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Abstract: The auroral ovals around the Earth’s magnetic poles are produced by the collisions
between energetic particles precipitating from solar wind and atoms or molecules in the upper
atmosphere. The morphology of auroral oval acts as an important mirror reflecting the solar
wind-magnetosphere-ionosphere coupling process and its intrinsic mechanism. However, the classical
level set based segmentation methods often fail to extract an accurate auroral oval from the ultraviolet
imager (UVI) image with intensity inhomogeneity. The existing methods designed specifically for
auroral oval extraction are extremely sensitive to the contour initializations. In this paper, a novel deep
feature-based adaptive level set model (DFALS) is proposed to tackle these issues. First, we extract
the deep feature from the UVI image with the newly designed convolutional neural network (CNN).
Second, with the deep feature, the global energy term and the adaptive time-step are constructed
and incorporated into the local information based dual level set auroral oval segmentation method
(LIDLSM). Third, we extract the contour of the auroral oval through the minimization of the proposed
energy functional. The experiments on the UVI image data set validate the strong robustness of
DFALS to different contour initializations. In addition, with the help of deep feature-based global
energy term, the proposed method also obtains higher segmentation accuracy in comparison with the
state-of-the-art level set based methods.
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1. Introduction

The aurora is a natural light phenomenon mostly observed around magnetic polar regions in
both hemispheres. The energetic particles precipitating from solar wind interact with geomagnetic
field and accelerate along magnetic field lines towards Earth [1]. These particles collide with neutral
constituents in the upper atmosphere, which generates the most impressive wonder of Auroral Borealis
and Aurora Australis [2]. More importantly, the structure of aurora is a mirror which reflects the
physical process in the magnetosphere and assists the scientists to research the intrinsic mechanism in
the solar wind-magnetosphere-ionosphere coupling process [3].

The aurora observation methods can be mainly divided into two categories. One is the ground-based
observation system composed of all-sky imagers (ASI), and the other is the space borne observation
system represented by the ultraviolet imager (UVI). At first, the ASI was used to monitor the local
auroral structure. During the international geophysical year (IGY) (1957–1958), space scientists all
around the world coordinated their efforts to record the aurora from many places at the same time.
Using the data from the IGY-ASI, Shun-Ichi Akasofu, was one of the first to understand that the global
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aurora in the North was an oval of light surrounding the north magnetic pole: the auroral oval [4].
With the development of the aerospace technology, space scientists are able to observe the aurora
through the UVI cameras aboard the spacecraft. The aurora images captured by these two instruments
are shown in Figure 1. Different from the ground-based observation, auroral images captured by UVI
instruments in the space mainly focus on providing global information, e.g., the overall configuration
of the aurora and the spatial distribution of the auroral intensity [5,6]
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model cannot obtain a complete auroral oval in the low contrast region. Though the MSRM method 
can segment the auroral oval region completely, the segmentation result does not agree well with the 
manually annotated benchmark. The LLSRHT and FCM + QEF models applied the elliptic or quasi-
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Figure 1. Aurora images. (a) Aurora images captured by ultraviolet imager (UVI). (b) Aurora images
captured by all-sky imagers (ASI).

In the last few years, the extraction of auroral oval attracts huge interests of geophysicists due to
its usefulness to monitor the geomagnetic activity and research the physical mechanism of the solar
wind-magnetosphere-ionosphere coupling process [2,3,7–11]. The exact location of the auroral oval’s
equatorward boundary depends on the magnetospheric electric and magnetic fields. The poleward
boundary of the auroral oval is taken to separate the closed magnetic field lines (field lines connected
at both ends to the earth) from the polar cap covered by open magnetic field lines (field lines connected
from the earth to the solar wind) [12]. Besides, because the interplanetary environment can modulate
the structure of the magnetosphere, it influences the morphology of the auroral oval remarkably [13].
For instance, different interplanetary magnetic field (IMF) conditions make the auroral oval drift to
different directions [14,15], and the IMF Bz is widely known to control the location of the auroral
oval [16]. Therefore, the extraction of the auroral oval is of considerable significance to understand the
interplanetary and geomagnetic environment.

The aurora extraction mission can be seen as a segmentation task to divide the UVI image into
two groups: the aurora region and the background region. Because of the tediousness of manually
detecting auroral oval from UVI images, many techniques have been applied to extract the auroral
oval automatically. However, the UVI images are low in contrast and often corrupted by intense noise
and interference, such as cosmic ray tracks, bright stars, and dayglow contamination, which make it
difficult to distinguish the auroral oval from the background.

Existing auroral oval segmentation methods can be broadly classified into two categories, active
contour-free and active contour-based models [17]. Active contour-free models include adaptive
minimum error thresholding (AMET) [18], linear randomized Hough transform (LLSRHT) [19],
maximal similarity-based region merging (MSRM) [20], quasi-elliptical fitting with fuzzy local
information C-means clustering result (FCM + QEF) [8], etc. As a pixel-based method, the AMET
model cannot obtain a complete auroral oval in the low contrast region. Though the MSRM method
can segment the auroral oval region completely, the segmentation result does not agree well with
the manually annotated benchmark. The LLSRHT and FCM + QEF models applied the elliptic or
quasi-elliptic fitting to extract auroral oval boundaries. Therefore, the segmentation results obtained
by these two methods often have smooth inner and outer boundaries, which is inconsistent with the
fact that the boundaries of some auroral oval are rugged.
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Over the past few years, the active contour model (ACM) proposed by Kass et al. [21] has been
widely perused and applied to image segmentation. The fundamental idea of the ACM is to control
the curve to evolve towards its interior normal and stop on the boundary of an object based on the
energy minimization model [22]. Relying on the local spatial distance within a local window, Niu et al.
introduced a region-based active contour model via local similarity factor (RLSF) to improve the
segmentation results of images with unknown noise distribution [23]. Based on an improved signed
pressure force (SPF) and local image fitting (LIF), Sun et al. proposed the improved SPF- and LIF-based
image segmentation (SPFLIF-IS) algorithm to address the difficulty that the inhomogeneous image
cannot be segmented quickly and accurately [24]. Moreover, some researchers refine the active contour
model for auroral oval segmentation. For instance, Shi et al. introduced the interval type-2 fuzzy sets
(IT2FS) into the active contour model to obtain a more accurate segmentation result [11].

As a widely investigated active contour model that can address the difficulties related to topological
changes during the evolution process, level set methods have been introduced into the auroral oval
extraction in recent years. X. Yang [25] proposed a shape-initialized and intensity-adaptive level set
method (SIIALSM) to extract auroral oval boundaries. Research by P. Yang [26] utilized the distance
constraint of inner and outer boundaries in the local information based dual level set method (LIDLSM)
to determine the auroral oval regions. However, these two level set based methods are sensitive to the
image inhomogeneity and evolving curve initializations. If there exist low contrast regions in the UVI
images or the initial contour is set improperly, the auroral oval cannot be extracted accurately by these
two methods.

In recent years, owing to the rapid development of deep learning techniques, we have witnessed a lot
of groundbreaking results [27–29]. As the most common used network in deep learning, the convolutional
neural network (CNN) has been widely applied to computer vision tasks and gains remarkable
popularity. In this work, the CNN based global energy term and adaptive time-step are proposed to
address the segmentation failure brought by image inhomogeneity and different contour initializations.

The flow diagram of our work is shown in Figure 2. First, the CNN designed in our work is
trained on the training samples extracted from the UVI image data set. Following this, the global
energy term and adaptive time step are devised based on the confidence value obtained from trained
CNN. Subsequently, the global energy term and adaptive time-step are introduced into the LIDLSM
for the extraction of the auroral oval. Experiments performed on the UVI image data sets demonstrate
that the proposed method, compared with the state-of-the-art algorithms, can obtain more accurate
segmentation results and is more robust to different contour initializations.
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The remainder of the paper is organized as follows. The second section briefly reviews
state-of-the-art level set models and previous level set models explicitly designed for auroral oval
extraction, which include the SPFLIF-IS and LIDLSM. In Section 3, the global energy term and adaptive
time step will be devised and introduced into the dual level set framework. The UVI data set,
experimental results and analysis are presented in Section 4. Section 5 reports the conclusions.

2. Related Works

SPFLIF-IS [24] is a universally applicable image segmentation method, which combines the local
fitted image formulation (LIF) [30] and the improved signed pressure force (SPF) [31] for inhomogeneous
image segmentation.

By combining the improved SPF function with the LIF model, the level set evolution equation of
SPFLIF-IS was defined as:

∂φ

∂t
= (1− λ1) · α · sp f (I(u)) + λ1

(
I − ILIF

)
(Iinner − Ioutter)δ(φ) (1)

The first term of Equation (1) is the product of the improved SPF (sp f (I(u))) and the balloon force
(α). The improved SPF function has values in the range [−1, 1]. It modulates the signs of the pressure
force inside and outside the region of interest so that the contour shrinks when outside the object, or
expands when inside the object [32]. The second term is the level set evolution function corresponding
to the LIF model, where Iinner and Iouter denote the mean grayscale intensity of

{
v | φ(v) > 0, ||v− u|| < r

}
and

{
v | φ(v) ≤ 0, ||v− u|| > r

}
, respectively. ILIF is the local fitted image and δ(φ) is the univariate

Dirac function. By utilizing the local image information, the LIF model is able to segment images with
intensity inhomogeneity [30]. The weight coefficient λ1 is used to adjust the weight between the SPF
function and the LIF model. Based on global and local image information, inhomogeneous images can
be segmented quickly and accurately by SPFLIF-IS.

LIDLSM [26] is a level set method explicitly designed for auroral oval segmentation. In LIDLSM,
Yang et al. [26] utilized dual level set function of φ1 and φ2 to obtain the inner and outer auroral oval
boundaries, respectively. Suppose that I : Ω ⊂ R2 is an image domain, I : Ω→ R2 is the input auroral
oval image. Two level set functions can divide the auroral oval image into three regions:

S1 =
{
u ∈ Ω|φ1(u) >0

}
S2 =

{
u ∈ Ω|φ1(u) ≤ 0,φ2(u) >0

}
S3 =

{
u ∈ Ω|φ2(u) >0

} (2)

This can be shown in Figure 3.
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Assuming that the distance between φ1 and φ2 follows the Gaussian distribution, Yang et al. [26]
introduced the shape energy term into LIDLSM. Besides, the local information term was constructed to
improve the segmentation performance in the low contrast region, and the regularization term was
adopted to ensure the curve can evolve smoothly towards the auroral oval boundaries and inhibit small
isolated regions. Combining these three terms, the total energy functional of LIDLSM was defined as:

ELIDLSM = λ2

∫
Ω

(|φ1(u) −φ2(u)| − µ)
2

2σ2 du︸                               ︷︷                               ︸
shape energy term

+ λ3

2∑
i=1

∫
Ω
|∇H(φi(u))|du︸                      ︷︷                      ︸

regularization term

+

2∑
i=1

∫
Ω
δ(φi(u))

∫
Ψ

H(φi(v))(I(v) − Iinner)
2 + (1−H(φi(v)))(I(v) − Iouter)

2dvdu︸                                                                                                      ︷︷                                                                                                      ︸
local information term

(3)

where µ and σ are mean and standard deviation of distance between φ1 and φ2. Ψ = {v | ||v− u|| < r}
indicates a local region with radius r at pixel u. Iinner and Iouter denotes the mean grayscale
intensity

{
v | φi(v) > 0, ||v− u|| < r

}
and

{
v | φi(v) ≤ 0, ||v− u|| > r

}
, respectively. λ2 and λ3 are constant

coefficients controlling the strength of the shape energy term and the regularization term.
To obtain an accurate segmentation result of the auroral oval, LIDLSM employs the LLSRHT

results to serve as the initial contours of the level set. However, the auroral oval region cannot be
identified accurately if the initial contour is far away from the boundaries. Figure 4c shows LIDLSM’
segmentation failure in such a case.
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initialization that initial level set curves are far away from auroral oval boundaries (top) and low-
precision segmentation result of LIDLSM (bottom). 

3. Deep Feature-Based Adaptive Level Set Model (DFALS) 

To overcome the auroral oval segmentation problems brought by the image intensity 
inhomogeneity, the high noise level and the level set initialization, this work proposes a deep feature-
based adaptive level set (DFALS) model with the aid of the convolutional neural network. 

3.1. CNN Model Design 

In deep learning, CNNs are the most popular networks used for image classification. In this 
work, CNN is utilized to obtain the confidence value of each pixel belonging to the auroral oval 
region. The design of the proposed CNN architecture is motivated by [33], and the structure is shown 

Figure 4. The auroral oval image and the local information based dual level set auroral oval segmentation
method’s (LIDLSM’s) segmentation results obtained by different initializations. (a) The original auroral
oval image (top) and image after histogram equalization (bottom) which can show the auroral structure
more clearly. (b) The linear least square randomized Hough transform method (LLSRHT) based
initialization (top) and segmentation result of LIDLSM (bottom). (c) The self-defined initialization that
initial level set curves are far away from auroral oval boundaries (top) and low-precision segmentation
result of LIDLSM (bottom).
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3. Deep Feature-Based Adaptive Level Set Model (DFALS)

To overcome the auroral oval segmentation problems brought by the image intensity
inhomogeneity, the high noise level and the level set initialization, this work proposes a deep
feature-based adaptive level set (DFALS) model with the aid of the convolutional neural network.

3.1. CNN Model Design

In deep learning, CNNs are the most popular networks used for image classification. In this
work, CNN is utilized to obtain the confidence value of each pixel belonging to the auroral oval region.
The design of the proposed CNN architecture is motivated by [33], and the structure is shown in
Figure 5. This network consists of an input layer, four convolution layers, and two fully connected
layers. The input layer specifies a sub-image extracted from the auroral images with the size of 11 × 11.
Each convolutional layer has a 3 × 3 filter and a rectified linear unit (ReLU) [34], and zeros are padded
around the border before each convolution so that the output does not lose relative pixel position
information. The feature map (yellow) after the fourth convolutional layer is reduced to a one-channel
feature as a 1 × 576 vector. The output of the network is a 1 × 2 vector which indicates the confidence
values that the center pixel belongs to the auroral region (red) and background region (green).

The cross-entropy loss function [35] is adopted as the cost function for the network:

Loss = −
[
yl̂og y + (1− y) log(1− ŷ)

]
(4)

where y denotes the sample label. If the center pixel of the sub-image locates in the auroral oval region,
the sample label is 1; otherwise, the label is 0. ŷ is the confidence value, which indicates the probability
that the center pixel belongs to the auroral oval region. The parameters of CNN are optimized by the
back-propagation algorithm [36].
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3.2. Constructing the Global Energy Term

Inspired by the sliding window method [37], we gather the sub-images (11 × 11 pixels) with stride
equal 1 pixel horizontally and vertically from each UVI image. Since the auroral images used in this
work have a fixed size of 228 × 200 as shown in Figure 6a, 45,600 sub-images with the size of 11 × 11
can be obtained after padding zeros at the border of each image. Taking each of the 45,600 sub-images
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as the input of the pre-trained CNN, we can obtain the confidence value ŷ (ŷ ∈ [0, 1]) of the center
pixel in the sub-image, which reflects the probability of the pixel locating at the aurora oval region.
All confidence values of the pixels in an image can be visualized through the deep feature map, whose
gray value is Î = ŷ× 255. An example of the auroral oval image and corresponding deep feature map
are shown in Figure 6. With the deep feature map, we can detect the weak boundary regions of the
aurora effectively.
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Based on the deep feature map, we propose the global energy term as follows

Eglobal =
∫

Ω (Î(u) − ĉ1)
2H(φ1)du + 2

∫
Ω (Î(u) − ĉ2)

2
(1−H(φ1))H(φ2)du +

∫
Ω (Î(u) − ĉ3)

2
(1−H(φ2))du (5)

ĉ1, ĉ2 and ĉ3 represent the mean gray intensities of region S1, S2 and S3 in the deep feature map, which
can be calculated as:

ĉ1 =

∫
Ω Î(u)H(φ1)du∫

Ω H(φ1)du
ĉ2 =

∫
Ω Î(u)(1−H(φ1))H(φ2)du∫

Ω(1−H(φ1))H(φ2)du
ĉ3 =

∫
Ω Î(u)(1−H(φ3))du∫

Ω 1−H(φ3)du
(6)

The global energy term contains three components. In the minimization of the global energy term,
the first component can drive the inner level set (φ1) curve to evolve towards the inner boundary of
the auroral oval, and the third component can drive the outer level set (φ2) curve to evolve towards
the outer boundary. The second component can attract the inner and outer level set curves moving to
the auroral oval boundary determined by the deep feature map simultaneously.

To obtain an accurate boundary of the auroral oval, we incorporate the global energy term into
the LIDLSM, and the total energy functional of the DFALS can be formulated as

EDFALS = γ1
∫

Ω
(|φ1(u)−φ2(u)|−µ)

2

2σ2 du + γ2
2∑

i=1

∫
Ω |∇H(φi(u))|du + γ3 · Eglobal

2∑
i=1

∫
Ω δ(φi(u))

∫
Ψ

H(φi(v))(I(v) − Iinner)
2 + (1−H(φi(v)))(I(v) − Iouter)

2dvdu
(7)

Benefiting from the deep feature-based global energy term, the DFALS model can prevent the
boundary leakage of the LIDLSM and obviously improve the segmentation accuracy at the low-contrast
regions in the UVI images.
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3.3. Constructing Adaptive Time-Step

It is worth noting that the confidence value ŷ also contains the positional information of the
corresponding pixel. ŷ is relatively large if the pixel locates closely to the auroral oval region or even in
it. Otherwise, ŷ is small when the pixel is far away from the auroral oval region.

As shown in Figure 4c, the segmentation failure is brought by the shape energy term of LIDLSM.
More specifically, when the inner and outer level set curves cannot evolve to the adjacent region of the
auroral oval simultaneously, the one far from the boundary attracts the other to continue evolving
and overstepping the region of the auroral oval, which results in the segmentation failure eventually.
The adaptive time step ∆t is proposed to address this problem. In this solution, the time step is large
when the confidence value is small. Otherwise, the time step will be set with a low value or even zero.

According to these requirements, the adaptive time step can be designed as follows:

∆t =

max(0 , 4ŷ2
− 8ŷ + 3), k ≤ 300

0.5, k > 300
(8)

where k refers to the kth iteration of the level set evolution. Auroral oval image and the corresponding
time step map in the former 300 iterations are shown in Figure 7.
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As shown by Figure 7, under the effect of the adaptive time step, the level set curve will slow down
or even stop moving when approaching the nearby region of the auroral oval boundaries. Therefore,
the adaptive time step can effectively prevent the contour curve from overstepping the auroral oval
region and resulting in the segmentation failure. When k > 300, the dual level set curves continue
advancing with a relatively small and stable time step ∆t = 0.5.

3.4. Implementation of the DFALS

As aforementioned, the energy functional of the proposed method is defined as Equation (7).
By introducing the time variable t and minimizing the energy functional with respect to φ1 and φ2,
we can deduce the following evolution equations for φ1 and φ2 by the gradient descent flow:

∂φ1(u)
∂t = γ1

(|φ1(u)−φ2(u)|−µ)
σ2 + δ(φ1(u))

∫
Ψ δ(φ1(v))((I(v) − Iinner)

2
−

(
I(v) − Iouter)2

)
dv

+γ2δ(φ1(u))div(∇φ1(u)
|φ1(u)|

) + γ3(δ(φ1(u)) · ((Î(u) − ĉ1)
2
−H (φ2)(Î(u) − ĉ2)

2))
(9)

∂φ2(u)
∂t = γ1

(|φ1(u)−φ2(u)|−µ)
σ2 + δ(φ2(u))

∫
Ψ δ(φ2(v))((I(v) − vinner)

2
−

(
I(v) − vouter)2

)
dv

+γ2δ(φ2(u))div(∇φ2(u)
|φ2(u)|

) + γ3(δ(φ2(u)) · ((Î(u) − ĉ2)
2(1−H(φ1)) − (Î(u) − ĉ3)

2))
(10)



Appl. Sci. 2020, 10, 2590 9 of 17

The evolution equation can be discretized as:

φk+1 = φk + ∆t
∂φk

∂t
(11)

where k refers to the kth iteration. The adaptive time step ∆t is introduced into the evolution equation.
The main procedures of the proposed DFALS model are summarized in Algorithm 1 as follows:

Algorithm 1. Deep feature-based adaptive level set model (DFALS).

Preprocessing: Train the CNN with the training samples, and then construct each UVI image’s corresponding
deep feature map with the trained CNN.

Input: An original UVI image and the corresponding deep feature map
Output: The segmentation result of the auroral oval image
Step 1: Initialize the level set functions φ1 and φ2, and set the coefficient parameters γ1, γ2 and γ3.
Step 2: For k = 1 : K (K is the total number of iterations).
Step 3: Calculate the gradient descent flow for φ1 and φ2 by Equations (9) and (10). The gradient descent flow

of the shape energy term, the regularization term, and the local information term are calculated with
the original UVI image, and the gradient descent flow of the global energy term is calculated with the
corresponding deep feature map.

Step 4: Calculate the adaptive time step according to Equation (8).
Step 5: Calculate the level set evolution equation using Equation (11).
Step 6: If the evolution of the curves is stable or the predetermined iteration number is reached, then output

the segmentation result; otherwise, return to Step 4.
Step 7: End for
Step 8: Output the segmentation result.

4. Experiment and Results

4.1. UVI Data Set

The data set includes 200 auroral oval images which were captured by ultraviolet imager (UVI)
aboard on National Aeronautics and Space Administration (NASA) Polar satellite on 10 January 1997,
31 July 1997, 15 January 1998, and 25 January 1998. The Polar satellite was launched in February
1996 into a highly elliptical orbit of 2 × 9RE (Earth radius) with 86◦ inclination, and it views the north
polar region for about 9 hours out of every 18-hour orbit [38]. Auroral oval images used in this study
were obtained using the Lyman–Birge–Hopfield “long” (LBHL) filter of the UVI on the Polar satellite,
and the auroral radiance in this wavelength band originates from N2 (Nitrogen molecules) emissions at
altitudes of ~120 km [39]. The corresponding benchmark images which show the auroral oval region
were annotated and cross-verified by several aurora experts manually. An example of the auroral oval
image and the corresponding benchmark image is shown in Figure 8.

Among the UVI images, 50 typical images are used to extract training samples for CNN, and the
rest 150 images are used as test images for the validation of the proposed method. As abovementioned,
45,600 sub-images with the size of 11 × 11 can be obtained from each UVI image, in which 4000
sub-images are used for training CNN. Therefore, there are 200,000 (4000 × 50) sub-images are selected
as training samples for CNN. The process of training samples extraction is shown in Figure 9. In the
first step, 2000 auroral oval pixels and 2000 background pixels are selected randomly from each image.
In the second step, centered on these pixels, sub-images with the size of 11 × 11 are available. In the
third step, the center pixels’ values in the benchmark image are taken as the labels of the corresponding
sub-images. With the 200,000 training samples, the prediction accuracy reaches 93.2% when the CNN
was trained for 50,000 epochs.
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Figure 9. Extract training samples from the auroral oval images.

The 150 test images that do not participate in the training process are used for validating the
performance of the DFALS method. The experimental results are also compared with other auroral
oval segmentation models and recently developed level set methods, i.e., SIIALSM [25], LIDLSM [26],
RLSF [23], and SPFLIF-IS [24]. The parameters of the DFALS are empirically set as follows: γ1= 1, γ2= 2,
γ3= 1. Optimal parameters of other methods are chosen to guarantee the fairness of the comparison.

4.2. Robustness to Contour Initializations

We evaluate the influence of contour initializations on the segmentation results for the LIDLSM
and DFALS models. The segmentation results of these two methods initialized by different level set
curves are shown in Figure 10. Despite the differences among several initializations, the DFALS model
yields accurate segmentation results. In contrast, the LIDLSM is extremely sensitive to the initial
contour positions, which can be seen from its unreasonable segmentation results. Therefore, benefiting
from the deep feature-based adaptive time step, the DFALS model shows stronger robustness to
different contour initializations.
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model initialized by several different level set curves. (a) The UVI images captured by Polar satellite on
Jul 31 1997 01:34:00 and Jul 31 1997 01:47:23. (b) The initial level set curves. (c) Segmentation results of
the DFALS. (d) Segmentation results of the LIDLSM.

4.3. Comparison with Other Methods

To further testify the effectiveness and robustness of the DFALS model, two recently proposed
universally applicable image segmentation methods (RLSF, SPFLIF-IS) and methods designed
specifically for auroral oval segmentation (SIIALSM, LIDLSM), were conducted to compare with our
method. The LLSRHT results were adopted as the initial level set contours of the SIIALSM and the
LIDLSM to guarantee the fairness of comparison.

4.3.1. Subjective Evaluation

From test images for validating the DFALS model, we choose three auroral oval images that
are difficult to segment for comparison experiments. In the experiments, the inner and outer level
set curves of the DFALS model are initialized by two concentric circles, whose radius is 15 and 98,
respectively. The center of concentric circles coincides with the image center. The contour initializations
of different methods for these three auroral oval images are shown in Figures S1–S3.

As shown by the red rectangle in Figure 11a, there exist dayglow contamination regions in the
first UVI image. The auroral oval annotated by experts and segmentation results obtained by different
methods automatically are also shown in Figure 11b–f. The RLSF, SPFLIF-IS, and SIIALSM models
mistakenly identify the edge of UVI’s lens as the outer boundary of the auroral oval. In contrast,
LIDLSM and DFALS obtain reasonable segmentation results. Compared with the LIDLSM, the DFALS
model shows superiority on retaining the details of the inner boundary of the auroral oval, as shown
by the blue rectangle in Figure 11f,g.
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Figure 11. The segmentation results of different methods. (a) UVI image captured by the Polar satellite
on Jul 31 1997 09:34:48. (b) The benchmark annotated by experts manually. (c) The segmentation result
of the region-based active contour model via local similarity factor (RLSF). (d) The segmentation result
of the improved signed pressure force and local image fitting based image segmentation (SPFLIF-IS)
method. (e) The segmentation result of the shape-initialized and intensity-adaptive level set method
(SIIALSM). (f) The segmentation result of LIDLSM. (g) The segmentation result of DFALS.

The second auroral oval image contains low contrast region as marked by the red rectangle in
Figure 12a. As aforementioned, the RLSF model improved the segmentation result when the image’s
noise distribution is unknown and the SPFLIF-IS model was developed to address the segmentation
problem brought by image intensity inhomogeneity. However, these two methods fail to obtain
accurate segmentation results. The RLSF model eliminates the noise point in the segmentation result
while missing to extract complete auroral oval in the low contrast region. The SPFLIF-IS model inhibits
apparent boundary leakage of the auroral oval in the low contrast region yet regarding many noise
pixels as the auroral oval region. Influenced by the intensity inhomogeneity, the segmentation results
of SIIALSM and LIDLSM also breaks in the low contrast region. Compared with other methods, the
DFALS model obtains the most reasonable segmentation result with the help of deep feature-based
global energy term.

The third auroral oval image also includes low-contrast regions around the boundary, which is
marked with the red box in Figure 13a. As seen from the segmentation results, the contours obtained
by RLSF and SIIALSM break in the low contrast region, and SPFLIF-IS mistakes the noise pixels as part
of the auroral oval. By comparing Figure 13b,f, we can conclude that although the boundary leakage
does not appear in the segmentation result of LIDLSM, the extracted auroral oval deviates from the
benchmark significantly in the low contrast region. However, regardless of the intensity inhomogeneity
and image noise, DFALS yields the segmentation result that most closely matches the benchmark.
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Figure 12. The segmentation results of different methods. (a) UVI image captured by polar satellite on
Jan 10 1997 01:16:40. (b) The benchmark annotated by experts manually. (c) The segmentation result
of RLSF. (d) The segmentation result of SPFLIF-IS. (e) The segmentation result of SIIALSM. (f) The
segmentation result of LIDLSM. (g) The segmentation result of DFALS.
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segmentation result of LIDLSM. (g) The segmentation result of DFALS.

4.3.2. Objective Evaluation

To objectively evaluate the segmentation accuracy of different methods, an experiment was conducted
to compare the segmentation results with the benchmark on 150 test images. Both boundary-based and
region-based measures are employed.

• Boundary-based measurement

Pixel deviation Pd and gap pixel percentage Pg [19] are adopted as the evaluation metrics in the
Boundary-based measurement. Pd is a summative measure of the distance variation of the automatically
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segmented boundary from the expert’s annotated boundary. Pg indicates the proportion of the gap in
the whole auroral oval boundary. The smaller these two metric values, the better the segmentation
result. Pd and Pg are calculated as follows:

Pd =

∑
ba∈Ba d(ba, Bb) +

∑
bb∈Bb

d(bb, Ba)

Na + Nb
(12)

Pg =
Ngap

Nb
× 100% (13)

where Ba and Bb are the pixel sets on the segmented auroral oval boundaries and the benchmark
boundaries. ba and bb are pixels in Ba and Bb, respectively. Na and Nb are the number of elements in set
Ba and Bb, respectively, and Ngap denotes the number of gap pixels. d(b1, B2) = min

b2∈B2
b1 − b2 represents

the minimum distance from pixel b1 to the pixels in set B2.
Tables 1 and 2 list the mean value and standard deviation of Pd and Pg given by different methods.

The best results are labeled in bold. For these two metrics, the RLSF model performs slightly worse
than the SPFLIF-IS model, which reflects that the problem of auroral oval segmentation is mainly
brought by intensity inhomogeneity. Besides, the suboptimal Pg’s mean value of SPFLIF-IS shows
that this method can efficiently inhibit the boundary leakage in the low contrast region in the UVI
images. Both initialized by LLSRHT result, the comparison between the LIDLSM and the SIIALSM
verifies the effectiveness of the shape energy term in the LIDLSM. Though the Pd’s mean value of the
LIDLSM is suboptimal, this method owes the largest value of standard deviation except for SIIALSM.
The large Pd’s standard deviation of the SIIALSM and LIDLSM is mainly brought by some poor
LLSRHT result initializations, which also indirectly reflects that these two methods are sensitive to
contour initializations.

Table 1. The mean value and standard deviation of Pd given by different methods on the test images.

Methods RLSF SPFLIF-IS SIIALAM LIDLSM DFALS

Mean value 7.114 6.221 6.314 4.614 1.651
Standard deviation 3.456 3.401 8.354 8.063 1.289

Table 2. The mean value and standard deviation of Pg given by different methods on the test images in %.

Methods RLSF SPFLIF-IS SIIALAM LIDLSM DFALS

Mean value 3.010 0.200 1.142 0.600 0.100
Standard deviation 5.153 1.090 4.006 5.513 0.482

• Region-based measurement

The percentage of mislabeled pixels Pmp [19] measures the deviation of the automatically segmented
auroral oval region (Ra) from the benchmark annotated by experts manually (Rb), and it is used as the
metric for region-based measurement. Pmp is calculated as the following formula.

Pmp =
Nmiss + N f alse

Nb + Na
× 100% (14)

where Nmiss represents the number of pixels in Rb but not in Ra, N f alse is the number of pixels in Ra but
not in Rb.

The mean value and standard deviation of Pmp given by different methods are listed in Table 3,
and the best results are labeled in bold. The Pmp’s mean value of SPFLIF-IS is the largest for the reason
that this method mistakes many noise pixels as the auroral oval region, and the Pmp’s mean value of
LIDLSM is suboptimal due to the effectiveness of its local information term. Compared with other
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methods, the standard deviation of Pd and Pmp obtained by the SIIALSM are the largest, which shows
that this method is sensitive to different auroral oval shapes and contour initializations. The auroral
oval region extracted by the DFALS model agrees well with the expert annotated auroral region which
can be verified from the lowest Pmp’s mean value and standard deviation. Indeed, the DFALS model
obtains the lowest value of all three metrics. From Table 3, we can conclude that with the help of deep
feature-based global energy term, the auroral oval segmented by the DFALS matches well with the
benchmark annotated by the experts.

Table 3. The mean value and standard deviation of Pmp given by different methods on test images in %.

Methods RLSF SPFLIF-IS SIIALSM LIDLSM DFALS

Mean value 31.173 33.927 33.002 25.484 16.565
Standard deviation 6.609 6.9569 17.729 6.610 3.560

5. Conclusions

In this paper, motivated by previous auroral oval segmentation methods, we propose a novel deep
feature-based adaptive level set model to extract the auroral oval region in the UVI images. By utilizing
the confidence value obtained from pre-trained CNN, the global energy term is constructed and
incorporated into the LIDLSM’s energy functional. Additionally, an adaptive time step is introduced
to the evolution equation of the level set. The experiments validate that the main contributions of our
method are as follows:

• The comparative experiment between the LIDLSM and DFALS models demonstrate that the
proposed method owes stronger robustness to different contour initializations.

• It can be seen from the subjective evaluation experiments that the auroral oval region extracted by
DFALS agrees well with the experts’ annotated benchmark.

• Compared with the RLSF, SPFLIF-IS, SIIALSM, and LIDLSM models, the DFALS model improves
the auroral oval segmentation accuracy in the intensity inhomogeneous region of the UVI images.
Furthermore, the DFALS model also obtains the best performance in terms of the boundary- and
region-based evaluation metrics.

The DFALS model focuses on segmenting the UVI images which have complete auroral oval.
However, in practice, some aurora in the UVI images are incomplete due to the capturing position
of the ultraviolet imager instrument aboard on the Polar satellite. In the future, we will consider
adaptively setting the weight coefficients and introducing the prior knowledge of the auroral shape,
so that the incomplete aurora can also be segmented accurately.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/7/2590/s1,
Figure S1: The contour initializations of different methods when segmenting the first UVI image in Section 4.3.1.
(a) Initial level set curves (concentric circles) of DFALS. (b) Initial level set curves (LLS-RHT result) of SIIALSM
and LIDLSM. Figure S2: The contour initializations of different methods when segmenting the second UVI image
in Section 4.3.1. (a) Initial level set curves (concentric circles) of DFALS. (b) Initial level set curves (LLS-RHT result)
of SIIALSM and LIDLSM. Figure S3: The contour initializations of different methods when segmenting the third
UVI image in Section 4.3.1. (a) Initial level set curves (concentric circles) of DFALS. (b) Initial level set curves
(LLS-RHT result) of SIIALSM and LIDLSM.
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