term memory”
has its negative influence on the prediction accuracy, so, an auxiliary method is proposed to mitigate
the influence.

Second, the framework is designed based on the processing of streaming data and does not limit
the boundary or the quantity of data, which means the model should be constructed cumulatively.

Third, the framework needs to predict the intrusion at an early stage without waiting for the
model to be completely built. Given any intrusion action, the proposed framework will output the
predicted action sequence that may happen with a higher probability in the future.

This is the first time to our best knowledge that the HTM algorithm is combined with intrusion
scenario discovery. HTM has some attractive features, such as strong noise resistance, continuous
learning without retraining, and an unsupervised prediction-driven learning mechanism. The proposed
framework can benefit from these features.

In this section, four categories of existing approaches for constructing the intrusion scenarios are
discussed and, after that, some HTM use cases are introduced.

(1) Some early prediction models based on prior knowledge are created manually by security experts.
The domain knowledge, such as known cyber threats or intrusion scenarios, are leveraged in
the modeling process. These models can highly represent real intrusion scenarios, and provide
a high accuracy of prediction with no ambiguity, which is the reason why they are popular in
the industry. However, it is heavy work for the experts to keep the models always available for
attack strategies that are changing all the time. Early studies used the approach proposed by Qin
and Lee [6], which can identify attack plans based on isolated attack scenarios, but appreciable
adjustments should be made to predict the attacks that are beyond the predefined attack plans.

(2) Two types of graph models, HMM (hidden Markov models) and Bayesian networks, are commonly
used in intrusion predictions. Essentially, they are attack graphs that can be constructed
automatically. Statistical methods are utilized to obtain the transition probabilities or probability
distributions based on which the prediction can be made. Ramaki et al. [7] proposed an
attack prediction model based on the previous work [4], which is a real-time IDS alert
correlation framework. In their model, Bayes networks and a Bayes attack graph (BAG) are
employed to increase the accuracy of the prediction. Unlike the models based on Bayes
networks, the HMM-based methods are insensitive to the missed states and transitions,
which means it can work well without complete information of the intrusion scenarios [8].
Farhadi et al. [9] proposed the alert correlation and prediction framework utilizing the HMM
model as the prediction component, which does not require the information about the network
topology, system vulnerabilities, and system configurations, and is robust against over-fitting.
However, the model cannot predict patterns of unknown attacks. Additionally, both of the models
are sensitive to outliers and the lack of scalability for the various intrusion scenarios.

Appl. Sci. 2020, 10, 2596 3 of 17

(3) Data mining is another prevalent technology for discovering correlations within the massive
amount of security data before constructing the intrusion prediction models. Husák et al. [10]
proposed an attack prediction framework based on data mining to identify the attack patterns from
a million alerts. Sequential rule mining is employed to derive rules for prediction. Kim et al. [11]
proposed an approach to create an attack graph based on data mining techniques for intrusion
prediction. Although data mining can discover unknown intrusion patterns, redundant, small,
frequent items would affect the accuracy of the prediction. The most important is that the data
mining models cannot discover the critical data items with lower frequency.

(4) Since the ANN (artificial neural network)-related approaches are proposed to meet the intrusion
prediction, many studies show that neural networks have a better result in predicting attacks
than others. However, neural networks need to be trained offline and retrained in a regular time
interval to meet the constantly changing data. Additionally, feature selection and dimensional
reduction are two essential and complex tasks to conduct, and the parameters should be
learned from the data. In other words, neural networks are heavy models and not optimal
for online prediction in real-time. Subba et al. [12] proposed an intrusion detection model
which can reduce the computational resources in the training phase and is suitable for real-time
deployment. As described above, it needs feature selection and daunting parameter tuning to
gain better performance.

The HTM (Hierarchical Temporal Memory) algorithm is a new type of intelligent learning system
inspired by the structures and mechanism of data processing of the mammalian neocortex. Although the
HTM is still evolving with the latest discoveries in neurobiology, many applications of it are proposed
for its outstanding characteristics. The existing use cases based on HTM theory are discussed in detail.

Cui et al. [13] analyzed the properties of HTM sequence memory in the sequence learning and
prediction tasks and compared the HTM sequence memory with other sequence learning algorithms.
The model has better performance in continuous online learning, robustness to noise, fault tolerance,
and no parameter tunings.

El-Ganainy et al. [14] proposed a method to predict medical streams in real-time; the paper
employs two machine learning algorithms: HTM (Hierarchical Temporal Memory) and LSTM (Long
Short-Term Memory) to model the same medical data stream, and the experimental results show that
the HTM algorithm is more effective than the LSTM algorithm in three aspects: no training process,
no domain knowledge, and the ability to adapt to variations in the data.

Li et al. [15] proposed a framework to detect the anomaly in the stream of air traffic data
broadcasted between a flight and the air traffic control center. The HTM is used to encode the data
and learns the patterns from the sequential data for the anomaly prediction, and then conducts the
deviation analysis to identify the attack based on the former predictions.

Wang et al. [16] proposed a distributed vehicle network anomaly detection framework with the
abilities of continuous online learning and exception scoring. The framework can learn the network
data sequence and detect the abnormal states of the vehicle networks.

Shah et al. [17] proposed a framework to categorize documents using the SP (Spatial Pooling)
algorithm of the HTM theory, and LSI (Latent Semantic Indexing) technology is used for extracting the
top features from the input and converting them into binary format. The assessment shows that the
HTM model is accurate compared to the conventional technologies used in text classification.

Shen et al. [18] have proposed a gait pattern recognition approach using the extended HTM
algorithm. In the paper, the authors decomposed the gait image into sequences of movements of each
body parts, and learns the features through three levels of neurons. A Markov chain is used to discover
the feature groups in which the mutual transition probabilities are above the threshold, then the HTM
algorithm, which is extended with a dynamic programming algorithm, is used to infer the complex
sequences. The HTM algorithm proves the effectiveness of visual problems.

Appl. Sci. 2020, 10, 2596 4 of 17

The main contributions of this paper are: (1) to introduce a series of data preprocessing methods to
refine the streaming data; (2) the HTM algorithm is introduced to enhance the ability of online learning;
and (3) an auxiliary method is proposed to improve the accuracy of intrusion scenario discovery.

2. Materials and Methods

In this section, the basic concepts and the theory of the HTM are introduced, and then the
intrusion action clustering and the session reconstruction of the proposed intrusion scenario discovery
framework is described in detail.

2.1. Preliminaries of HTM

The formal name of the HTM is HTM cortical learning algorithms, which is a machine learning
technology that aims to capture the structural and algorithmic properties of the neocortex. The HTM
models neurons (cells), which are arranged in columns, in layers, in regions, and in a hierarchy [19].
The HTM learns and memorizes the patterns by building and destroying the synapse connections
around the neuron bodies. The HTM theory and basic concepts are explained in this section.

The software implementation of the HTM algorithm was published in 2011, which may be the
real birth of the HTM. The theory of the HTM is developing quickly and the related applications are
increasing every year for its distinct properties in online learning and prediction, especially in anomaly
detection. More applications are being explored by academics and industry.

The HTM model is a multi-layer structure that each layer contains a number of columns and each
column possesses several neuron cells. The model extracts and represents the features of the outside
world by checking the activated column locations within the whole layer. The process of converting
the outside data into the inner representation (sparse distributed representations, SDR for short) is
called SP (spatial pooling), which is the first phase of the whole learning process. The column can
be activated as long as one of the cells composing the column is activated. Under two situations,
the neuron cells will get fired into an active state. First, the specified cell is activated in the bursting
phase. Second, if the cell is in the predictive state, it will be active in the next time step (for more details,
please see [19]). The structure of the HTM is shown in Figure 1.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 17

In this section, the basic concepts and the theory of the HTM are introduced, and then the

intrusion action clustering and the session reconstruction of the proposed intrusion scenario

discovery framework is described in detail.

2.1. Preliminaries of HTM

The formal name of the HTM is HTM cortical learning algorithms, which is a machine learning

technology that aims to capture the structural and algorithmic properties of the neocortex. The HTM

models neurons (cells), which are arranged in columns, in layers, in regions, and in a hierarchy [19].

The HTM learns and memorizes the patterns by building and destroying the synapse connections

around the neuron bodies. The HTM theory and basic concepts are explained in this section.

The software implementation of the HTM algorithm was published in 2011, which may be the

real birth of the HTM. The theory of the HTM is developing quickly and the related applications are

increasing every year for its distinct properties in online learning and prediction, especially in

anomaly detection. More applications are being explored by academics and industry.

The HTM model is a multi-layer structure that each layer contains a number of columns and

each column possesses several neuron cells. The model extracts and represents the features of the

outside world by checking the activated column locations within the whole layer. The process of

converting the outside data into the inner representation (sparse distributed representations, SDR

for short) is called SP (spatial pooling), which is the first phase of the whole learning process. The

column can be activated as long as one of the cells composing the column is activated. Under two

situations, the neuron cells will get fired into an active state. First, the specified cell is activated in the

bursting phase. Second, if the cell is in the predictive state, it will be active in the next time step (for

more details, please see [19]). The structure of the HTM is shown in Figure 1.

Figure 1. The structure of the HTM model. (a) The hierarchy structure of HTM; (b) the neuron cells in

a layer of columns.

Each layer not only represents the different data features but also accumulates the feature

transitions over time through constructing or destroying the connections among cells of different

columns in the same layer. The permanence value of the specified connection is increased when the

connected two cells are successively activated in two adjacent time steps, otherwise, it decreased.

This is the second process of HTM called TM (temporal memory), which can store and predict the

most probable features based on strong connections. Each lower layer in the hierarchy is the input

representation of the higher layer, as a result, the highly abstracted patterns of the original data are

obtained by the top layer.

In a word, the learning process contains two phases: the SP (spatial pooling) and TM (Temporal

memory). In the SP phase, the original data are first converted into bit array and then abstracted into

an inner representation called SDR. In the TM phase, the temporal correlation of SDRs are

accumulated over time. Finally, the SDRs that are predicted by TM are classified by the classifier in

Figure 1. The structure of the HTM model. (a) The hierarchy structure of HTM; (b) the neuron cells in
a layer of columns.

Each layer not only represents the different data features but also accumulates the feature
transitions over time through constructing or destroying the connections among cells of different
columns in the same layer. The permanence value of the specified connection is increased when the
connected two cells are successively activated in two adjacent time steps, otherwise, it decreased.
This is the second process of HTM called TM (temporal memory), which can store and predict the
most probable features based on strong connections. Each lower layer in the hierarchy is the input

Appl. Sci. 2020, 10, 2596 5 of 17

representation of the higher layer, as a result, the highly abstracted patterns of the original data are
obtained by the top layer.

In a word, the learning process contains two phases: the SP (spatial pooling) and TM
(Temporal memory). In the SP phase, the original data are first converted into bit array and then
abstracted into an inner representation called SDR. In the TM phase, the temporal correlation of SDRs
are accumulated over time. Finally, the SDRs that are predicted by TM are classified by the classifier in
order to map the inner representation to the outer presentation. The learning phases are illustrated in
Figure 2.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 17

order to map the inner representation to the outer presentation. The learning phases are illustrated

in Figure 2.

Figure 2. The learning process of the HTM.

In this paper, we will not discuss the details of the HTM model itself. For more information

about the concepts, functions, and mathematical definitions used in the HTM, please see [13,20–24].

2.2. The Intrusion Scenario Discovery and Prediction Framework

The main components (phases) of the proposed framework is illustrated in Figure 3:

Figure 3. The components of the proposed framework. The rectangles in blue are the main

contributions of this paper.

The descriptions of each component are listed as follows:

1. Normalizing: Raw alerts are converted into a unified data structure for future analyzing;

2. Intrusion action extraction: A group of normalized alerts can correlated into a hyper-alert,

which is called intrusion action in this paper, and should meet three requirements: first, they

have the same source IP address and destination IP address; second, they have the same

destination port or the same intrusion type; and last, they occur continuously in time order. The

massive redundant raw alerts are aggregated in this process;

3. Online action clustering: Many extracted actions possess similar semantics, which will be

merged based on the similarity calculating;

4. Intrusion session reconstruction: The time-ordered action sequence will be split into many

subsequences by calculating the variance of the time gaps between actions, each subsequence is

named the intrusion session. Note that all the actions of a particular intrusion session are

extracted from the same pair of physical devices. The extracted session will be refined in order

to reduce more noise actions;

5. Intrusion session encoding: The intrusion session should be encoded before feed to the HTM

algorithm. The session can be first converted into the action ID sequence, and the ID will be

encoded into a bit array which is the HTM inner representation of that action. The learning

phase of the HTM starts with the encoding of the ID sequences;

Figure 2. The learning process of the HTM.

In this paper, we will not discuss the details of the HTM model itself. For more information about
the concepts, functions, and mathematical definitions used in the HTM, please see [13,20–24].

2.2. The Intrusion Scenario Discovery and Prediction Framework

The main components (phases) of the proposed framework is illustrated in Figure 3:

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 17

order to map the inner representation to the outer presentation. The learning phases are illustrated

in Figure 2.

Figure 2. The learning process of the HTM.

In this paper, we will not discuss the details of the HTM model itself. For more information

about the concepts, functions, and mathematical definitions used in the HTM, please see [13,20–24].

2.2. The Intrusion Scenario Discovery and Prediction Framework

The main components (phases) of the proposed framework is illustrated in Figure 3:

Figure 3. The components of the proposed framework. The rectangles in blue are the main

contributions of this paper.

The descriptions of each component are listed as follows:

1. Normalizing: Raw alerts are converted into a unified data structure for future analyzing;

2. Intrusion action extraction: A group of normalized alerts can correlated into a hyper-alert,

which is called intrusion action in this paper, and should meet three requirements: first, they

have the same source IP address and destination IP address; second, they have the same

destination port or the same intrusion type; and last, they occur continuously in time order. The

massive redundant raw alerts are aggregated in this process;

3. Online action clustering: Many extracted actions possess similar semantics, which will be

merged based on the similarity calculating;

4. Intrusion session reconstruction: The time-ordered action sequence will be split into many

subsequences by calculating the variance of the time gaps between actions, each subsequence is

named the intrusion session. Note that all the actions of a particular intrusion session are

extracted from the same pair of physical devices. The extracted session will be refined in order

to reduce more noise actions;

5. Intrusion session encoding: The intrusion session should be encoded before feed to the HTM

algorithm. The session can be first converted into the action ID sequence, and the ID will be

encoded into a bit array which is the HTM inner representation of that action. The learning

phase of the HTM starts with the encoding of the ID sequences;

Figure 3. The components of the proposed framework. The rectangles in blue are the main contributions
of this paper.

The descriptions of each component are listed as follows:

1. Normalizing: Raw alerts are converted into a unified data structure for future analyzing;
2. Intrusion action extraction: A group of normalized alerts can correlated into a hyper-alert, which is

called intrusion action in this paper, and should meet three requirements: first, they have the
same source IP address and destination IP address; second, they have the same destination port or
the same intrusion type; and last, they occur continuously in time order. The massive redundant
raw alerts are aggregated in this process;

3. Online action clustering: Many extracted actions possess similar semantics, which will be merged
based on the similarity calculating;

4. Intrusion session reconstruction: The time-ordered action sequence will be split into many
subsequences by calculating the variance of the time gaps between actions, each subsequence

Appl. Sci. 2020, 10, 2596 6 of 17

is named the intrusion session. Note that all the actions of a particular intrusion session are
extracted from the same pair of physical devices. The extracted session will be refined in order to
reduce more noise actions;

5. Intrusion session encoding: The intrusion session should be encoded before feed to the HTM
algorithm. The session can be first converted into the action ID sequence, and the ID will be
encoded into a bit array which is the HTM inner representation of that action. The learning phase
of the HTM starts with the encoding of the ID sequences;

6. HTM online learning: The HTM learns the patterns of the action sequences and predicts the
next step according to the current input, and the anomaly score which indicates the discrepancy
between the predicted value and the input value. The predicted values and the anomaly scores
will be updated in a particular matrix;

7. Intrusion scenario discovery: Based on the analyzing of historical predicted actions and the
anomaly scores in the correlation matrix, the correlation strengths of intrusion actions are
calculated by the auxiliary method; and

8. Intrusion prediction: The system will search through the matrix to determine the attacking paths
that may happen in the future.

The system is proposed based on our previous work [24], a few concepts, such as intrusion action,
intrusion session, correlation graph, and methods, such as normalizing and intrusion action extraction,
are inherited. In this paper, the data preprocessing is not discussed in detail.

2.2.1. Intrusion Action Clustering

To simplify the associations between actions, the online action clustering is introduced,
which can reduce the classes of actions. The definition of intrusion action is modified for the
consequential processes.

Intrusion action, which referrs to a group of attack types derived from the raw IDS alerts, can be
denoted as a tuple A: <time, types, cid, srcIp, dstIp>. The time field indicates the creating time, the
types field contains a group of alert types expressing the same malicious behavior, the cid field indicates
the class id, and the fields srcIp and dstIp indicate the source IP address and the destination IP address,
respectively. The actions are extracted by the intrusion action extracting process.

The intrusion actions can be compared with each other based on the similarity of the types field. In
this paper, the edit distance of two strings is used to calculate the similarity of the actions. Consider two
intrusion actions A and A’, the types field can be denoted as T(X) = { tn|tn ∈ X, n = 1, 2, . . . , |X|}, the
similarity of two attack types which are strings can be calculated with Equation (1):

∆(tx, ty) =
1

µLD(tx, ty) + 1
(0 < µ ≤ 1) (1)

where LD is the Levenshtein Distance function that returns the distance of two attack types: tx and ty.
The parameter µ is a factor that determines the capacity of a potential cluster. Thus, the similarity of
action A and A’ is calculated with Equation (2):

sim(A, A′) =

∑p
k=1 ∆(A(tk), A′(tk))

p
(2)

where A(tk) indicates the kth attack-type of A, and p = max (|A|, |A’|), if sim (A, A’) = 1, A is the same as
A’. Based on the sim function, online clustering can be achieved. The cid field will be set to the cluster
id for each action in the same cluster.

Appl. Sci. 2020, 10, 2596 7 of 17

For a cluster C = {Ak|k ∈ Z, 1 ≤ k ≤|C|}, the average similarity between an action X and cluster C
can be calculated with Equation (3):

avgsim(X, C) =

∑n
k=1 sim(X, C[k])

n
(3)

where C[k] denotes the kth action in cluster C. If the value of avgsim (X, C) is higher than the threshold,
then X will be put into cluster C, otherwise, a new cluster will be created.

Based on the equations described above, the actions with similar semantics can be merged into
one class, and the number of actions will be reduced significantly.

2.2.2. Intrusion Session Reconstruction

An intrusion session is a sequence with all the unique actions extracted from the communication
of a pair of devices in it. As described before, the time-ordered action sequence will be split into many
subsequences by calculating the variance of the time gaps between actions. Each subsequence is named
intrusion session in this paper.

In practice, the intrusion session always contains long, repeated, and disordered actions,
which lower the performance of the sequence learning system. In most situations, the types of
actions involved in a particular intrusion are more important than the order of them; in other words,
the order of actions can be altered due to variety of situations, such as the network delay, the system
error, even the intended disorders made by the attacker. Thus, the session reconstruction is proposed
to refine the sessions.

The extracted session in Figure 4 is the ordinary state after applied the pruning algorithm proposed
in [24]. If the session is converted into a more precise and clearer one, the performance of the system
can be highly enhanced.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 17

2.2.2. Intrusion Session Reconstruction

An intrusion session is a sequence with all the unique actions extracted from the

communication of a pair of devices in it. As described before, the time-ordered action sequence will

be split into many subsequences by calculating the variance of the time gaps between actions. Each

subsequence is named intrusion session in this paper.

In practice, the intrusion session always contains long, repeated, and disordered actions, which

lower the performance of the sequence learning system. In most situations, the types of actions

involved in a particular intrusion are more important than the order of them; in other words, the

order of actions can be altered due to variety of situations, such as the network delay, the system

error, even the intended disorders made by the attacker. Thus, the session reconstruction is

proposed to refine the sessions.

The extracted session in Figure 4 is the ordinary state after applied the pruning algorithm

proposed in [24]. If the session is converted into a more precise and clearer one, the performance of

the system can be highly enhanced.

Figure 4. The extracted session and the converted session. The numbers denote the intrusion actions.

In order to discover the potential skeleton of the intrusion, a session refining method is

proposed in this paper to highlight the real information hiding in the sessions. It removes the

repeated actions from intrusion sessions by calculating the similarity of actions. When

reconstructing the session, the new arrived action will be compared with the existing actions of the

converted session, and it will discard the actions if they have been in the converted session. The

reconstruction process keeps all the action information and the basic orders of actions, and it is more

effective than our pruning algorithm proposed in our previous work [24]. Figure 5 shows how the

method works.

Figure 5. The proposed session refining method.

Although the session refining method is simple, it is effective in discovering intrusion patterns.

The most important is that it can stabilize the association patterns of actions in the session, and

provide a clean sequence for the HTM algorithm to learn.

2.2.3. Online Learning and Prediction

The HTM algorithm can provide some advantages for the proposed framework: (1) It learns the

patterns and trends based on the variance of the features over time, which makes it suitable for

sequence learning, and it has a better performance than other sequence learning algorithm [13]; (2) it

further reduces the influence of the noise due to the special representations of the data; and (3) it can

be used to reduce the negative influences of data problems, such as sudden changes in the pattern,

and it highlights the real patterns that should be focused on.

Figure 4. The extracted session and the converted session. The numbers denote the intrusion actions.

In order to discover the potential skeleton of the intrusion, a session refining method is proposed
in this paper to highlight the real information hiding in the sessions. It removes the repeated actions
from intrusion sessions by calculating the similarity of actions. When reconstructing the session, the
new arrived action will be compared with the existing actions of the converted session, and it will
discard the actions if they have been in the converted session. The reconstruction process keeps all the
action information and the basic orders of actions, and it is more effective than our pruning algorithm
proposed in our previous work [24]. Figure 5 shows how the method works.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 17

2.2.2. Intrusion Session Reconstruction

An intrusion session is a sequence with all the unique actions extracted from the

communication of a pair of devices in it. As described before, the time-ordered action sequence will

be split into many subsequences by calculating the variance of the time gaps between actions. Each

subsequence is named intrusion session in this paper.

In practice, the intrusion session always contains long, repeated, and disordered actions, which

lower the performance of the sequence learning system. In most situations, the types of actions

involved in a particular intrusion are more important than the order of them; in other words, the

order of actions can be altered due to variety of situations, such as the network delay, the system

error, even the intended disorders made by the attacker. Thus, the session reconstruction is

proposed to refine the sessions.

The extracted session in Figure 4 is the ordinary state after applied the pruning algorithm

proposed in [24]. If the session is converted into a more precise and clearer one, the performance of

the system can be highly enhanced.

Figure 4. The extracted session and the converted session. The numbers denote the intrusion actions.

In order to discover the potential skeleton of the intrusion, a session refining method is

proposed in this paper to highlight the real information hiding in the sessions. It removes the

repeated actions from intrusion sessions by calculating the similarity of actions. When

reconstructing the session, the new arrived action will be compared with the existing actions of the

converted session, and it will discard the actions if they have been in the converted session. The

reconstruction process keeps all the action information and the basic orders of actions, and it is more

effective than our pruning algorithm proposed in our previous work [24]. Figure 5 shows how the

method works.

Figure 5. The proposed session refining method.

Although the session refining method is simple, it is effective in discovering intrusion patterns.

The most important is that it can stabilize the association patterns of actions in the session, and

provide a clean sequence for the HTM algorithm to learn.

2.2.3. Online Learning and Prediction

The HTM algorithm can provide some advantages for the proposed framework: (1) It learns the

patterns and trends based on the variance of the features over time, which makes it suitable for

sequence learning, and it has a better performance than other sequence learning algorithm [13]; (2) it

further reduces the influence of the noise due to the special representations of the data; and (3) it can

be used to reduce the negative influences of data problems, such as sudden changes in the pattern,

and it highlights the real patterns that should be focused on.

Figure 5. The proposed session refining method.

Appl. Sci. 2020, 10, 2596 8 of 17

Although the session refining method is simple, it is effective in discovering intrusion patterns.
The most important is that it can stabilize the association patterns of actions in the session, and provide
a clean sequence for the HTM algorithm to learn.

2.2.3. Online Learning and Prediction

The HTM algorithm can provide some advantages for the proposed framework: (1) It learns
the patterns and trends based on the variance of the features over time, which makes it suitable for
sequence learning, and it has a better performance than other sequence learning algorithm [13]; (2) it
further reduces the influence of the noise due to the special representations of the data; and (3) it can
be used to reduce the negative influences of data problems, such as sudden changes in the pattern,
and it highlights the real patterns that should be focused on.

The association relation of actions is the main objective to be learned by HTM algorithm.
The correlation between two actions A and B can be measured by their temporal orders in the sequence,
and the TM (Temporal Memory) learning process of HTM which is described in Section 2.1 can discover
and accumulate the temporal association strength between A and B. Thus, the intrusion sessions are
first converted into the action ID sequences and the IDs are fed to the HTM by their occurrence order.

The backend system will record and analyze the output of the HTM in real-time. There are three
main output values are recorded for analyzing: The current input value, the predicted value, and the
anomaly score calculated with the two values. The anomaly score assesses the differences between the
predicted SDR and the input SDR.

Considering P’t−1 as the predicted SDR at time step t − 1, and Pt as the input SDR at time step t.
The anomaly score at time step t can be calculated as:

ωt = 1−
p′t−1•pt∣∣∣pt

∣∣∣ , (4)

where |Pt| denotes the number of one bit in Pt, the symbol • computes the number of one bit of the
SDR that is different from the other one. ωt will be 0 if the predicted SDR is totally different from the
input SDR.

The prediction made by HTM can be denoted as a triple: <p, p’, ω> where p indicates the current
input value, p’ indicates the predicted value at the previous time step, and ω indicates the anomaly
score. The records with ω ≥ 0.6 will be selected to update the correlation matrix.

Although the introduction of the HTM algorithm enhances the framework in the ability of online
learning and analyzing, the learned patterns will evolve with the data variance in the long-term
continuous learning process. In other words, the learned patterns should be kept stable in a way.
Thus, the correlation matrix (CM) is proposed.

For given actions A1, A2, A3, . . . , An, the correlation matrix can be defined as an n × n matrix
M(Ai, A j) =<

∣∣∣Ai → A j
∣∣∣, ω0 > (i, j < n) where Ai indicates the input action, and Aj indicates the

predicted action. The value of M(Ai, A j) is a tuple,
∣∣∣Ai → A j

∣∣∣ denotes that the number of Ai → A j
has been predicted, and ω0 is a single exponential smoothed anomaly score. ω0 can be calculated by
Equation (5):

ω0 = ω0 + α(ωn −ω0) (5)

where ωn indicates the anomaly score of the latest prediction. α denotes the smooth factor.
In the prediction phase, the correlation strengths (CS values) between actions are calculated by

the historical predictions as:

CS(Ai, Aj) =

∣∣∣Ai → A j
∣∣∣

|Ai → ∗|
×ω0 (6)

where |Ai → ∗| denotes the total number of the predictions with Ai as the input action.

Appl. Sci. 2020, 10, 2596 9 of 17

For a particular input action A, the actions predicted by HTM can be searched in the matrix and the
CS values between A and the predicted actions are calculated, the action B will be selected if CS (A, B) is
the max value among the CS values. Then, the framework iteratively finds the action C that makes CS (B,
C) the max value among CS values calculated with B as the input action, and so on. Thus, the prediction
sequence is constructed. In order to avoid the system falling into an endless loop, the searching
progress will be ended if the newly searched action has appeared in the prediction sequence.

3. Results

In this section, the experimental evaluations are performed. Two main aspects of the framework
will be evaluated: (1) The accuracy of intrusion pattern learning; and (2) the ability of multistep attack
scenario discovery.

3.1. Experiment Setup

The proposed system is implemented with Java programming language and runs on a server with
8 GB RAM and 2.6 GHz Intel CPU, on which Windows 10 operating system is installed. In addition,
the standard Java implementation of the HTM framework is employed and the free open source IDS
software Snort (Sourcefire Columbia, Maryland, USA) is used in reading, detecting network traffic
data, and generating raw alerts. The initial parameters of the system are summarized in Table 1.

Table 1. Parameters set for the system.

Parameters Values Notes

Ls 200 Action queue length
Lc 2000 Alert cache
µ 0.1 Similarity factor
s0 0.6 Similarity threshold
ω 0.6 Anomaly score threshold
N 500 Encoder bit array size
W 21 Encoder bucket width
Cl 2048 Number of columns in SP
ce 10 Number of cells per column
α 0.3 Smooth factor

others - Other parameters are default

3.2. Evaluations on CICIDS2017 Dataset

CICIDS2017 intrusion detection evaluation dataset [25] was published by the Canadian Institute
for Cybersecurity in 2017 which covers a variety of the most up-to-date well-known attacks and it is
free to download for studying. We adopt the dataset for the reasons listed below:

1. The dataset resembles real-world network traffic data that contains realistic and naturalistic
benign background traffic that simulates everyday interaction behaviors of 25 users;

2. The data was continuously captured for five days, from Monday to Friday in July 2017. About 10
GB of data was created per day and was labeled for training. It needs to noted that the Monday
dataset only contains benign interactions of daily work;

3. The performed attacks including brute force FTP, brute force SSH, DoS, Heartbleed, web attack,
infiltration, botnet, and DDoS; and

4. The network traffic was captured in a completely configured network, including modem, firewall,
switches, routers, and PCs, with a variety of operating systems, such as Windows, Ubuntu,
and Mac OS X, and most of the traffic is based on the HTTP, HTTPS, FTP, SSH, and email protocols.

To evaluate the proposed system, we used the data captured on Thursday, containing two attacking
processes which can be seen as two scenarios. First, in the morning, the attacker executed three web

Appl. Sci. 2020, 10, 2596 10 of 17

attacks: brute force, XSS (Cross Site Scripting), and SQL injection. Second, in the afternoon, the attacker
performed a series of infiltrations.

The evaluation process is divided into two parts: first, we will assess the abilities of the intrusion
sequences extracting and reconstructing for the learning process. In the second part, we will evaluate
the predictions of the system.

3.2.1. Data Preprocessing Results

We split the Thursday data file into four parts for snort to read and detect in a continuous way.
More than 64,000 alerts generated by snort are recorded in a file. About 5876 intrusion actions are
extracted and 39 classes of intrusion actions remain after clustering. After that, 780 intrusion sessions
are extracted and only 28 sessions have more than two actions. After data preprocessing, 28 distinct
intrusion sessions consisting of 39 classes of actions are extracted. The statistical results are listed in
Table 2.

Table 2. Statistical results of the data preprocessing.

Names Values

Total raw alerts 64,000
Total alerts used to construct the sessions 2040 (3.2% of total alerts)

Alert groups 769
Extracted actions (repeated) 5876

Action classes (after clustering) 39
Extracted sessions 780

Sessions with only one action 702 (90% of total sessions)
Sessions with more than two actions 28 (3.5% of total sessions)

Session refining rate 1 82%
Sessions refined 38 (49% of sessions with more than one actions)

1 re f ining =
#total actions removed f rom re f ined sessions

#total actions o f re f ined sessions × 100%.

In Table 2, about 2040 raw alerts (3.2% of total alerts) are used to construct the actions and sessions,
the rest of alerts are merged or discarded by system. The system reduces the number of alerts by two
ways: (1) intrusion action extraction, the similar alerts (with small edit distance of the alert type) will
be merged to express the same action; (2) action clustering, 5876 actions are clustered into 39 classes,
which can significantly reduce the number of alerts; and (3) intrusion session reconstruction, which can
reduce the actions in a session. For the statistical requirements of the experiments, each intermediate
process’ results are saved in the files. The data related to the real intrusion can be very sparse compared
to the whole dataset. The extracted intrusion actions are listed in Table 3, and some actions consist of
multiple alerts.

Appl. Sci. 2020, 10, 2596 11 of 17

Table 3. Extracted intrusion sessions.

Scenarios Actions 1 Alerts

Infiltration

A protocol-snmp request tcp
B protocol-snmp agentX/tcp request
C protocol-icmp ping

protocol-icmp ping undefined code
protocol-icmp echo reply undefined code

D policy-other tcp packet with urgent flag attempt
server-other winnuke attack

E policy-other tcp packet with urgent flag attempt
F server-webapp robots.txt access
G policy-other ftp anonymous login attempt
H app-detect failed ftp login attempt

I openssh maxstartup threshold connection exhaustion
denial of service attempt

J indicator-scan ssh brute force login attempt

K server-other realnetworks helix server ntlm
authentication heap overflow attempt

Web attack

L server-webapp password sent via post parameter

M server-webapp flexense diskpulse disk change
monitor login buffer overflow attempt

N policy-other script tag in uri—likely cross-site
scripting attempt

O sql 1 = 1 − possible sql injection attempt
1 Not all the actions are listed in the table for the limitation of this paper.

Compared with the previous work [24], there are two improvements in the data processing: (1)
The total number of the extracted intrusion actions decreased significantly due to the action clustering
which can reduce the similar actions in a session and make the semantic information more clearly,
while, at the same time, it saves many computing resources; and (2) the rebuilt sessions are more
accurate in expressing the intrusion strategies. This is because the complicated binary relations are
simplified. Most importantly, it highlights the semantics hiding in the sessions.

3.2.2. Data Learning Results

The accuracy of the framework in discovering potential intrusion patterns and the ability of
discovering the intrusion scenarios will be evaluated in this section. First, the framework will be tested
on an automatically generated dataset by programming. Second, the system will be tested on a series of
intrusion sessions extracted in the data preprocessing evaluation, and these intrusion sessions contain
the real intrusion scenarios.

In order to test the core algorithm of the system in a flexible way, the automatically generated
dataset are used by programming. Five intrusion patterns are generated with about 10 actions in
each pattern. Some irrelevant actions are inserted into these patterns randomly to mislead the system.
The target of the system is to discover these unknown patterns in an unsupervised way. After training,
some actions are provided to the system to make predictions. The predicted actions will be compared
with the five patterns, and all the predicted actions that are not match with the patterns will be recorded
for statistics.

The details about the dataset are listed in Table 4. The whole evaluation contains 10 tests, and each
test is conducted separately with the testing data regenerated. The test data contains three parts: (1)
The intrusion patterns to be discovered by the system; (2) the background traffic; and (3) the gradually
increased noise actions inserted into each pattern.

Appl. Sci. 2020, 10, 2596 12 of 17

Table 4. Intrusion patterns for testing. The system makes predictions for input actions.

Intrusion Patterns Input Action System Prediction

1-2-3-4-5-6-7-8-9-10 1 2-3-4-5-6-7-8-9-10
11-12-13-14-11-12-13-14-15-16 12 13-14-11(13-14-15-16)

17-18-19-20-24-28-29 17 18-19-20-24-28-29
21-22-23-24-28-29-30 22 23-24-28-29-30

25-26-27-28-29-30-21-24 26 27-28-29-30-21-24

The generated data are shown in Figure 6, the number denotes the action IDs, and the actions
with ID more than 100 are irrelevant actions. For the system, the frequency of one or more actions
appearing together in the sequence will be learned by the HTM algorithm through the prediction and
revising process.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 17

Table 4. Intrusion patterns for testing. The system makes predictions for input actions.

Intrusion Patterns Input Action System Prediction

1-2-3-4-5-6-7-8-9-10 1 2-3-4-5-6-7-8-9-10

11-12-13-14-11-12-13-14-15-16 12 13-14-11(13-14-15-16)

17-18-19-20-24-28-29 17 18-19-20-24-28-29

21-22-23-24-28-29-30 22 23-24-28-29-30

25-26-27-28-29-30-21-24 26 27-28-29-30-21-24

The generated data are shown in Figure 6, the number denotes the action IDs, and the actions

with ID more than 100 are irrelevant actions. For the system, the frequency of one or more actions

appearing together in the sequence will be learned by the HTM algorithm through the prediction

and revising process.

Figure 6. The generated action sequences with different noise level. The bolded numbers denote the

pattern action, the grey numbers denote the background traffic, and the red numbers denote the

noise actions.

The testing program will create the data file for each test and load the data into the framework.

Each data file contains about 2000 actions and 20 randomly-selected intrusion patterns with noise.

The noise actions will increase with testing.

For each test, the framework will correlate the actions based on their high CS value. If two

actions appear together only once, the anomaly score of the HTM for this prediction will be very low

and the CS value too, and if one particular action frequently appears with many other different

actions, the HTM will keep a low prediction accuracy for this action because it cannot decide which

action will appear after it, Additionally, the confidence will decrease. Thus, only stable patterns will

be discovered. In the test, the system will start searching with the given action and only select the

action with the highest CS value among the candidate values which are greater than 0.6.

The prediction errors for each pattern in each test are listed in Table 5. The prediction accuracy

for each pattern is an average value of 10 tests. The prediction errors will increase with the noise

level.

Table 5. Intrusion pattern discovering results.

Intrusion Patterns Errors Accuracy 1

1-2-3-4-5-6-7-8-9-10 (0,0,0,0,0,0,0,1,3,4) 92%

11-12-13-14-11-12-13-14-15-16 (0,0,0,0,0,1,0,0,0,2) 92.5%

17-18-19-20-24-28-29 (0,0,1,0,0,0,1,0,2,3) 89%

21-22-23-24-28-29-30 (0,0,0,0,0,0,0,0,1,4) 90%

25-26-27-28-29-30-21-24 (0,0,0,0,0,0,0,1,0,3) 93%
1 #

1 100%
#

false predicted actions
accuracy

all should be predicted
  

.

The false positive of the framework can be calculated as FP=#prediction errors/#all actions

predicted  100%. Figure 7 shows the false positives at different noise levels. If each pattern contains

less than five noise actions (50% of noise) the false positives can be lower than 3%; if the noise goes

up to 80%, the false positives will increase significantly. Thus, the framework can work at a noise

level lower than 80%.

Figure 6. The generated action sequences with different noise level. The bolded numbers denote
the pattern action, the grey numbers denote the background traffic, and the red numbers denote the
noise actions.

The testing program will create the data file for each test and load the data into the framework.
Each data file contains about 2000 actions and 20 randomly-selected intrusion patterns with noise.
The noise actions will increase with testing.

For each test, the framework will correlate the actions based on their high CS value. If two actions
appear together only once, the anomaly score of the HTM for this prediction will be very low and
the CS value too, and if one particular action frequently appears with many other different actions,
the HTM will keep a low prediction accuracy for this action because it cannot decide which action will
appear after it, Additionally, the confidence will decrease. Thus, only stable patterns will be discovered.
In the test, the system will start searching with the given action and only select the action with the
highest CS value among the candidate values which are greater than 0.6.

The prediction errors for each pattern in each test are listed in Table 5. The prediction accuracy for
each pattern is an average value of 10 tests. The prediction errors will increase with the noise level.

Table 5. Intrusion pattern discovering results.

Intrusion Patterns Errors Accuracy 1

1-2-3-4-5-6-7-8-9-10 (0,0,0,0,0,0,0,1,3,4) 92%
11-12-13-14-11-12-13-14-15-16 (0,0,0,0,0,1,0,0,0,2) 92.5%

17-18-19-20-24-28-29 (0,0,1,0,0,0,1,0,2,3) 89%
21-22-23-24-28-29-30 (0,0,0,0,0,0,0,0,1,4) 90%

25-26-27-28-29-30-21-24 (0,0,0,0,0,0,0,1,0,3) 93%
1 accuracy = 1− # f alse predicted actions

#all should be predicted × 100%.

The false positive of the framework can be calculated as FP = #prediction errors/#all actions predicted
× 100%. Figure 7 shows the false positives at different noise levels. If each pattern contains less than
five noise actions (50% of noise) the false positives can be lower than 3%; if the noise goes up to 80%,
the false positives will increase significantly. Thus, the framework can work at a noise level lower
than 80%.

Appl. Sci. 2020, 10, 2596 13 of 17
Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 17

Figure 7. The false positives of the framework.

In the tests, the anomaly score threshold is set to 0.6, 30% of the data are filtered out and not

recorded in the correlation matrix, which reduces the size of the matrix and the searching time.

When actions 1–10 are correlated by the system, the CS values are shown in Figure 8.

Figure 8. The correlated actions 1–10, and their CS values.

With the complex intrusion scenario, the framework tends to correlate multiple intrusion

patterns together based on the common actions they are sharing. For instance, the three patterns

(17~29, 21~30, 25~24) listed in Table 5 will be correlated because they share the actions 24, 28, and 29.

Figure 9 illustrates the correlate graph.

Figure 7. The false positives of the framework.

In the tests, the anomaly score threshold is set to 0.6, 30% of the data are filtered out and not
recorded in the correlation matrix, which reduces the size of the matrix and the searching time.
When actions 1–10 are correlated by the system, the CS values are shown in Figure 8.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 17

Figure 7. The false positives of the framework.

In the tests, the anomaly score threshold is set to 0.6, 30% of the data are filtered out and not

recorded in the correlation matrix, which reduces the size of the matrix and the searching time.

When actions 1–10 are correlated by the system, the CS values are shown in Figure 8.

Figure 8. The correlated actions 1–10, and their CS values.

With the complex intrusion scenario, the framework tends to correlate multiple intrusion

patterns together based on the common actions they are sharing. For instance, the three patterns

(17~29, 21~30, 25~24) listed in Table 5 will be correlated because they share the actions 24, 28, and 29.

Figure 9 illustrates the correlate graph.

Figure 8. The correlated actions 1–10, and their CS values.

With the complex intrusion scenario, the framework tends to correlate multiple intrusion patterns
together based on the common actions they are sharing. For instance, the three patterns (17~29, 21~30,
25~24) listed in Table 5 will be correlated because they share the actions 24, 28, and 29. Figure 9
illustrates the correlate graph.

Appl. Sci. 2020, 10, 2596 14 of 17Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 17

Figure 9. The correlate graph based on the three patterns (17~29, 21~30, 25~24).

To evaluate the whole system based on a real intrusion scenario, the infiltration attack scenario

of the CICIDS2017 dataset is used. The scenario is about a Dropbox download attack, which

leveraged the technologies of overflow, port scanning, and Nmap. There are 13,700 IDS alerts

generated by snort, 1647 intrusion actions, 163 sessions are extracted, and 22 sessions have more

than two actions. All the extracted sessions are loaded into the framework. A part of the sessions is

listed in the Table 6.

Table 6. A part of the extracted intrusion sessions of an infiltration attack.

Sessions Sessions Sessions

1-2-3-4-5-6-7 2-1-3-4-5-6-7-14 23-24-25

8-9-10-3 7-8-18-17-19-20-21 3-8-9-10-11-26

8-10-3-9 8-9-3-10-11 1-2-3-4-5-7-9-10

1-2-4-5-14 2-1-3-4-5-6-14-7 1-2-27-13-6-14

10-11-12-8-9 2-1-3-4-5-14-7-15-16-17-18-19-20 28-25-29

The discovered intrusion scenario is shown in Figure 10. Compared with our previous work,

the number of nodes in the correlation graph is reduced and the semantic of the correlation graph is

closer to the real scenario. However, the samples related to the real scenario are very limited,

although there are more than 13,700 alerts, only 720 alerts (5%) are used to construct the actions.

Figure 10. The discovered intrusion scenario.

Compared with our former work, the new system gains four new better characters: (1) there are

no more complex branches in the correlation graph because all the sessions are reconstructed to

remove the ambiguous relations; (2) the new system is focused on predicting the future attack trends

rather than the particular next attack. The action nodes in the graph are the abstraction of a group of

Figure 9. The correlate graph based on the three patterns (17~29, 21~30, 25~24).

To evaluate the whole system based on a real intrusion scenario, the infiltration attack scenario of
the CICIDS2017 dataset is used. The scenario is about a Dropbox download attack, which leveraged
the technologies of overflow, port scanning, and Nmap. There are 13,700 IDS alerts generated by snort,
1647 intrusion actions, 163 sessions are extracted, and 22 sessions have more than two actions. All the
extracted sessions are loaded into the framework. A part of the sessions is listed in the Table 6.

Table 6. A part of the extracted intrusion sessions of an infiltration attack.

Sessions Sessions Sessions

1-2-3-4-5-6-7 2-1-3-4-5-6-7-14 23-24-25
8-9-10-3 7-8-18-17-19-20-21 3-8-9-10-11-26
8-10-3-9 8-9-3-10-11 1-2-3-4-5-7-9-10

1-2-4-5-14 2-1-3-4-5-6-14-7 1-2-27-13-6-14
10-11-12-8-9 2-1-3-4-5-14-7-15-16-17-18-19-20 28-25-29

The discovered intrusion scenario is shown in Figure 10. Compared with our previous work,
the number of nodes in the correlation graph is reduced and the semantic of the correlation graph is
closer to the real scenario. However, the samples related to the real scenario are very limited, although
there are more than 13,700 alerts, only 720 alerts (5%) are used to construct the actions.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 17

Figure 9. The correlate graph based on the three patterns (17~29, 21~30, 25~24).

To evaluate the whole system based on a real intrusion scenario, the infiltration attack scenario

of the CICIDS2017 dataset is used. The scenario is about a Dropbox download attack, which

leveraged the technologies of overflow, port scanning, and Nmap. There are 13,700 IDS alerts

generated by snort, 1647 intrusion actions, 163 sessions are extracted, and 22 sessions have more

than two actions. All the extracted sessions are loaded into the framework. A part of the sessions is

listed in the Table 6.

Table 6. A part of the extracted intrusion sessions of an infiltration attack.

Sessions Sessions Sessions

1-2-3-4-5-6-7 2-1-3-4-5-6-7-14 23-24-25

8-9-10-3 7-8-18-17-19-20-21 3-8-9-10-11-26

8-10-3-9 8-9-3-10-11 1-2-3-4-5-7-9-10

1-2-4-5-14 2-1-3-4-5-6-14-7 1-2-27-13-6-14

10-11-12-8-9 2-1-3-4-5-14-7-15-16-17-18-19-20 28-25-29

The discovered intrusion scenario is shown in Figure 10. Compared with our previous work,

the number of nodes in the correlation graph is reduced and the semantic of the correlation graph is

closer to the real scenario. However, the samples related to the real scenario are very limited,

although there are more than 13,700 alerts, only 720 alerts (5%) are used to construct the actions.

Figure 10. The discovered intrusion scenario.

Compared with our former work, the new system gains four new better characters: (1) there are

no more complex branches in the correlation graph because all the sessions are reconstructed to

remove the ambiguous relations; (2) the new system is focused on predicting the future attack trends

rather than the particular next attack. The action nodes in the graph are the abstraction of a group of

Figure 10. The discovered intrusion scenario.

Appl. Sci. 2020, 10, 2596 15 of 17

Compared with our former work, the new system gains four new better characters: (1) there
are no more complex branches in the correlation graph because all the sessions are reconstructed to
remove the ambiguous relations; (2) the new system is focused on predicting the future attack trends
rather than the particular next attack. The action nodes in the graph are the abstraction of a group
of malicious behaviors with the same purpose; (3) the correlation graph is constructed based on the
prediction results of HTM, which means the graph is representing one of the intrusion scenarios
previously learned by HTM; and (4) the correlation graph is updated over time, which will be beneficial
for learning new patterns and predicting unknown attacks.

4. Discussion

The discussions of the experimental results are given in Section 3.2. In this section, our works
are concluded. The unsupervised online sequence learning and prediction system is proposed.
Several measures have been introduced to enhance the performance of the system, such as
intrusion action clustering, intrusion session reconstruction, and the optimizations of data processing.
These measures can effectively reduce the data noises, redundancies, and false positives, making it
easier to discover the potential intrusion behaviors and the correlations between them. The reduction of
intrusion action types and unified intrusion sessions have greatly reduced the ambiguous correlations
and further simplified the correlation graphs. We introduced the HTM cortical learning algorithms to
improve the online sequence learning, based on the predictions of HTM, the correlation graph can
be constructed in real-time and keeps updating over time. Offline training is not needed anymore,
which makes it lightweight for online work.

Many aspects of the system should be studied and enhanced in the future: (1) the orders of
actions in a session are important for the system; if all actions randomly change their relative positions
frequently, the association patterns between actions are difficult to discover for the system, thus,
a pattern stabilization method (maybe based on the statistics) which can correct the disordered actions
before learning is appropriate for the system; (2) if multiple intrusion scenarios occurred in parallel
and share some common intrusion actions, the framework will correlate them into one large scenario,
which leads to the complex model, so the studies of parallel intrusion scenario construction is a direction;
and (3) although the HTM algorithm can learn the unknown patterns of the sequence, it can only predict
the next time step, rather than predicting a sequence of future actions. The parameters of the HTM
algorithm should be carefully set, though it is easier to set than other machine learning algorithms.

Author Contributions: K.Z. conceived and designed the experiments; K.Z. performed the experiments; K.Z. and
F.Z. analyzed the data; S.L. and H.Z. contributed environment; Y.X. and Y.C. provide resources; K.Z. wrote the
paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key R&D Program of China, grant number 2017YFB0802300, the
Major Scientific and Technological Special Project of Guizhou Province, grant number 20183001, and the Foundation
of Guizhou Provincial Key Laboratory of Public Big Data, grant numbers 2018BDKFJJ008, 2018BDKFJJ020, and
2018BDKFJJ021 And The APC was funded by Y.X. and Y.C.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Navarro, J.; Deruyver, A.; Parrend, P. A Systematic Survey on Multi-step Attack Detection. Comput. Secur.
2018, 76, 214–249. [CrossRef]

2. Ourston, D.; Matzner, S.; Stump, W.; Hopkins, B. Applications of Hidden Markov Models to Detecting
Multi-Stage Network Attacks. In Proceedings of the 36th Annual Hawaii International Conference on System
Sciences, Big Island, HI, USA, 6–9 January 2003; p. 10.

3. Bing, C.; Lee, J.; Wu, A.S. Active Event Correlation in Bro IDS to Detect Multi-Stage Attacks. In Proceedings
of the Fourth IEEE International Workshop on Information Assurance (IWIA’06), London, UK, 13–14 April
2006; pp. 16–50.

http://dx.doi.org/10.1016/j.cose.2018.03.001

Appl. Sci. 2020, 10, 2596 16 of 17

4. Ramaki, A.A.; Amini, M.; Atani, R.E. RTECA: Real Time Episode Correlation Algorithm for Multi-Step
Attack Scenarios Detection. Comput. Secur. 2015, 49, 206–219. [CrossRef]

5. Ren, H.; Stakhanova, N.; Ghorbani, A.A. An Online Adaptive Approach to Alert Correlation. In Proceedings of the
Detection of Intrusions and Malware, and Vulnerability Assessment, Bonn, Germany, 8–9 July 2010; pp. 153–172.

6. Qin, X.; Lee, W. Attack Plan Recognition and Prediction Using Causal Networks. In Proceedings of the 20th
Annual Computer Security Applications Conference, Tucson, AZ, USA, 6–10 December 2004; pp. 370–379.

7. Ramaki, A.A.; Khosravi-Farmad, K.; Bafghi, A.G. Real Time Alert Correlation and Prediction Using Bayesian
Networks. In Proceedings of the 12th International Iranian Society of Cryptology Conference on Information
Security and Cryptology (ISCISC), Rasht, Iran, 8–10 September 2015; pp. 98–103.

8. Husák, M.; Komárková, J.; Bou-Harb, E.; Čeleda, P. Survey of Attack Projection, Prediction, And Forecasting
in Cyber Security. IEEE Commun. Surv. Tutor. 2019, 21, 640–660. [CrossRef]

9. Farhadi, H.; AmirHaeri, M.; Khansari, M. Alert Correlation and Prediction Using Data Mining and HMM.
ISeCure 2011, 3, 77–101.

10. Husák, M.; Kašpar, J. Towards Predicting Cyber Attacks Using Information Exchange and Data Mining.
In Proceedings of the 14th International Wireless Communications & Mobile Computing Conference
(IWCMC), Limassol, Cyprus, 25–29 June 2018; pp. 536–541.

11. Kim, Y.; Park, W.H. A study on cyber threat prediction based on intrusion detection event for APT attack
detection. Multimed. Tools Appl. 2014, 71, 685–698. [CrossRef]

12. Subba, B.; Biswas, S.; Karmakar, S. A Neural Network based system for intrusion detection and attack
classification. In Proceedings of the 2016 Twenty Second National Conference on Communication (NCC),
Guwahati, India, 4–6 March 2016; pp. 1–6.

13. Cui, Y.; Ahmad, S.; Hawkins, J. Continuous Online Sequence Learning with an Unsupervised Neural
Network Model. April 2016. Available online: https://arxiv.org/abs/1512.05463v2 (accessed on 15 July 2019).

14. El-Ganainy, N.O.; Balasingham, I.; Halvorsen, P.S.; Rosseland, L.A. On the Performance of Hierarchical
Temporal Memory Predictions of Medical Streams in Real Time. In Proceedings of the 2019 13th International
Symposium on Medical Information and Communication Technology (ISMICT), Oslo, Norway, 8–10 May
2019; pp. 1–6.

15. Li, T.; Wang, B.; Shang, F.; Tian, J.; Cao, K. Online sequential attack detection for ADS-B data based on
hierarchical temporal memory. Comput. Secur. 2019, 87, 101599. [CrossRef]

16. Wang, C.; Zhao, Z.; Gong, L.; Zhu, L.; Liu, Z.; Cheng, X. A Distributed Anomaly Detection System for
In-Vehicle Network Using HTM. IEEE Access 2018, 6, 9091–9098. [CrossRef]

17. Shah, D.; Ghate, P.; Paranjape, M.; Kumar, A. Application of hierarchical temporal memory theory for
document categorization. In Proceedings of the 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing,
Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI),
San Francisco, CA, USA, 4–8 August 2017; pp. 1–6.

18. Shen, J.; Loew, M. Hierarchical temporal and spatial memory for gait pattern recognition. In Proceedings of
the IEEE Computer Society, IEEE Applied Imagery Pattern Recognition Workshop, Washington, DC, USA,
18–20 October 2016; pp. 1–9.

19. Hawkins, J.; Ahmad, S.; Dubinsky, D. Hierarchical Temporal Memory Including HTM Cortical Learning
Algorithms. September 2011. Available online: https://numenta.com/assets/pdf/whitepapers/hierarchical-
temporal-memory-cortical-learning-algorithm-0.2.1-en.pdf (accessed on 11 July 2019).

20. Wu, J.; Zeng, W.; Chen, Z.; Tang, X. Hierarchical Temporal Memory Method for Time-Series-Based Anomaly
Detection. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining Workshops
(ICDMW), Barcelona, Spain, 12–15 December 2016; pp. 1167–1172.

21. Ahmad, S.; Lavin, A.; Purdy, S.; Agha, Z. Unsupervised real-time anomaly detection for streaming data.
Neurocomputing 2017, 262, 134–147. [CrossRef]

22. Purdy, S. Encoding Data for HTM Systems. February 2016. Available online: https://arxiv.org/abs/1602.05925
(accessed on 14 July 2019).

23. Cui, Y.; Ahmad, S.; Hawkins, J. The HTM spatial pooler–a neocortical algorithm for online sparse distributed
coding. Front. Comput. Neurosci. 2017, 11, 111. [CrossRef]

http://dx.doi.org/10.1016/j.cose.2014.10.006
http://dx.doi.org/10.1109/COMST.2018.2871866
http://dx.doi.org/10.1007/s11042-012-1275-x
https://arxiv.org/abs/1512.05463v2
http://dx.doi.org/10.1016/j.cose.2019.101599
http://dx.doi.org/10.1109/ACCESS.2018.2799210
https://numenta.com/assets/pdf/whitepapers/hierarchical-temporal-memory-cortical-learning-algorithm-0.2.1-en.pdf
https://numenta.com/assets/pdf/whitepapers/hierarchical-temporal-memory-cortical-learning-algorithm-0.2.1-en.pdf
http://dx.doi.org/10.1016/j.neucom.2017.04.070
https://arxiv.org/abs/1602.05925
http://dx.doi.org/10.3389/fncom.2017.00111

Appl. Sci. 2020, 10, 2596 17 of 17

24. Zhang, K.; Zhao, F.; Luo, S.; Xin, Y.; Zhu, H. An intrusion action-based IDS alert correlation analysis and
prediction framework. IEEE Access 2019, 7, 150540–150551. [CrossRef]

25. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset and
Intrusion Traffic Characterization. In Proceedings of the 4th International Conference on Information Systems
Security and Privacy (ICISSP), Funchal, Madeira, Portugal, 22–24 January 2018; Volume 1, pp. 108–116.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2946261
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Preliminaries of HTM
	The Intrusion Scenario Discovery and Prediction Framework
	Intrusion Action Clustering
	Intrusion Session Reconstruction
	Online Learning and Prediction

	Results
	Experiment Setup
	Evaluations on CICIDS2017 Dataset
	Data Preprocessing Results
	Data Learning Results

	Discussion
	References

