
applied  
sciences

Article

The µ-Calculus Model-Checking Algorithm for
Generalized Possibilistic Decision Process

Jiulei Jiang 1,2,*, Panqing Zhang 1 and Zhanyou Ma 2

1 School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China;
1995012@nun.edu.cn

2 Ningxia Key Laboratory of Intelligent Information and Big Data Processing, Yinchuan 750021, China;
mazhany@nmu.edu.cn

* Correspondence: 1994029@nun.edu.cn

Received: 23 February 2020; Accepted: 7 April 2020; Published: 9 April 2020
����������
�������

Abstract: Model checking is a formal automatic verification technology for complex concurrent
systems. It is used widely in the verification and analysis of computer software and hardware
systems, communication protocols, security protocols, etc. The generalized possibilistic µ-calculus
model-checking algorithm for decision processes is studied to solve the formal verification problem
of concurrent systems with nondeterministic information and incomplete information on the basis
of possibility theory. Firstly, the generalized possibilistic decision process is introduced as the
system model. Then, the classical proposition µ-calculus is improved and extended, and the
concept of generalized possibilistic µ-calculus (GPoµ) is given to describe the attribute characteristics
of nondeterministic systems. Then, the GPoµ model-checking algorithm is proposed, and the
model-checking problem is simplified to fuzzy matrix operations. Finally, a specific example and
a case study are analyzed and verified. Compared with the classical µ-calculus, the generalized
possibilistic µ-calculus has a stronger expressive power and can better characterize the attributes of
nondeterministic systems. The model-checking algorithm can give the possibility that the system
satisfies the attributes. The research work provides a new idea and method for model checking
nondeterministic systems.

Keywords: concurrent systems; generalized possibilistic decision process; generalized possibilistic
µ-calculus; model checking; fuzzy matrix; verification problem

1. Introduction

The continuous enhancement of computer functions makes systems increasingly complex; for the
purpose of the correctness of the systems, it usually spends more time on verification than on
construction [1]. Formal methods are important methods to ensure the correctness and security of
computer systems. They can integrate verification early in the design process and ensure the credibility
of the system through strict logical reasoning and mathematical calculations.

Model checking is a formal automatic verification technology that can provide a complete
formal verification framework of system attributes [2]. The classical model-checking technology
is mainly used for qualitative research on the system—that is, to verify if the system satisfies the
system attributes described by temporal logic formulas, such as Computation Tree Logic (CTL),
Linear Temporal Logic (LTL), and µ-calculus [3,4]. If it is satisfied, the model checker returns “True”;
otherwise, it returns “False” with specific counterexamples. However, in the design of actual systems,
nondeterministic systems containing uncertain or inconsistent information are often encountered,
so the qualitative research on the systems cannot meet the actual needs. In recent years, some scholars
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have proposed quantitative extensions to classical model checking, such as models that embed features
into probability [5,6], possibility [7–9], and multi-valued [10–12], etc.

Different model-checking approaches are applicable to different model types. Narasimha et al. [13]
proposed a model-checking algorithm based on the probabilistic labeled transition systems and
µ-calculus to check whether the states in the finite probabilistic labeled transition systems satisfiy the
logical formulas; Chechik et al. [14] extended the classical CTL and Kripke structure and proposed
a multi-valued model checking algorithm. Gurfinkel et al. [15] studied the multi-valued µ-calculus
model checking problem based on multi-valued Kripke structures and reduced it into several classical
model-checking problems. The advantage of the reduction method is that the verification can be done
automatically using existing model-checking tools. Mallya et al. [16] defined a multi-valued µ-calculus
and proposed a new model-checking logic framework to verify arbitrary properties of multi-valued
µ-calculus, which is more widely used.

Recently, Pan et al. [17] combined fuzzy logic with CTL, proposed Fuzzy Computation Tree
Logic (FCTL), which is a fuzzy extension of classical CTL, and discussed model-checking problems.
Li et al. [18–21] extended the classical LTL and CTL model-checking technology; they defined a
quantitative model-checking verification method on the basis of possibility measures. Compared
to probabilistic model checking, the possibilistic model checking does not need to satisfy countable
additivity, and it is mainly used for the model checking of non-additive systems. Probabilistic model
checking already has mature model-checking tools, such as PRISM PRISM is a probabilistic model
checker, a tool for formal modelling and analysis of systems that exhibit random or probabilistic
behaviour. It has been used to analyse systems from many different application domains, including
communication and multimedia protocols, randomised distributed algorithms, security protocols,
biological systems and many others [22], etc., while possibilistic model checking is still in the theoretical
research. Possibilistic model checking uses the theory of possibility measure as the theoretical basis for
system modeling, which is suitable for systems with uncertain information in possibility theory [7].

There is some research on quantitative model-checking verification methods on the basis of
possibility measures. Li et al. proposed Generalized Possibilistic LTL (GPoLTL), which is an extension
of LTL, and gave quantitative model checking methods of linear-time properties based on generalized
possibility measures in [18]. They also extended CTL to Generalized Possibilistic CTL (GPoCTL) and
proposed a model-checking algorithm under the generalized possibilistic decision process in [21].
Our paper is the first to extend classical µ-calculus in possibility measure theory, and it studies the
possibilistic model checking. The µ-calculus is very expressive and it can capture many other temporal
(such as CTL∗) and program logics [12]. We extend classical µ-calculus by adding a possibility value,
which is denoted as Generalized Possibilistic µ-calculus (GPoµ); the semantics interpret the GPoµ
formulas as mappings from the set of states of Generalized Possibilistic Decision Process (GPDP) to the
domain of (0,1). The conjunction, disjunction, and negation logical operators are interpreted as the meet,
join, and complementation operators in (0,1), respectively, so we use the fuzzy logic and possibility
measure theory for reasoning and calculus attribute values of the systems. The GPoµ can express some
properties that GPoCTL and GPoLTL cannot describe. Finally, we solve the model-checking problems
by fuzzy matrices.

This paper is organized as follows. Section 2 gives basic knowledge of fuzzy theory and possibility
measure theory. In Section 3, the notion of the generalized possibilistic decision process is introduced
as the model of nondeterministic systems. Section 4 introduces the generalized possibilistic µ-calculus
(GPoµ) to characterize the attributes for uncertain systems and gives a model-checking algorithm to
verify the possibilities that the system states satisfy the attributes. A specific example and case study
are explained in Section 5. We give a conclusion at the end of the paper.
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2. Fuzzy Theory and Possibility Measure Theory

2.1. Fuzzy Theory

The fuzzy set [23] on domain U is defined by a function A : U→ [0, 1] ; then, A is called a fuzzy
subset on U. If the element in the domain U is represented by x, and A(x) ∈ [0, 1], then A(x) is the
membership degree that x belongs to A.

Let A and B be two fuzzy subsets on U. For any x ∈ U, the membership functions of union A∪ B,
intersection A∩ B complement Ac, and implication A→ B , are defined as follows:

(A∪ B)(x) = A(x)∨ B(x) = max
{
A(x), B(x)

}
(A∩ B)(x) = A(x)∧ B(x) = min

{
A(x), B(x)

}
Ac(x) = 1−A(x)

(A→ B) = A(x)→ B(x) = Ac(x)∨ B(x)

Let Q = (qi j)m×n be a matrix; if
(
qi j

)
∈ [0, 1], then Q is a fuzzy matrix. For arbitrary fuzzy matrice

Q, R, Q = (qi j)m×n, R = (ri j)m×n, the union of the fuzzy matrix Q ∪ R, intersection Q ∩ R, and the
complement operation Qc are defined as follows:

Q∪ R = (qi j ∨ ri j)m×n

Q∩ R = (qi j ∧ ri j)m×n

Qc = (1− qi j)m×n.

Given fuzzy matrices Q = (qik)m×p, r = (rkj)p×n, their ∨−∧ composite operation, denoted by Q ◦R,

which is defined by Q ◦R =
p
∨

k=1

(
qik ∧ rkj

)
.

2.2. Possibility Measure Theory

Let I be the index set, the possibility measure on nonempty set U is a mapping POS: 2U
→ [0, 1] ,

satisfying the following formulae [21]:

POS(∅) = 0, (2) POS(U) = 1, (3) If Ei ⊆ U, andi ∈ I, thenPOS(∪i∈IEi) =∨i∈IPOS(Ei).

If POS only satisfies the Formulae (1) and (3), then POS is called a generalized possibility measure.
If POS is a generalized possibility measure on nonempty set U, for any E ⊆ U, satisfy POS(E) =

∨x∈EPOS({x}).

3. Generalized Possibilistic Decision Process

In the design of practical systems, there are systems that have both nondeterministic choices
of actions and possibility distributions of states. We give the notion of the generalized possibilistic
decision process as the models for uncertainty systems.

Definition 1. A generalized possibilistic decision process (GPDP) [24] is a tuple M = (S, I, Act, R, AP, L),
where S is a finite, nonempty set of states; I : S→ [0, 1] is the possibilistic initial distribution function; Act is a
set of actions; R : S×Act× S→ [0, 1] is the possibilistic transition distribution function, and for every state
s ∈ S and every action α ∈ Act, there is a state s′ such that R(s,α, s′) > 0; AP is a set of atomic propositions;
L : S×AP→ [0, 1] is a labeling function, L(s, a) denotes the possibility that the atomic proposition a holds on
state s.
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If S and AP are both finite, we call M a finite GPDP. R(s,α, t) represents the possibility that the system
evolves from state s into state t by action α. If R(s,α, t) > 0, state t is called the successor of state s, and state s
is the predecessor of state t. The set of direct α-successors of s is defined as: Post(s,α) =

{
t ∈ S

∣∣∣R(s,α, t) >0
}
.

The set of predecessors of t is defined by: Pre(t) =
{
s ∈ S

∣∣∣R(s,α, t) >0
}
. The set of actions that state s can trigger

is defined as: Act(s) =
{
α ∈ Act

∣∣∣∃s′ ∈ S, R(s,α, s′) >0
}
.

The paths in the GPDP M is denoted as π, and π = s0α0s1α1s2 · · · .Paths(s) and Paths f in(s) denote the
set of infinite paths and the set of finite paths starting from state s, respectively. Paths(M) and Paths f in(M)

represent the set of all infinite paths and the set of all finite paths in M, respectively.
In M = (S, I, Act, R, AP, L), for any α ∈ Act, we can use the fuzzy matrix to express the possibilistic

transition distribution function R : S× α× S→ [0, 1] , which is denoted as Rα,Rα = (R(s,α, s′))s,s′∈S, in which
Rα is the fuzzy transition matrix corresponding to action α in M. The maximum possibilistic transition matrix
is expressed as Rmax = ∨n

i=0Rαi, which is also expressed by

(Rmax(s, t))s,t∈S = ( ∨
α∈Act(s)

R(s,α, t))
s,t∈S

.

The minimum possibilistic transition matrix is expressed as Rmin = ∧n
i=0Rαi, that is,

(Rmin(s, t))s,t∈S = ( ∧
α∈Act(s)

R(s,α, t))
s,t∈S

.

The transition matrix closure of a fuzzy matrix R is denoted as R+, R+ = R∨R2
∨R3

∨ · · ·R|S|, where
Rk+1 = Rk

◦R. The reflexive transition closure of the fuzzy matrix R is denoted as R*, R∗ = R0
∨R+, where R0

denotes the identity matrix.
Let us take the generalized possibilistic decision process (GPDP) in Figure 1 as an example. The set of

system states is denoted as S = {s0, s1, s2, s3}; I = {s0} represents the initial state of the system; Act =
{
α, β

}
denotes the set of actions; R(s0, β, s1) = 0.72 denotes that the possibility of the system changing from state s0 to
s1 by action β is 0.72; the set of atomic propositions is AP = {a, b, c}. L(s0, b) = 0.4 denotes that the possibility
that atomic proposition b holds in the state s0 is 0.4.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 16 

If S and AP are both finite, we call M a finite GPDP. 𝑅(𝑠, 𝛼, 𝑡) represents the possibility that the system 

evolves from state s into state t by action . If 𝑅(𝑠, 𝛼, 𝑡) > 0, state t is called the successor of state s, and state 

s is the predecessor of state t. The set of direct -successors of s is defined as: 𝑃𝑜𝑠𝑡(𝑠, 𝛼) = {𝑡 ∈ 𝑆|𝑅(𝑠, 𝛼, 𝑡) >

0}. The set of predecessors of t is defined by: 𝑃𝑟𝑒(𝑡) = {𝑠 ∈ 𝑆|𝑅(𝑠, 𝛼, 𝑡) > 0}. The set of actions that state s can 

trigger is defined as: 𝐴𝑐𝑡(𝑠) ={𝛼 ∈ 𝐴𝑐𝑡|∃𝑠′ ∈ 𝑆, 𝑅(𝑠, 𝛼, 𝑠′) > 0}. 

The paths in the GPDP M is denoted as  , and 
0 0 1 1 2s s s   . ( )Paths s  and ( )finPaths s denote the 

set of infinite paths and the set of finite paths starting from state s, respectively. ( )Paths M  and ( )finPaths M
 

represent the set of all infinite paths and the set of all finite paths in M, respectively. 

In 𝑀 = (𝑆, 𝐼, 𝐴𝑐𝑡, 𝑅, 𝐴𝑃, 𝐿), for any 𝛼 ∈ 𝐴𝑐𝑡, we can use the fuzzy matrix to express the possibilistic 

transition distribution function 𝑅: 𝑆 × 𝛼 × 𝑆 → [0,1], which is denoted as 𝑅𝛼 ,𝑅𝛼 = (𝑅(𝑠, 𝛼, 𝑠′))𝑠,𝑠′∈𝑆 , in 

which 𝑅𝛼 is the fuzzy transition matrix corresponding to action α in M. The maximum possibilistic transition 

matrix is expressed as 𝑅𝑚𝑎𝑥 =∨𝑖=0
𝑛 𝑅𝛼𝑖, which is also expressed by  

(𝑅𝑚𝑎𝑥(𝑠, 𝑡))𝑠,𝑡∈𝑆 = ( ∨
𝛼∈𝐴𝑐𝑡(𝑠)

𝑅(𝑠, 𝛼, 𝑡))𝑠,𝑡∈𝑆.  
 

The minimum possibilistic transition matrix is expressed as 𝑅𝑚𝑖𝑛 =∧𝑖=0
𝑛 𝑅𝛼𝑖, that is,  

(𝑅𝑚𝑖𝑛(𝑠, 𝑡))𝑠,𝑡∈𝑆 = ( ∧
𝛼∈𝐴𝑐𝑡(𝑠)

𝑅(𝑠, 𝛼, 𝑡))𝑠,𝑡∈𝑆.  

The transition matrix closure of a fuzzy matrix R is denoted as R+, 𝑅+ = 𝑅 ∨ 𝑅2 ∨ 𝑅3 ∨ ⋯ 𝑅|𝑆| , 

where 𝑅𝑘+1=𝑅𝑘 ∘ 𝑅. The reflexive transition closure of the fuzzy matrix R is denoted as R*, 𝑅∗ = 𝑅0 ∨ 𝑅+, 

where R0 denotes the identity matrix. 

Let us take the generalized possibilistic decision process (GPDP) in Figure 1 as an example. The set of 

system states is denoted as 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3}; 𝐼 = {𝑠0} represents the initial state of the system; 𝐴𝑐𝑡 = {𝛼, 𝛽} 

denotes the set of actions; 𝑅(𝑠0, 𝛽, 𝑠1) = 0.72 denotes that the possibility of the system changing from state 𝑠0 

to 𝑠1  by action  is 0.72; the set of atomic propositions is 𝐴𝑃 = {𝑎, 𝑏, 𝑐}. 𝐿(𝑠0, 𝑏) = 0.4 denotes that the 

possibility that atomic proposition b holds in the state 𝑠0 is 0.4. 

 

Figure 1. Generalized possibilistic decision process (GPDP). 

The corresponding fuzzy matrices of the generalized possibilistic decision process in Figure 1 is given in 

the order 𝑠0 → 𝑠1 → 𝑠2 → 𝑠3: 

Figure 1. Generalized possibilistic decision process (GPDP).

The corresponding fuzzy matrices of the generalized possibilistic decision process in Figure 1 is given in the
order s0 → s1 → s2 → s3 :
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Rα =


0.8 0.3 0.8
0.1 0.2 0.1
0.3 0.3 0.1

 Rβ =


0.5 0.5 0.5
0.2 0.4 0.8
0.5 0.7 0.8

 Rγ =


0.2 0.7 0.2
0.6 0.5 0.9
0.8 0.5 0.9


Rmax =


0.8 0.7 0.8
0.6 0.5 0.9
0.8 0.7 0.9

 Rmin =


0.2 0.3 0.2
0.1 0.2 0.1
0.3 0.3 0.1


Definition 2. For a generalized possibilistic decision process M = (S, I, Act, R, AP, L), a function
GPoM:Paths(M)→[0,1] is defined as follows:

GPoM(π) = I(s0)∧∧i≥0R(si,αi, si+1),

where π = s0α0s1α1s2 · · · ∈ Paths(M). Furthermore, for any E ⊆ paths(M), we define

GPo(E) = ∨
{
GPo(π)

∣∣∣π ∈ E
}
.

Hence, the function GPo: 2Paths(M)
→[0,1] is a generalized possibility measure on Ω = 2Paths(M).

For a GPDP M = (S, I, Act, R, AP, L), the function r : S→ [0, 1] is defines as:

r(s) = ∨
{
∧i≥0R(si,αi, si+1)

∣∣∣s1 = s, si ∈ S,αi ∈ Act
}
,

then r(s) denotes the maximum possibility measure of a path starting from state s.
Furthermore, any finite Generalized Possibilistic Kripke Structure (GPKS) [18] can be regarded as a finite

GPDP with only one action available in any state.
In the generalized possibilistic decision process, once the possibility distribution is selected by actions

indeterminately, the selection of the next state is also performed by possibility selection. The uncertainty process
describes the alternation of concurrent processes in a distributed system with incomplete information. Therefore,
the generalized possibilistic decision process is very suitable as a model for uncertain systems.

4. GPoµ Model-Checking Algorithm

4.1. Generalized Possibilistic µ-Calculus

The classical µ-calculus [2] is used to represent the properties of the transition systems. It is mainly
used for qualitative research on the Boolean systems, but it has certain limitations; it can not describe
the properties of nondeterministic systems with possibility information. In this section, we extend the
classical µ-calculus by adding the possibility value, and propose the concept of generalized possibilistic
µ-calculus (GPoµ); the semantics interpret the GPoµ formulas as mappings from the set of states
of GPDP to the domain of [0,1]. The conjunction, disjunction, and negation logical operators are
interpreted by fuzzy theory and possibility measure theory, so as to analyze the safety and reliability of
uncertain systems.

Definition 3. (Syntax of GPoµ) Let AP be the set of atomic propositions, Φ, Ψ be GPoµ formulae, and Var =
{X1, X2, X3 · · ·} be a set of relational variables; the generalized possibilistic µ-calculus is defined recursively by
the grammar:

Φ := p|X| j|¬Φ|Φ ∨Ψ|Φ ∧Ψ| �Φ|�Φ|µX.Φ(X)
∣∣∣νX.Φ(X)

where p ∈ AP, X ∈ Var, j ∈ [0, 1].
Here, to ensure the fixpoint formulas is monotonic, the variable X should be under an even number of

negations. The following are the formulas of negativity and duality under the generalized possibilistic µ-calculus:

¬¬Φ ≡ Φ
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¬(Φ ∧Ψ) ≡ ¬Φ ∨¬Ψ

¬µX.Φ(X) ≡ νX.¬Φ(¬X)

¬νX.Φ(X) ≡ µX.¬Φ(¬X).

Definition 4. (Semantics of GPoµ) Given a generalized possibilistic decision process (GPDP) and GPoµ
formulas, Var denotes a set of relational variables, s ∈ S is a state. The environment is defined as ε : Var→ jS ,
in which jS denotes the mapping from state to possibility value. For GPoµ formula, its semantic is a fuzzy set
‖Φ‖ε : S→ [0, 1] , which is defined as follows:

‖p‖ε(s) = L(s, p) (1)

‖X‖ε(s) = ε(X) (2)

‖ j‖ε(s) = j (3)

‖¬Φ‖ε(s) = 1− ‖Φ‖ε(s) (4)

‖Φ ∨Ψ‖ε(s) = ‖Φ‖ε(s)∨ ‖Ψ‖ε(s) (5)

‖Φ ∧Ψ‖ε(s) = ‖Φ‖ε(s)∧ ‖Ψ‖ε(s) (6)

‖ �Φ‖ε(s) = ∨t∈S,α∈Act(R(s,α, t)∧ ‖Φ‖ε(t)) (7)

‖�Φ‖ε(s) = ∧t∈S,α∈Act(R(s,α, t)→ ‖Φ‖ε(t)) (8)

‖µX.Φ(X)‖ε(s) = ∧
{
Z ∈ jS

∣∣∣‖Φ‖ε[X←Z] ≤ Z
}
(s) (9)

‖νX.Φ(X)‖ε(s) = ∨
{
Z ∈ jS

∣∣∣Z ≤ ‖Φ‖ε[X←Z]

}
(s) (10)

Furthermore, ε[X← Z] indicates a new environment, except that for ε[X← Z](X) = Z, this environment
is exactly the same as that of ε.

Theorem 1. Let Φ be a GPoµ formula; for any s ∈ S, it satisfies the following equations.

¬‖�Φ‖ε(s)= ‖ � ¬Φ‖ε(s)

¬‖ �Φ‖ε(s)= ‖�¬Φ‖ε(s)

Proof.
¬‖�Φ‖ε(s)

= ¬(∧t∈S,α∈Act(R(s,α, t)→ ‖Φ‖ε(t)))

= ∨¬(R(s,α, t)→ ‖Φ‖ε(t))

= ∨(¬¬R(s,α, t)∧¬‖Φ‖ε(t))

= ∨(R(s,α, t)∧ ‖¬Φ‖ε(t))

= ‖ � ¬Φ‖ε(s)

�

Similarly, Equation (2) can be proved.
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Theorem 2. Given GPoµ formula Φ, Φ1, and Φ2, functions f1, f2: jS→ jS are defined as follows:

f1(X)(s) = ‖Φ2‖ε(s)∨
(
‖Φ1‖ε(s)∧ ∨

s′∈S,α∈Act
(R(s,α, s′)∧X(s′))

)
,

f2(X)(s) = ‖Φ‖ε(s)∧ ∨
s′∈S,α∈Act

(R(s,α, s′)∧X(s′)).

where X ∈ jS, s ∈ S. If X, Y ∈ jS and X ⊆ Y, then f1(X) ⊆ f1(Y), f2(X) ⊆ f2(Y).

Proof. For a linear lattice [0,1], the ∧,∨ operations are monotonic. If X ⊆ Y, then for all s ∈ S, satisfy:

f1(X)(s) = ‖Φ2‖ε(s)∨
(
‖Φ1‖ε(s)∧ ∨

s′∈S,α∈Act
(R(s,α, s′)∧X(s′))

)
,

≤ ‖Φ2‖ε(s)∨
(
‖Φ1‖ε(s)∧ ∨

s′∈S,α∈Act
(R(s,α, s′)∧Y(s′))

)
= f1(Y)(s).

Hence, f1 is monotonic, and f2 is also monotonic, since f1, f2 is monotonic, and the possibility
value (0,1) is a finite complete lattice. According to Knaster-Tarski’s theorem [11], f1, f2 have a least
fixpoint and greatest fixpoint, respectively. Similiar to the classical µ-calculus, the CTL formulae for
the generalized possibilistic decision process can also be expressed by the GPoµ formulae. �

Therefore, we obtain Theorem 3.

Theorem 3. The fixpoint semantics of CTL formulae for the generalized possibilistic decision process are
expressed by GPoµ formulae, as shown in the following:

‖E(Φ1 ∪Φ2)‖ = µX.(‖Φ2‖ ∨ (‖Φ1‖ ∧ ‖�X‖)) (11)

‖EGΦ‖ = ‖νX.Φ ∧ �X‖. (12)

Take Equation (12) as an example, we prove the correctness of Theorem 3.

Proof. According to Theorem 2, the fixpoint semantics of CTL formulae for generalized possibilistic
decision process are expressed by GPoµ formulae, as shown in the following:

‖E(Φ1 ∪Φ2)‖ = µX.(‖Φ2‖ ∨ (‖Φ1‖ ∧ ‖�X‖))

‖EGΦ‖ = ‖νX.Φ ∧ �X‖

�

Take Equation (12) as an example; we prove the correctness of Theorem 3.

Proof. According to Theorem 2, f2(X)(s) = Φε(s) ∧ ∨
s′∈S,α∈Act

(R(s,α, s′)∧X(s′)) = νX.(‖Φ‖ ∧ ‖�X‖) is

monotonic. Let A = ‖EG Φ‖,(A)(s) = ∨
π∈Π(s)

∧
i∈N

(‖Φ‖(π(i)∧R(π(i),π(i + 1))) [24],

f2(A)(s)= ‖Φ‖(s)∧∨t∈S (R(s,α, s1)∧A(s1))

= ‖Φ‖(s)∧∨s1∈S(R(s,α, s1)∧ ∨
π∈Π(s1)

∧
i∈N

(‖Φ‖(π(i)∧R(π(i),α,π(i + 1)))

= (‖Φ‖(s)∨s1∈S(R(s,α, s1)
)
∨

π∈Π(s1)
∧

i∈N
(‖Φ‖(π(i)∧R(π(i),α,π(i + 1)))
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= ∨
π∈Π(s)

∧
i∈N

(‖Φ‖(π(i)∧R(π(i),π(i + 1)))

= (A)(s)

f2(A)(s) = (A)(s), so the A is a fixpoint of f2.
Next, we prove that A is the greatest fixpoint of f2. Assume that Z is the fixpoint of

f2, Z = ‖Φ‖ ∧ ‖�Z‖= ‖Φ‖ ∧R ◦ PZ.

Z(s) = ‖Φ‖(s)∧ ∨
s1∈S

R(s,α, s1)∧Z(s1)

≤ ‖Φ‖(s)∧ ∨
s1,s2∈S

R(s,α, s1)∧ ‖Φ‖(s1)∧Z(s1)∧R(s1,α, s2)∧Z(s2)∧ · · ·

≤ ∨
π∈Π(s)

∧
i∈N

(‖Φ‖(π(i)∧R(π(i),π(i + 1)))

≤ (A)(s)

Hence,

A = ‖EG Φ‖is the greatest fixpoint of the function f2(X) = ‖Φ‖ ∧ ‖�X‖.

�

4.2. Model-Checking Algorithm

Given a GPDP M, a state s, and a GPoµ formula Φ, the purpose of GPoµ model checking is to
calculate the value of ‖Φ‖ε(s). For GPoµ formula Φ, the value of ‖Φ‖ε(s) can be calculated recursively
in |Φ| steps; |Φ| represents the length of the formula Φ [25], which are given as follows:∣∣∣p∣∣∣ = 1|X| = 1∣∣∣ j∣∣∣ = 1|¬Φ| = |Φ|+ 1

|Φ ∨Ψ| = |Φ ∧Ψ| = |Φ|+ |Ψ|+ 1

|�Φ| = |�Φ| = |Φ|+ 1∣∣∣µX.Φ
∣∣∣ = |νX.Φ| = |Φ|+ 2.

For formulas Φ = p, Φ = X, Φ = j, Φ = ¬Φ, Φ = Φ ∨Ψ, Φ = Φ ∧Ψ, the value of ‖Φ‖ε(s) can be
calculated recursively according to Equations (1)–(6).

PΦ denotes the column vector that the possibility that formula Φ holds on s, i.e., we have,

PΦ = (‖Φ‖ε(s))s∈S. (13)

To calculate the possibility about formula Φ =�Φ, for any state and any α ∈ Act, we convert the
value of the formula into matrix operations,

‖ �Φ‖ε(s)= ∨t∈S,α∈Act(R(s,α, t)∧ ‖Φ‖ε(t))= Rα ◦ PΦ.

Therefore, the maximum and minimum values of ‖ �Φ‖ε(s) denoted by fuzzy matrices are shown
below:

(‖�Φ‖ε(s)max)s∈S = Rmax ◦ PΦ (14)

(‖�Φ‖ε(s)min)s∈S = Rmin ◦ PΦ. (15)
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For Φ = �Φ, according to Theorem 1, i.e., ¬‖�Φ‖ε(s) =‖ � ¬Φ‖ε(s), for any state and any α ∈ Act,
we have

‖�Φ‖ε(s)= ¬‖ � ¬Φ‖ε(s)= ¬(Rα ◦ PΦ
c)= (Rα ◦ PΦ

c)c (16)

Thus, we use the fuzzy matrix to calculate the maximum and minimum values of ‖�Φ‖ε(s) as
shown below:

(‖�Φ‖ε(s)max)s∈S = (Rmin ◦ PΦ
c)c (17)

(‖�Φ‖ε(s)min)s∈S = (Rmax ◦ PΦ
c)c. (18)

For Φ = µX.Φ(X) and Φ = νX.Φ(X), we use the fixpoint algorithm [21]; the corresponding
algorithm is presented in Algorithm 1.

Algorithm 1: Fixpoint algorithm

Input: A function f from the possibility distributions on the state set S into itself.
Output: The fixpoint of f.

1. Function Fixpoint(Q, f )
2. Q′ = f (Q)

3. while Q , Q′ do
4. Q = Q′

5. Q′ = f (Q)

6. end while
7. return Q
8. End Function

Furthermore, we respectively set Q = 0 or Q = 1 to calculate the least fixpoint or the greast fixpoint
in the initial recursion, which is different with the classical fixpoint algorithm.

Hence, according to the GPoµ semantic, we give the GPoµ model-checking algorithm, it is
presented in Algorithm 2:

Algorithm 2: GPoµ model checking algorithm

Input: A GPDP Mand a GPoµ formula Φ.
Output: For each state in M , the possibility s |= Φ , i.e., ‖Φ‖ε(s).

1. Function Check (Φ)
2. Case Φ
3. p return L(s, p)
4. X return ε(X)

5. j return j
6. ¬Φ return 1− ‖Φ‖ε(s)
7. Φ ∨Ψ return ‖Φ‖ε(s)∨ ‖Ψ‖ε(s)
8. Φ ∧Ψ return ‖Φ‖ε(s)∧ ‖Ψ‖ε(s)
9. �Φ return Rα ◦ PΦ

10. �Φ return (Rα ◦ PΦ
c)c

11. µX.Φ(X) return Fixpoint (0, fΦ)
12. νX.Φ(X) return Fixpoint (1, fΦ)
13. End Case
14. End Function
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In the GPoµ model-checking algorithm, for the formulas Φ = p, Φ = X, Φ = j, Φ = ¬Φ,
Φ = Φ ∨Ψ, Φ = Φ ∧Ψ, the time complexity of the formulae is related to the length of Φ and the size
of the system model M. For the formulae Φ = �Φ, Φ = �Φ, the time complexity of each formula is
related to fuzzy matrix synthesis operation, i.e., O

(
|S|2

)
. For fixpoint formulas µX.Φ(X) and νX.Φ(X),

each fixpoint needs O(n) iterations, n =|S|, the time for each iteration through the fuzzy matrix synthesis
operation is O

(
|S|2

)
, so the time complexity of the fixpoint formulae is O

(
|S|3

)
.

5. An Illustrative Example and Case Study

5.1. An Illustrative Example

In this section, let us give an example used in [24] to illustrate the GPoµ model-checking algorithm.
Assume that a new type of disease occurs, and the doctors do not have enough knowledge to treat
such diseases, they can only make treatment plans based on their own experience. Depending on the
treatment options taken by the doctors, the patient’s physical health is also uncertain. So, GPDP is
used to model the patient’s treatment process.

Assume that the doctors divide the patient’s status into three states, which are represented by s0,
s1, and s2, respectively, that is, S = {s0, s1, s2}, and the initial state of the patient is s0. AP = {P, G, E}
is the set of atomic propositions, where P, G, E respectively indicate that the patient’s health status
is “poor”, “general”, and “excellent” in a certain state. For these three health conditions of patients,
different doctors understand differently. Therefore, we give them a fuzzy value to indicate the degree
of physical health. For example, L(s0, P) = 0.7 denotes that the degree that the patient’s health is
“poor” on state s0 is 0.7; let Act = {α,β,γ}, which means that the doctors treat the patient with α,β,γ:
three different treatment schemes. R(s0,β, s2) = 0.5 denotes that the possibility that this patient’s
health status changes from the state s0 to s2 is 0.5 after the doctors adopt the treatment scheme β.

From Figure 2, we can get the corresponding truth matrices of P, G, E, PP =
(

0.7 0.3 0.1
)T

,

PG =
(

0.15 0.24 0.65
)T

, and PE =
(

0.2 0.51 0.8
)T

. Rα, Rβ, and Rγ respectively denote the
fuzzy matrices of three treatment schemes. The maximum possibilistic transition matrix is Rmax, and the
minimum possibilistic transition matrix is Rmin.
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Rα =


0.8 0.3 0.8
0.1 0.2 0.1
0.3 0.3 0.1

 Rβ =


0.5 0.5 0.5
0.2 0.4 0.8
0.5 0.7 0.8

 Rγ =


0.2 0.7 0.2
0.6 0.5 0.9
0.8 0.5 0.9


Rmax =


0.8 0.7 0.8
0.6 0.5 0.9
0.8 0.7 0.9

 Rmin =


0.2 0.3 0.2
0.1 0.2 0.1
0.3 0.3 0.1
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Some calculations are presented as follows in detail.
‖ � E‖ε(s) denotes the possibility that the patient’s health eventually changes to “excellent” after

a treatment.
‖ � E‖ε(s)max, ‖ � E‖ε(s)min respectively represent the maximum and minimum possibilities of

‖ � E‖ε(s) in three states.

‖ � E‖ε(s)max= Rmax ◦ PE=
(

0.8 0.8 0.8
)T

,

‖ � E‖ε(s)min= Rmin ◦ PE=
(

0.3 0.2 0.3
)T

.

Hence,
‖ � E‖ε(s0)max= 0.8, ‖ � E‖ε(s1)max= 0.8, ‖ � E‖ε(s2)max = 0.8.

‖ � E‖ε(s0)min= 0.3, ‖ � E‖ε(s1)min= 0.2, ‖ � E‖ε(s2)min = 0.2.

‖�E‖ε(s) denotes the possibility that the patient’s health always changes to “excellent” after
a treatment.

‖�E‖ε(s)max and ‖�E‖ε(s)min respectively represent the maximum and minimum possibilities of
‖�E‖ε(s) in three states.

‖�E‖ε(s)max= (Rmin ◦ PE
c)c=

(
0.7 0.8 0.7

)T
,

‖�E‖ε(s)min= (Rmax ◦ PE
c)c=

(
0.2 0.4 0.2

)T
.

Hence,
‖�E‖ε(s0)max= 0.7, ‖�E‖ε(s1)max= 0.8, ‖�E‖ε(s2)max = 0.7.

‖�E‖ε(s0)min= 0.2, ‖�E‖ε(s1)min= 0.4, ‖�E‖ε(s2)min = 0.2.

According to Formula (11), ‖E(Φ1 ∪ Φ2)‖(s) is the least fixpoint of τ(X) = Φ2 ∨ (Φ1 ∧ �X). Let

PX =
(

0 0 0
)T

, ‖E(P∪ E)‖(s) means the possibility that the patient’s health eventually changes
from “poor” to “excellent”.

The process of calculating the maximum and minimum possibilities with fuzzy matrices is as
follows:

τ(X1) = PE ∨ (Pp ∧ (Rmax ◦ PX)=
(

0.2 0.51 0.8
)T

,

τ(X2) = PE ∨ (Pp ∧
(
Rmax ◦ PX1

)
=

(
0.7 0.51 0.8

)T
,

τ(X3) = PE ∨ (Pp ∧
(
Rmax ◦ PX2

)
=

(
0.7 0.51 0.8

)T
,

τ(X2) = τ(X3), ‖E(P∪ E)‖(s)max =
(

0.7 0.51 0.8
)T

.

Similarly,

‖E(P∪ E)‖(s)min =
(

0.3 0.51 0.8
)T

.

Hence,

‖E(P∪ E)‖(s0)max= 0.7, ‖E(P∪ E)‖(s1)max= 0.51, ‖E(P∪ E)‖(s2)max = 0.8.

‖E(P∪ E)‖(s0)min= 0.3, ‖E(P∪ E)‖(s1)min= 0.51, ‖E(P∪ E)‖(s2)min = 0.8.

According to Formula (12), ‖EG Φ‖(s) is the greast fixpoint of τ(X) = Φ ∧ �X. Let PX =(
1 1 1

)T
, ‖EG E‖(s) means the possibility that the patient’s health is potentially always “excellent”.
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The process of calculating the maximum and minimum possibilities by fuzzy matrices is as
follows:

τ(X1) = PE ∧ (Rmax ◦ PX)=
(

0.2 0.51 0.8
)T

,

τ(X2) = PE ∧
(
Rmax ◦ PX1

)
=

(
0.2 0.51 0.8

)T
,

τ(X1) = τ(X2), ‖EG E‖(s)max=
(

0.2 0.51 0.8
)T

.

Similarly,

‖EG E‖(s)min=
(

0.2 0.2 0.2
)T

.

Hence,
‖EG E‖(s0)max= 0.2, ‖EG E‖(s1)max= 0.51, ‖EG E‖(s2)max = 0.8,

‖EG E‖(s0)min= 0.2, ‖EG E‖(s1)min= 0.2, ‖EG E‖(s2)min = 0.2.

As a result, the possibility values that each state satisfies the attributes are obtained. Through
these data, doctors can compare the results of different treatment options and then make the practical
treatment scheme. Our algorithm provides data support for doctors’ decision analysis.

5.2. Case Study

We use the intelligent washing machine studied in [18] as an example to better explain the
application of the GPoµ model-checking method. As shown in Figure 3, it is the control system of
the intelligent washing machine, where S0 to S10 are the states of the system, there is only one action
in the system, and the possibility values are marked between states. The atomic propositions are
dirty (di), detergent (de), and running (r), which denote the condition of the cloths, the state of the
detergent, and the state of the system. The value of every atomic proposition is labeled at each state.
For example, di = 1 means that the clothes are very dirty, di = 0.5 means that the clothes are moderately
dirty, and di = 0 means that the clothes are clean. de = 1 means there is a lot of detergent, de = 0.5 means
there is moderate detergent, and de = 0 means that there is no detergent. r =1 denotes that the machine
is running, and r = 0 means that the washing machine is off. The initial state is S0, and the clothes
are very dirty, there is a lot of detergent, and the system is off. From S1 to S2, it can be found that the
dosage of the detergent is decreasing. At S3, the detergent is 0, but the clothes are still dirty, and the
detergent should be added, so S3 may return to initial state S0 or return to S2. In addition, each state
has a self-circulation, and the possibility is 1, which are omitted in the figure.

For the intellgent washing machine system, we convert some properties into GPoµ formulae:

Property1 The possibility that the washing machine can be turned off at the next time, which is
denoted as �¬running.

Property2 The possibility that the clothes can be cleaned when the washing machine is in the next
state, which is denoted as �¬dirty.

Property3 The possibility that the washing machine may have detergent before the clothes are clean,
which is denoted as µX.¬dirty∨ (deterget∧ �X).

Property4 The possibility that detergent is always in the washing machine, which can be denoted as
νX.deterget∧ �X.

Property5 The possibility that only with detergent, the clothes can be cleaned in the washing machine,
which is denoted as νX.(deterget→ ¬dirty)∧ �X .

The results of verifying the properties of the intelligent washing machine system you can see in
the following Table 1.



Appl. Sci. 2020, 10, 2594 13 of 15

Table 1. Results of verifying the properties of the intelligent washing machine system.

Properties GPoµ Fomulas Verifying Results

Property1 �¬running (1,0,0,1,0,0,0,1,0,0)T

Property2 �¬dirty (0,0,0,0,0.5,0.5,0.5,0,1,1)T

Property3 ‖µX.¬dirty∨ (deterget∧ �X)‖ (0.5,0.5,0.5,0,0.5,0.9,0.5,1,1,1)T

Property4 νX.deterget∧ �X (1,1,0.5,0,0.5,1,0,0,0.5,1)T

Property5 νX.(deterget→ ¬dirty)∧ �X (0,0,0.5,1,0.5,0.5,1,1,1,1)T
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The table lists the possibility value that each state meets the properties. For example, for
Property 1,‖�¬running‖(S0) = ‖�¬running‖(S3) = ‖�¬running‖(S7) = 1, the result indicates that only
at states S0, S3,S7 can the washing machine be turned off at the next time. For Property 3, we know
‖µX.¬dirty∨ (deterget∧ �X)‖(S7) = 0, which indicates the possibility that the washing machine may
have detergent before the clothes only at S7 are clean is 0, because the clothes are clean and there
is no detergent, so S7 does not need to sytisfy Property 3. For Property 5, ‖νX.deterget∧ �X‖(S0)

= ‖νX.deterget∧ �X‖(S1) = ‖νX.deterget∧ �X‖(S5) = ‖νX.deterget∧ �X‖(S9)= 1, which indicates that
detergent is potentially always in the washing machine at states S0, S1, S5, and S9.

In [18], they use the GPoLTL formulae to represent the properties of the systems and verified the
fuzzy linear-time properties of systems. Diferent from them, we denoted the properties of the systems
by GPoµ formulas, and we can express diferent properties of the systems that the GPoLTL formulae
can not express.

6. Conclusions

This paper introduced the µ-calculus model-checking algorithm for the generalized possibilistic
decision process, which is an extension of the Lµ model checking in [26]. We first give the generalized
possibilistic decision process, and then extend the classical µ-calculus to describe the complex
logical relationships and attribute the characteristics of nondeterministic systems. We simplify
the model-checking problem into fuzzy matrix operations. It implements attribute verification for
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nondeterministic systems, and we have explained some examples to prove the effectiveness and
practicability of the algorithm.

The classical µ-calculus model-checking algorithm simply searches the finite state space of Boolean
transition systems to find the satisfaction set of system properties. The GPoµ model-checking algorithm
is more powerful in terms of expressiveness for expressing possible information, because it can
characterize uncertain information for dealing with the incompleteness of the information in the
systems and specifications, and it can give the degree to which the systems satisfy the specifications.
The satisfaction relation becomes the possibility values that expected properties hold, which is more in
line with the characteristics of the actual systems.

In the actual system design, for a system containing possibility information, the system is
uncertain (lack of basic information) or inconsistent (conflicts often occur when collecting information
from multiple sources Information), and classical logic is unable to infer and calculate the relevant
characteristics of uncertain systems. Our methods can verify the properties of nondeterministic
systems, such as expert systems and intelligent control uncertain systems, etc. However, the research
on the expression ability of extended µ-calculus is not enough, such as multilayer nesting between
multiple fixpoint formulas, and research on the optimization of nesting algorithms is not enough.
In the future, we will continue to study the expression ability of the algorithm and develop a practical
model checker to implement automatic verification.
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