
applied
sciences

Article

MBSEsec: Model-Based Systems Engineering Method
for Creating Secure Systems

Donatas Mažeika * and Rimantas Butleris

Centre of Information Systems Design Technologies, Kaunas University of Technology, LT-51423 Kaunas,
Lithuania; rimantas.butleris@ktu.lt
* Correspondence: donatas.mazeika@gmail.com; Tel.: +37-06-741-2899

Received: 24 March 2020; Accepted: 6 April 2020; Published: 9 April 2020
����������
�������

Abstract: This paper presents how Model-Based System Engineering (MBSE) could be leveraged
in order to mitigate security risks at an early stage of system development. Primarily, MBSE was
used to manage complex engineering projects in terms of system requirements, design, analysis,
verification, and validation activities, leaving security aspects aside. However, previous research
showed that security requirements and risks could be tackled in the MBSE model, and powerful
MBSE tools such as simulation, change impact analysis, automated document generation, validation,
and verification could be successfully reused in the multidisciplinary field. This article analyzes
various security-related techniques and then clarifies how these techniques can be represented
in the Systems Modeling Language (SysML) model and then further exploited with MBSE tools.
The paper introduces the MBSEsec method, which gives guidelines for the security analysis process,
the SysML/UML-based security profile, and recommendations on what security technique is needed
at each security process phase. The MBSEsec method was verified by creating an application case
study that reflects real-world problems and running an experiment where systems and security
engineers evaluated the feasibility of our approach.

Keywords: MBSE; security; MBSEsec; SysML

1. Introduction

The International Council on Systems Engineering (INCOSE) defines Model-Based System
Engineering (MBSE) as the formalized application of modeling to support system requirements, design,
analysis, verification, and validation activities beginning in the conceptual design phase and continuing
throughout development and later life cycle phases [1]. Today, MBSE and the SysML language have
become an indispensable part of designing complex cyber-physical systems [2–4]. The reasons for
their popularity are [1–4]:

• MBSE gives a standardized way of capturing and managing the system’s requirements, architecture,
design, and processes, as well as identifying its environment (System of Systems).

• Facilitates communication among various stakeholders by providing discipline-specific views for
different purposes (e.g., requirements, logical system view, physical system view).

• Allows detecting defects early in the system development life cycle.
• Allows comparing and simulating “As Is” and “To Be” solutions.
• Can serve as a single source of truth for systems engineers and other team members.
• Allows exploring multiple solutions with minimal investment.

The authors agree that the biggest value from MBSE activities is gained when system validation
and verification are performed at the early phase of system design, especially in terms of change

Appl. Sci. 2020, 10, 2574; doi:10.3390/app10072574 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-1595-3472
http://www.mdpi.com/2076-3417/10/7/2574?type=check_update&version=1
http://dx.doi.org/10.3390/app10072574
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 2574 2 of 18

cost [5,6]. In such a case, the defects could be fixed with less impact and prevented rework in later
phases, thus mitigating uncertainties to cost and schedule [6]. The same principles apply in the
security field: the risk identification and mitigation are the most effective and maximize the return on
investment if it is integrated into the design process and utilized in the early stages [7]. There are several
tools and methods that allow performing security analysis at the initial phase of systems creation
(e.g., Misuse Cases, Abuse Cases, Secure-Tropos, combined harm assessment of safety and security for
information systems (CHASSIS)); however, they are disjointed from the systems engineering [8,9].

In this paper, we present an analysis of various techniques for defining the security aspect and
then clarify how these techniques can be represented in Unified Modeling Language (UML) and SysML
models and then further exploited with MBSE tools (such as simulation, validation, and verification).
As a result, the MBSEsec method is introduced, which allows cross-functional (systems and security)
teams to perform security analysis in parallel to the systems engineering process at an early stage
of system creation. The MBSEsec method is verified by expanding the Hybrid Sport Utility Vehicle
SysML model with four security mitigation phases and running an experiment where systems and
security engineers evaluate its correctness, completeness, and learning time.

2. Analysis of Related Work

This section presents an overview of the International Organization for Standardization (ISO)
(ISO) and the and the International Electrotechnical Commission (IEC) 27001 information security
standard, which allows systematically governing risks for the systems under design. The next section,
Modeling approaches and techniques for security analysis, demonstrates how the security question is
tackled in the different systems modeling methods, and how the specific security techniques can be
integrated into the MBSE process.

2.1. Overview of ISO/IEC 27001

The ISO/IEC 27001 standard by the International Organization for Standardization (ISO) and
the International Electrotechnical Commission (IEC) specifies the requirements for establishing,
implementing, operating, monitoring, reviewing, maintaining, and improving information security
management system (ISMS) [10]. The security standard assists in the task of developing secure complex
systems in the following ways:

• It gives a step-by-step approach to establish ISMS [10–12].
• It provides best practice recommendations on information security management, risks,

and controls [10].

In our previous paper, we presented the SysML/UML-based MBSE security profile that conforms
to the ISO/IEC 27001 standard [12]. The ISO/IEC 27001 4.2.1 section provides foundational steps for
managing risks at a very high level, and these steps are the subject of the system engineering workflow
at an early stage. The process that should be captured in the MBSE model is as follows:

• Define the risk assessment approach of the organization.
• Identify the risks.
• Analyze and evaluate the risks.
• Identify and evaluate options for the treatment of risks.
• Select control objectives and controls for the treatment of risks.

One of the biggest MBSE returns on investment is that by validating and verifying system
characteristics early, it enables fast feedback on requirements and design decisions [5,6]. This leads to
the conclusion that the security solution should be lean, too. The ISO/IEC 27001 standard adopts the
“Plan–Do–Check–Act” (PDCA) model (Figure 1), which dictates that the ISMS should be continuously
improved, and this principle suits the systems engineering process very well [10].

Appl. Sci. 2020, 10, 2574 3 of 18
Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 18

Figure 1. “Plan–Do–Check–Act” (PDCA) model applied to information security management system
(ISMS) processes [10].

Our main objective is to develop a feasible and efficient MBSE method for creating secure
systems while respecting ISO/IEC 27001 requirements.

2.2. Modeling Approaches and Techniques for Security Analysis

This section presents the modeling approaches and techniques for security analysis and risk
mitigation. The initial analysis of these approaches was presented in previous work [12]; in this
paper, we look further into how the security techniques can be integrated into the MBSE model and
further exploited with system engineering tools (e.g., simulation, validation, and verification). The
following approaches that are based on the UML/SysML syntax are analyzed in this paper:

 Unified Architecture Framework (UAF);
 The combined harm assessment of safety and security for information systems (CHASSIS);
 SysML Sec;
 UML Sec.

2.2.1. Unified Architecture Framework (UAF)

UAF is a modeling framework that defines ways of representing an enterprise architecture.
UAF could be used throughout the entire system life cycle, starting with the initial concept,
requirements, design specification phases, continuing with the implementation, deployment phases,
and finishing with operations, maintenance, and disposal phases. The UAF architecture models
allow users to model the complex relationships that exist between organizations, systems, and
systems-of-systems, and they also enable the analysis of these systems to ensure that they meet the
stakeholder needs. The framework enables the modeling of security, including cybersecurity
controls as well [13,14].

The UAF syntax is based upon a combination and extension of UML and SysML elements and
diagrams. For example, the security processes view represents the security controls that are
necessary to protect organizations, systems, and information during processing. The recommended
implementation for these security controls is the enhanced SysML Activity diagram [13].

Key techniques for defining security aspects: security constraints definition, security processes
definition, security structure definition.

Integration to MBSE process: UAF supports the capability to model enterprise architecture
(strategy, operational, personnel and resources, project, and security) and, optionally, trace it with
the systems-level model(s), which is modeled with SysML or UML languages.

Figure 1. “Plan–Do–Check–Act” (PDCA) model applied to information security management system
(ISMS) processes [10].

Our main objective is to develop a feasible and efficient MBSE method for creating secure systems
while respecting ISO/IEC 27001 requirements.

2.2. Modeling Approaches and Techniques for Security Analysis

This section presents the modeling approaches and techniques for security analysis and risk
mitigation. The initial analysis of these approaches was presented in previous work [12]; in this paper,
we look further into how the security techniques can be integrated into the MBSE model and further
exploited with system engineering tools (e.g., simulation, validation, and verification). The following
approaches that are based on the UML/SysML syntax are analyzed in this paper:

• Unified Architecture Framework (UAF);
• The combined harm assessment of safety and security for information systems (CHASSIS);
• SysML Sec;
• UML Sec.

2.2.1. Unified Architecture Framework (UAF)

UAF is a modeling framework that defines ways of representing an enterprise architecture. UAF
could be used throughout the entire system life cycle, starting with the initial concept, requirements,
design specification phases, continuing with the implementation, deployment phases, and finishing
with operations, maintenance, and disposal phases. The UAF architecture models allow users to
model the complex relationships that exist between organizations, systems, and systems-of-systems,
and they also enable the analysis of these systems to ensure that they meet the stakeholder needs.
The framework enables the modeling of security, including cybersecurity controls as well [13,14].

The UAF syntax is based upon a combination and extension of UML and SysML elements and
diagrams. For example, the security processes view represents the security controls that are necessary to
protect organizations, systems, and information during processing. The recommended implementation
for these security controls is the enhanced SysML Activity diagram [13].

Key techniques for defining security aspects: security constraints definition, security processes
definition, security structure definition.

Integration to MBSE process: UAF supports the capability to model enterprise architecture
(strategy, operational, personnel and resources, project, and security) and, optionally, trace it with the
systems-level model(s), which is modeled with SysML or UML languages.

Appl. Sci. 2020, 10, 2574 4 of 18

2.2.2. CHASSIS

The CHASSIS method defines a process for security and safety assessments to address both the
security and safety aspects during the system development process. The main CHASSIS techniques
are UML-based diagrams as well as traditional text-based techniques such as Hazard and Operability
study (HAZOP) or security requirements specification [9,15].

There are three main steps in the CHASSIS method: eliciting functional requirements; eliciting
safety/security requirements; and specifying safety/security requirements. The first two steps rely
on creating and analyzing UML-based diagrams (use case, sequence, misuse case, misuse sequence).
The third steps suggest conducting results in the HAZOP table and in security/safety requirements
specification [15].

Key techniques for defining security aspects: Misuse cases, misuse case sequence diagram,
HAZOP, security requirements.

Integration to MBSE process: The CHASSIS method presents a process definition, not a dedicated
UML/SysML profile. As the CHASSIS method suggests using UML-based diagrams, the principles of
it can be adapted to the MBSE process.

2.2.3. UML Sec

UML Sec is a lightweight extension to the UML language for integrating security-related
information in UML models. The UML Sec approach does not introduce additional security diagrams
but provides a UML profile with stereotypes and constraints. The UML Sec stereotypes allow users
to define security requirements and model attack/failure scenarios with existing UML diagrams
(e.g., Use Case, Activity, Sequence diagrams). The constraints (Object Constraint Language (OCL)
validation rules) enable users to verify the model with formal semantics [16,17]. In addition, the UML
Sec extension can be used with the Goal-Driven Security Requirements Engineering methodology to
have a structured framework for secure software systems creation [18].

Key techniques for defining security aspects: Security requirements, failure/attack scenarios.
Integration to MBSE process: UML Sec is a lightweight extension for UML, so the security-related

stereotypes can be used within SysML models; however, no default traceability or mapping is defined.

2.2.4. SysML Sec Methodology

SysML Sec is a model-driven engineering approach for creating secure embedded systems. This
methodology presents semi-formal specifications of both security and safety features and properties at
various development cycle phases [19].

The SysML Sec methodology has three stages: analysis, design, and validation. The analysis
stage covers security requirements and attack scenarios; it also serves as an identification of the main
functions and candidate system architecture. In the system design phase, security requirements are
refined with security properties, and security-related functions are defined. The validation stage gives
users a formal assessment of whether security properties are valid and verified [19].

In the SysML Sec methodology, security requirements are based on an extended SysML Requirement
diagram. A new security requirement stereotype with the property of Kind (e.g., confidentiality, access
control, integrity, freshness) allows users to distinguish security requirements from functional and
non-functional requirements. Attack trees can be specified with a customized SysML Parametric
diagram. A Formal Dolev-Yao attacker model (for describing attacks on the protocols deployed
between the components of the embedded system model) can be modeled with extended SysML Block
and State Machine diagrams [20].

Key techniques for defining security aspects: Requirement diagrams, attack scenarios, Dolev–Yao
attacker model.

Appl. Sci. 2020, 10, 2574 5 of 18

Integration to MBSE process: SysML Sec was created to support all methodological stages of
the design and development of embedded real-time systems. As SysML Sec uses extended SysML
diagrams for capturing security concerns, the principles of it can be adapted to the MBSE process.

2.3. Security Techniques Comparison

This section is dedicated to aligning the modeling approaches and techniques for security analysis.
We present which security-related techniques overlap between analyzed modeling approaches and how
these techniques are implemented in the SysML language in Table 1 (Y indicates that the corresponding
technique is used in the modeling approach, and N means that it is not relevant).

The initial security domain model with security concepts was presented in the previous article [12].
Now, we are adding security techniques and linking them with security concepts. In Figure 2, all the
new security-related techniques are marked with the <<Technique>> stereotype (shapes filled with
blue color) and linked with the concepts. The relationship name describes how a specific concept
should be treated with the corresponding security technique.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 18

Figure 2. Security concepts, techniques, and relations of the security domain.

3. MBSEsec Method

This section introduces the MBSEsec method, which covers activities and guidelines for
creating secure systems with the SysML security profile. Figure 3 shows the phases and underlying
security techniques of the MBSEsec method. Some of the activities that are suggested in the MBSEsec
method directly match the name and definition of the security technique from the analysis part (e.g.,
Misuse Cases, SysML Requirements Diagram); some of them are derived (e.g., Asset Structure
Definition, Threat and Risk Definition). The third part of the techniques falls into the MBSE features
category (e.g., verification rules, activity simulation, allocation matrix). In order to apply these
techniques, we regrouped and expanded the SysML Security profile (see Figure 4), which originally
was introduced in [12].

Figure 3. The phases of the Model-Based System Engineering (MBSE) sec method.

Figure 2. Security concepts, techniques, and relations of the security domain.

Appl. Sci. 2020, 10, 2574 6 of 18

Table 1. Security techniques mapped to modeling approaches.

UAF CHASSIS SysML
Sec

UML
Sec Implementation in SysML Purpose

Security Requirements Definition Y Y Y Y SysML Requirement diagram,
SysML Use Case diagram

Captures functional and
non-functional security requirements

Security Processes Definition Y N N N SysML Activity Diagram Identifies security controls

Security Structure Definition Y N N N SysML Block Definition Diagram,
SysML Internal Block Diagram Defines assets and allocations

Security Constraints Definition Y N N N SysML Block Definition Diagram Captures security-related policies
and threats, vulnerabilities, and risks

Misuse Cases N Y N N SysML Use Case Diagram Identifies threats and attackers

Misuse Case Sequence N Y N N SysML Sequence Diagram Defines attack sequence during an
intrusion

HAZOP N Y N N Tabular format Summarizes risk and security
requirements-related data

Attack/Threat
scenario N Y Y Y SysML Activity Diagram,

SysML Parametric diagram Describes attack steps/actions

Dolev–Yao attacker model N N Y N SysML Block, and State Machine diagrams Formally defines potential actions by
an attacker

Appl. Sci. 2020, 10, 2574 7 of 18

3. MBSEsec Method

This section introduces the MBSEsec method, which covers activities and guidelines for creating
secure systems with the SysML security profile. Figure 3 shows the phases and underlying security
techniques of the MBSEsec method. Some of the activities that are suggested in the MBSEsec method
directly match the name and definition of the security technique from the analysis part (e.g., Misuse
Cases, SysML Requirements Diagram); some of them are derived (e.g., Asset Structure Definition,
Threat and Risk Definition). The third part of the techniques falls into the MBSE features category
(e.g., verification rules, activity simulation, allocation matrix). In order to apply these techniques,
we regrouped and expanded the SysML Security profile (see Figure 4), which originally was introduced
in [12].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 18

Figure 2. Security concepts, techniques, and relations of the security domain.

3. MBSEsec Method

This section introduces the MBSEsec method, which covers activities and guidelines for
creating secure systems with the SysML security profile. Figure 3 shows the phases and underlying
security techniques of the MBSEsec method. Some of the activities that are suggested in the MBSEsec
method directly match the name and definition of the security technique from the analysis part (e.g.,
Misuse Cases, SysML Requirements Diagram); some of them are derived (e.g., Asset Structure
Definition, Threat and Risk Definition). The third part of the techniques falls into the MBSE features
category (e.g., verification rules, activity simulation, allocation matrix). In order to apply these
techniques, we regrouped and expanded the SysML Security profile (see Figure 4), which originally
was introduced in [12].

Figure 3. The phases of the Model-Based System Engineering (MBSE) sec method. Figure 3. The phases of the Model-Based System Engineering (MBSE) sec method.

Phase 1—Identify Security Requirements. The starting point of the MBSEsec method is to identify
the security requirements as an additional part of the functional and non-functional requirements that
are usually captured at an early stage of SE model creation. We have expanded the initial security
profile with the “Security Requirement” stereotype, which is a subtype of the SysML Requirement
(see Figure 4). We recommend using the standard SysML Requirements diagram or Requirements table
for capturing security requirements. The further security requirement refinement can be additionally
done with the SysML/UML Use Case diagram.

Phase 2—Capture and Allocate Assets. The second phase is dedicated to defining the objects that
the organization should secure and allocate them to the system’s parts. The SysML language has two
concepts for defining system structural elements: Blocks that define types, and Parts that represent
the usage of these blocks in a specific context. Similarly, the assets definition can be performed in
both ways; however, the goal of this phase is to represent the structure, not the usage or internal
connections. As a result, we recommend using a new diagram type of Asset Structure Definition,
which should be an extension of the Block Definition Diagram. After the identification of the assets,
Systems Blocks and Assets should be linked with the SysML Allocation relationship. This would allow
us to create expressions based on Object Constraint Language (OCL) or other programming languages
for running quantitative model verification, i.e., finding all the system blocks that are not allocated to
any asset element.

Phase 3—Model Threats and Risks. This phase consists of two parts: behavioral and structural
security specification. For the behavioral risk and threat definition, we recommend the extended
Use Case diagram for identifying Misuse Cases and the UML Activity diagram for modeling Attack
Scenarios. The Dolev–Yao attacker model was mentioned in the literature analysis; however, this
technique is too detailed for an early phase, and we do not include it in the MBSEsec method.
The Dolev–Yao attacker model can be applied in the later phases or when formal verification is needed.

Appl. Sci. 2020, 10, 2574 8 of 18

For the structural risk definition, we recommend the new Threat and Risk Definition diagram, which
should be based on the UML Class diagram. In this diagram, the following elements should be created
and linked: Risk; Risk Treatment; Risk Impact; Threat; and Vulnerability. Alternatively, a HAZOP style
table can be used to summarize risk-related information.

Phase 4—Decide Objectives and Controls. The final phase helps us to define security control
objectives and controls. We recommend using a new Security Objectives and Controls Structure
diagram (an extension of the UML Class diagram) for defining elements of security objectives and
controls. The standard UML Activity Diagram could be used for identifying workflow or algorithm
for security control. We recommend modeling security workflow by following fUML1.1. standard;
this would allow security engineers to simulate and verify security controls.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 18

Figure 4. The MBSEsec profile.

Phase 1—Identify Security Requirements. The starting point of the MBSEsec method is to
identify the security requirements as an additional part of the functional and non-functional
requirements that are usually captured at an early stage of SE model creation. We have expanded the
initial security profile with the “Security Requirement” stereotype, which is a subtype of the SysML
Requirement (see Figure 4). We recommend using the standard SysML Requirements diagram or
Requirements table for capturing security requirements. The further security requirement
refinement can be additionally done with the SysML/UML Use Case diagram.

Phase 2—Capture and Allocate Assets. The second phase is dedicated to defining the objects
that the organization should secure and allocate them to the system’s parts. The SysML language has
two concepts for defining system structural elements: Blocks that define types, and Parts that
represent the usage of these blocks in a specific context. Similarly, the assets definition can be
performed in both ways; however, the goal of this phase is to represent the structure, not the usage
or internal connections. As a result, we recommend using a new diagram type of Asset Structure
Definition, which should be an extension of the Block Definition Diagram. After the identification of

Figure 4. The MBSEsec profile.

Appl. Sci. 2020, 10, 2574 9 of 18

The phases of the MBSEsec approach should not necessarily be conducted consecutively.
We suggest following the PDCA model, in which the outcomes of MBSEsec phases should be
continuously reviewed and updated after each phase; i.e., it is recommended to update the Risk
Treatment in the Threat and Risk Definition diagram (in Phase 3) after identifying the Security Controls
in Phase 4.

The next section presents how the MBSEsec method can be applied in the real-world SysML model.

4. Applying the MBSEsec Method

To demonstrate the MBSEsec method usage, we selected the Hybrid Sport Utility Vehicle (HSUV)
model from the OMG SysML specification [21,22]. A modern vehicle is subject to cyber attacks through
its various network interfaces to the public network infrastructure as well as its direct exposure to the
open physical environment [23]. As identified by [24], there are many vehicle parts and components
that can be attacked (see Figure 5); nevertheless, in our case study, we are focusing on the Power
Control Electronic Control Unit (ECU) and presenting how the security issues for this component can
be identified, analyzed, and mitigated.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

the assets, Systems Blocks and Assets should be linked with the SysML Allocation relationship. This
would allow us to create expressions based on Object Constraint Language (OCL) or other
programming languages for running quantitative model verification, i.e., finding all the system
blocks that are not allocated to any asset element.

Phase 3—Model Threats and Risks. This phase consists of two parts: behavioral and structural
security specification. For the behavioral risk and threat definition, we recommend the extended Use
Case diagram for identifying Misuse Cases and the UML Activity diagram for modeling Attack
Scenarios. The Dolev–Yao attacker model was mentioned in the literature analysis; however, this
technique is too detailed for an early phase, and we do not include it in the MBSEsec method. The
Dolev–Yao attacker model can be applied in the later phases or when formal verification is needed.
For the structural risk definition, we recommend the new Threat and Risk Definition diagram, which
should be based on the UML Class diagram. In this diagram, the following elements should be
created and linked: Risk; Risk Treatment; Risk Impact; Threat; and Vulnerability. Alternatively, a
HAZOP style table can be used to summarize risk-related information.

Phase 4—Decide Objectives and Controls. The final phase helps us to define security control
objectives and controls. We recommend using a new Security Objectives and Controls Structure
diagram (an extension of the UML Class diagram) for defining elements of security objectives and
controls. The standard UML Activity Diagram could be used for identifying workflow or algorithm
for security control. We recommend modeling security workflow by following fUML1.1. standard;
this would allow security engineers to simulate and verify security controls.

The phases of the MBSEsec approach should not necessarily be conducted consecutively. We
suggest following the PDCA model, in which the outcomes of MBSEsec phases should be
continuously reviewed and updated after each phase; i.e., it is recommended to update the Risk
Treatment in the Threat and Risk Definition diagram (in Phase 3) after identifying the Security
Controls in Phase 4.

The next section presents how the MBSEsec method can be applied in the real-world SysML
model.

4. Applying the MBSEsec Method

To demonstrate the MBSEsec method usage, we selected the Hybrid Sport Utility Vehicle
(HSUV) model from the OMG SysML specification [21,22]. A modern vehicle is subject to cyber
attacks through its various network interfaces to the public network infrastructure as well as its
direct exposure to the open physical environment [23]. As identified by [24], there are many vehicle
parts and components that can be attacked (see Figure 5); nevertheless, in our case study, we are
focusing on the Power Control Electronic Control Unit (ECU) and presenting how the security issues
for this component can be identified, analyzed, and mitigated.

Figure 5. Potential attack surfaces in a Hybrid Sport Utility Vehicle (HSUV). Figure 5. Potential attack surfaces in a Hybrid Sport Utility Vehicle (HSUV).

Before starting a security analysis, security engineers should ensure that the risk assessment
methodology and criteria for accepting risks are set. The methodology can be captured in the “Risk
Assessment Configuration” model element as documentation or link to the document. The “Criteria
for Accepting Risks” should be set as an integer number.

The first phase of “Identify Security Requirements” suggests that the security requirements
should be identified, captured, and refined in the MBSE model. Ideally, engineers who are working
in the security requirements engineering discipline should combine expertise in security, domain,
and requirements engineering fields to provide a foundation for developing a secure system [25].
Depending on the novelty of the system, the expertise of the security engineer, and the security
requirements engineering methodology, the security requirements can be very precise or more abstract.
For the Power Control ECU part, we capture explicit security requirements, which dictates that external
access to the ECU shall be limited (see Figure 6). If there is a need, the security requirements can be
refined with the SysML Use Case diagram.

Appl. Sci. 2020, 10, 2574 10 of 18

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 18

Before starting a security analysis, security engineers should ensure that the risk assessment
methodology and criteria for accepting risks are set. The methodology can be captured in the “Risk
Assessment Configuration” model element as documentation or link to the document. The “Criteria
for Accepting Risks” should be set as an integer number.

The first phase of “Identify Security Requirements” suggests that the security requirements
should be identified, captured, and refined in the MBSE model. Ideally, engineers who are working
in the security requirements engineering discipline should combine expertise in security, domain,
and requirements engineering fields to provide a foundation for developing a secure system [25].
Depending on the novelty of the system, the expertise of the security engineer, and the security
requirements engineering methodology, the security requirements can be very precise or more
abstract. For the Power Control ECU part, we capture explicit security requirements, which dictates
that external access to the ECU shall be limited (see Figure 6). If there is a need, the security
requirements can be refined with the SysML Use Case diagram.

Figure 6. Security requirements for Power Control ECU.

In the second phase of “Capture and Allocate Assets”, we identify Power Control ECU
Hardware, Embedded Software, and its Interface as assets that must be secured. As mentioned in the
previous section, the assets should be created in Asset Definition Diagram. In the follow-up step, we
should link these assets with the systems blocks with the SysML Allocate relationship. The relation
map diagram (see Figure 7) presents the system structure (as columns) and assets (as rows), while
the arrow in the intersection represents either direct or indirect allocation.

Figure 7. Assets allocated to HSUV blocks in the Dependency matrix.

Figure 6. Security requirements for Power Control ECU.

In the second phase of “Capture and Allocate Assets”, we identify Power Control ECU Hardware,
Embedded Software, and its Interface as assets that must be secured. As mentioned in the previous
section, the assets should be created in Asset Definition Diagram. In the follow-up step, we should link
these assets with the systems blocks with the SysML Allocate relationship. The relation map diagram
(see Figure 7) presents the system structure (as columns) and assets (as rows), while the arrow in the
intersection represents either direct or indirect allocation.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 18

Before starting a security analysis, security engineers should ensure that the risk assessment
methodology and criteria for accepting risks are set. The methodology can be captured in the “Risk
Assessment Configuration” model element as documentation or link to the document. The “Criteria
for Accepting Risks” should be set as an integer number.

The first phase of “Identify Security Requirements” suggests that the security requirements
should be identified, captured, and refined in the MBSE model. Ideally, engineers who are working
in the security requirements engineering discipline should combine expertise in security, domain,
and requirements engineering fields to provide a foundation for developing a secure system [25].
Depending on the novelty of the system, the expertise of the security engineer, and the security
requirements engineering methodology, the security requirements can be very precise or more
abstract. For the Power Control ECU part, we capture explicit security requirements, which dictates
that external access to the ECU shall be limited (see Figure 6). If there is a need, the security
requirements can be refined with the SysML Use Case diagram.

Figure 6. Security requirements for Power Control ECU.

In the second phase of “Capture and Allocate Assets”, we identify Power Control ECU
Hardware, Embedded Software, and its Interface as assets that must be secured. As mentioned in the
previous section, the assets should be created in Asset Definition Diagram. In the follow-up step, we
should link these assets with the systems blocks with the SysML Allocate relationship. The relation
map diagram (see Figure 7) presents the system structure (as columns) and assets (as rows), while
the arrow in the intersection represents either direct or indirect allocation.

Figure 7. Assets allocated to HSUV blocks in the Dependency matrix. Figure 7. Assets allocated to HSUV blocks in the Dependency matrix.

In the “Model Risks and Threats” phase, we reflect an experiment conducted by [22], in which
a long-range wireless cyber attack was physically tested using a real vehicle and malicious mobile
application in a connected car environment. Initially, we need to model the high-level attack steps and
the involved actors with the Misuse Case diagram, as shown in Figure 8.

Then, we can model the more detailed attack scenario with the SysML Activity diagram
(see Figure 9). The first swimlane presents a sequence of actions performed by the malicious app,
and other swimlanes represent the parts of the HSUV and what actions are invoked in each partition.
As a result of this attack scenario, the vehicle has a possible fatal malfunction caused by the abnormal
control data that was transmitted from the malicious app. If the activity diagram is modeled according
to the fUML1.1. standard, then the correctness of the attack scenario can be verified by running activity
simulation (i.e., using MagicDraw modeling tool with the Simulation toolkit plugin).

Appl. Sci. 2020, 10, 2574 11 of 18

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 18

In the “Model Risks and Threats” phase, we reflect an experiment conducted by [22], in which a
long-range wireless cyber attack was physically tested using a real vehicle and malicious mobile
application in a connected car environment. Initially, we need to model the high-level attack steps
and the involved actors with the Misuse Case diagram, as shown in Figure 8.

Figure 8. The Misuse Case diagram reflecting malicious diagnostic app usage.

Then, we can model the more detailed attack scenario with the SysML Activity diagram (see
Figure 9). The first swimlane presents a sequence of actions performed by the malicious app, and
other swimlanes represent the parts of the HSUV and what actions are invoked in each partition. As
a result of this attack scenario, the vehicle has a possible fatal malfunction caused by the abnormal
control data that was transmitted from the malicious app. If the activity diagram is modeled
according to the fUML1.1. standard, then the correctness of the attack scenario can be verified by
running activity simulation (i.e., using MagicDraw modeling tool with the Simulation toolkit
plugin).

Figure 8. The Misuse Case diagram reflecting malicious diagnostic app usage.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18

Figure 9. The attack scenario reflecting fault injection through a malicious app.

For the final step in the “Model Risks and Threats” phase, we need to create the Threat and Risk
Definition diagram in which Risk, Risk Impact, Threat, and Vulnerability should be modeled.
Respectively, we capture the risk of “An attacker is able to take over a Power Control ECU via the
OBD-II port, reprogram it, and execute functions of Power Subsystem”, which has the risk impact of
“Lost control of HSUV acceleration”. The possible threat is “Fault injection on automotive diagnostic
protocols” that potentially uses the vulnerability of “Control Area Network (CAN) protocol”. The
Threat and Risk definition diagram with all the relevant security elements and relations is presented
in Figure 10.

Figure 10. The Threat and Risk definition diagram for the Power Control ECU.

Figure 9. The attack scenario reflecting fault injection through a malicious app.

For the final step in the “Model Risks and Threats” phase, we need to create the Threat and
Risk Definition diagram in which Risk, Risk Impact, Threat, and Vulnerability should be modeled.
Respectively, we capture the risk of “An attacker is able to take over a Power Control ECU via
the OBD-II port, reprogram it, and execute functions of Power Subsystem”, which has the risk
impact of “Lost control of HSUV acceleration”. The possible threat is “Fault injection on automotive

Appl. Sci. 2020, 10, 2574 12 of 18

diagnostic protocols” that potentially uses the vulnerability of “Control Area Network (CAN) protocol”.
The Threat and Risk definition diagram with all the relevant security elements and relations is presented
in Figure 10.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18

Figure 9. The attack scenario reflecting fault injection through a malicious app.

For the final step in the “Model Risks and Threats” phase, we need to create the Threat and Risk
Definition diagram in which Risk, Risk Impact, Threat, and Vulnerability should be modeled.
Respectively, we capture the risk of “An attacker is able to take over a Power Control ECU via the
OBD-II port, reprogram it, and execute functions of Power Subsystem”, which has the risk impact of
“Lost control of HSUV acceleration”. The possible threat is “Fault injection on automotive diagnostic
protocols” that potentially uses the vulnerability of “Control Area Network (CAN) protocol”. The
Threat and Risk definition diagram with all the relevant security elements and relations is presented
in Figure 10.

Figure 10. The Threat and Risk definition diagram for the Power Control ECU. Figure 10. The Threat and Risk definition diagram for the Power Control ECU.

The “Decide Objectives and Controls” phase allows us to identify objectives for the security
controls and define the risk mitigation controls. In our case, the possible objective can be Prevent
Unauthorized Access to Power Control ECU. The security control, in the form of an activity diagram,
should present a preventive algorithm and specific actions that would allow fulfilling the security
control objective. As is shown in Figure 11, the activity diagram presents multilayered protection
that can be reused for the different ECUs. When we finish modeling the appropriate security control,
we should not forget to create the Risk Treatment element and link it with Risk and Security Control.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 18

The “Decide Objectives and Controls” phase allows us to identify objectives for the security
controls and define the risk mitigation controls. In our case, the possible objective can be Prevent
Unauthorized Access to Power Control ECU. The security control, in the form of an activity
diagram, should present a preventive algorithm and specific actions that would allow fulfilling the
security control objective. As is shown in Figure 11, the activity diagram presents multilayered
protection that can be reused for the different ECUs. When we finish modeling the appropriate
security control, we should not forget to create the Risk Treatment element and link it with Risk and
Security Control.

Figure 11. The security control for preventing unauthorized access to the ECU.

Finally, when both MBSE and security elements are created and linked in the MBSE model, we
can take advantage of the modeling tool and run an automated analysis. We provide possible
questions for the security model completeness and supporting algorithms in Table 2. These
algorithms can be formatted to a specific programming language syntax (e.g., OCL 2.0, Javascript)
and used as metrics or verification rules to evaluate the current state of the model.

Table 2. Questions and algorithms for quantitative model analysis.

Question Algorithm

Are there any risks that do not
have risk treatment and whose risk
acceptance level is higher than an
acceptable level of risk defined in
Risk Assessment Configuration?

SELECT all instances of SecurityProfile:Risk
WHERE (SecurityProfile::Risk does not have property whose type
is instance of SecurityProfile::RiskAcceptanceLevel
AND SecurityProfile::Risk::RiskLevel is greater than
SecurityProfile::RiskAssessmentConfiguration::CriteriaForAccepti
ngRisks)

Are there any risks that are not
applicable to any asset?

SELECT all instances of SecurityProfile::Risk
WHERE NOT EXISTS (dependency of
SecurityProfile::ApplicableTo between SecurityProfile::Risk AND
SecurityProfile::Asset)

Figure 11. The security control for preventing unauthorized access to the ECU.

Appl. Sci. 2020, 10, 2574 13 of 18

Finally, when both MBSE and security elements are created and linked in the MBSE model, we can
take advantage of the modeling tool and run an automated analysis. We provide possible questions
for the security model completeness and supporting algorithms in Table 2. These algorithms can be
formatted to a specific programming language syntax (e.g., OCL 2.0, Javascript) and used as metrics or
verification rules to evaluate the current state of the model.

Table 2. Questions and algorithms for quantitative model analysis.

Question Algorithm

Are there any risks that do not have risk
treatment and whose risk acceptance level is

higher than an acceptable level of risk
defined in Risk Assessment Configuration?

SELECT all instances of SecurityProfile:Risk
WHERE (SecurityProfile::Risk does not have property whose
type is instance of SecurityProfile::RiskAcceptanceLevel
AND SecurityProfile::Risk::RiskLevel is greater than
SecurityProfile::RiskAssessmentConfiguration::
CriteriaForAcceptingRisks)

Are there any risks that are not applicable to
any asset?

SELECT all instances of SecurityProfile::Risk
WHERE NOT EXISTS (dependency of
SecurityProfile::ApplicableTo between SecurityProfile::Risk
AND SecurityProfile::Asset)

Are there any system blocks that are not
allocated to assets?

SELECT all instances of SysML::Blocks
WHERE NOT EXISTS (dependency of SysML::Allocate
between SysML::Block AND SecurityProfile::Asset)

The next automated assistance of MBSE is impact analysis. We can analyze which system and
security elements shall be reviewed if the initial system requirement of “Power” is being changed.
In Figure 12, we present the relation map diagram that presents such traceability from requirements to
the system and software assets.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 18

Are there any system blocks that
are not allocated to assets?

SELECT all instances of SysML::Blocks
WHERE NOT EXISTS (dependency of SysML::Allocate between
SysML::Block AND SecurityProfile::Asset)

The next automated assistance of MBSE is impact analysis. We can analyze which system and
security elements shall be reviewed if the initial system requirement of “Power” is being changed. In
Figure 12, we present the relation map diagram that presents such traceability from requirements to
the system and software assets.

Figure 12. The change impact map for the “Power” requirement.

5. Evaluation

In order to evaluate the feasibility of the MBSEsec method, we asked MBSE and security
practitioners to answer questions related to their experience, work principles, and the security
method itself. The questions were answered by various engineering organizations representatives
(in total 15) and academic representatives (in total 4). The respondents’ disciplines were as follows:
Systems Engineering (in total 9), Software Engineering (in total 6), Requirements Engineering (in
total 3), and Mechanical Engineering (in total 1). All the respondents were aware of MBSE, and over
half of the respondents were practicing MBSE for more than 5 years. The results are provided in
Figure 13.

Figure 13. Chart representing how long respondents had been practicing MBSE.

Primarily, we wanted to find out the participants’ current work principles related to system
development. For this, we asked if the respondents followed agile modeling practices with fast
learning and validation cycles or if they preferred a linear approach (e.g., waterfall methodology).
Most (68%) of respondents use agile methods, 22% used a hybrid approach, and 10% preferred the

Figure 12. The change impact map for the “Power” requirement.

5. Evaluation

In order to evaluate the feasibility of the MBSEsec method, we asked MBSE and security
practitioners to answer questions related to their experience, work principles, and the security method
itself. The questions were answered by various engineering organizations representatives (in total
15) and academic representatives (in total 4). The respondents’ disciplines were as follows: Systems
Engineering (in total 9), Software Engineering (in total 6), Requirements Engineering (in total 3),
and Mechanical Engineering (in total 1). All the respondents were aware of MBSE, and over half of the
respondents were practicing MBSE for more than 5 years. The results are provided in Figure 13.

Appl. Sci. 2020, 10, 2574 14 of 18

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 18

Are there any system blocks that
are not allocated to assets?

SELECT all instances of SysML::Blocks
WHERE NOT EXISTS (dependency of SysML::Allocate between
SysML::Block AND SecurityProfile::Asset)

The next automated assistance of MBSE is impact analysis. We can analyze which system and
security elements shall be reviewed if the initial system requirement of “Power” is being changed. In
Figure 12, we present the relation map diagram that presents such traceability from requirements to
the system and software assets.

Figure 12. The change impact map for the “Power” requirement.

5. Evaluation

In order to evaluate the feasibility of the MBSEsec method, we asked MBSE and security
practitioners to answer questions related to their experience, work principles, and the security
method itself. The questions were answered by various engineering organizations representatives
(in total 15) and academic representatives (in total 4). The respondents’ disciplines were as follows:
Systems Engineering (in total 9), Software Engineering (in total 6), Requirements Engineering (in
total 3), and Mechanical Engineering (in total 1). All the respondents were aware of MBSE, and over
half of the respondents were practicing MBSE for more than 5 years. The results are provided in
Figure 13.

Figure 13. Chart representing how long respondents had been practicing MBSE.

Primarily, we wanted to find out the participants’ current work principles related to system
development. For this, we asked if the respondents followed agile modeling practices with fast
learning and validation cycles or if they preferred a linear approach (e.g., waterfall methodology).
Most (68%) of respondents use agile methods, 22% used a hybrid approach, and 10% preferred the

Figure 13. Chart representing how long respondents had been practicing MBSE.

Primarily, we wanted to find out the participants’ current work principles related to system
development. For this, we asked if the respondents followed agile modeling practices with fast
learning and validation cycles or if they preferred a linear approach (e.g., waterfall methodology).
Most (68%) of respondents use agile methods, 22% used a hybrid approach, and 10% preferred the
waterfall methodology. As the suggested MBSEsec method is based on the PDCA model, it should suit
the majority of respondents’ practices. The next question in this group was related to checking if the
security requirements are captured together with the functional and non-functional requirements in the
MBSE model. Most (63%) respondents do this, and this leads to the conclusion that the considerations
of system security are quite commonly made at the early stage of system development.

Next, we asked our respondents to evaluate the importance of security mitigation phases. Most
of the participants said that the identification of parts of the system that could be vulnerable is very
important or important. More than half of the participants agreed that all the other mentioned security
phases are important or very important, too. All the results are provided in Figure 14.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 18

waterfall methodology. As the suggested MBSEsec method is based on the PDCA model, it should
suit the majority of respondents’ practices. The next question in this group was related to checking if
the security requirements are captured together with the functional and non-functional
requirements in the MBSE model. Most (63%) respondents do this, and this leads to the conclusion
that the considerations of system security are quite commonly made at the early stage of system
development.

Next, we asked our respondents to evaluate the importance of security mitigation phases. Most
of the participants said that the identification of parts of the system that could be vulnerable is very
important or important. More than half of the participants agreed that all the other mentioned
security phases are important or very important, too. All the results are provided in Figure 14.

Figure 14. Chart representing the importance of each MBSEsec method phase.

Furthermore, we asked if the respondents see any other security phases/activities (not
mentioned in the previous question) that should be conducted at the early stage of system
development; here are the opinions:

 It’s not only important to identify parts themselves that could be vulnerable but also their
interaction/communication/links with other parts.

 Information exchange analysis.
 Embed security controls into the processes at all levels.
 Calculate vulnerability scores (e.g., CVSS), link security aspects with rest of the design.

In terms of MBSE tools that would be the most suitable for running combined Systems and
Security Engineering analysis, participants tended to agree that Representing information in
different views (Diagrams, tables, matrices) and the Single source of truth are the most important.
According to the respondents, the least important tool is Automated document generation. The
detailed answers are provided in Figure 15.

Figure 14. Chart representing the importance of each MBSEsec method phase.

Furthermore, we asked if the respondents see any other security phases/activities (not mentioned
in the previous question) that should be conducted at the early stage of system development; here are
the opinions:

Appl. Sci. 2020, 10, 2574 15 of 18

• It’s not only important to identify parts themselves that could be vulnerable but also their
interaction/communication/links with other parts.

• Information exchange analysis.
• Embed security controls into the processes at all levels.
• Calculate vulnerability scores (e.g., CVSS), link security aspects with rest of the design.

In terms of MBSE tools that would be the most suitable for running combined Systems and
Security Engineering analysis, participants tended to agree that Representing information in different
views (Diagrams, tables, matrices) and the Single source of truth are the most important. According to
the respondents, the least important tool is Automated document generation. The detailed answers
are provided in Figure 15.Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 18

Figure 15. Chart representing the importance of MBSE tools for running combined Systems and
Security Engineering analysis.

We also asked if the respondents could compare their efficiency when they moved from
document-based system engineering to model-based system engineering. Most (63%) respondents
said that their productivity increased, and the remaining said that productivity did not change, or it
decreased. All the results are provided in Figure 16.

Figure 16. Chart of the question: “Can you compare your efficiency when you moved from
document-based system engineering to model-based system engineering?”

Our next question was, “Did your work quality improve when you moved from
document-based system engineering to model-based system engineering?” The majority of
participants agreed that all the factors (Completeness; Consistency; Communication; Less defects)
were improved. All the results are provided in Figure 17.

Figure 15. Chart representing the importance of MBSE tools for running combined Systems and
Security Engineering analysis.

We also asked if the respondents could compare their efficiency when they moved from
document-based system engineering to model-based system engineering. Most (63%) respondents
said that their productivity increased, and the remaining said that productivity did not change, or it
decreased. All the results are provided in Figure 16.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 18

Figure 15. Chart representing the importance of MBSE tools for running combined Systems and
Security Engineering analysis.

We also asked if the respondents could compare their efficiency when they moved from
document-based system engineering to model-based system engineering. Most (63%) respondents
said that their productivity increased, and the remaining said that productivity did not change, or it
decreased. All the results are provided in Figure 16.

Figure 16. Chart of the question: “Can you compare your efficiency when you moved from
document-based system engineering to model-based system engineering?”

Our next question was, “Did your work quality improve when you moved from
document-based system engineering to model-based system engineering?” The majority of
participants agreed that all the factors (Completeness; Consistency; Communication; Less defects)
were improved. All the results are provided in Figure 17.

Figure 16. Chart of the question: “Can you compare your efficiency when you moved from
document-based system engineering to model-based system engineering?”

Our next question was, “Did your work quality improve when you moved from document-based
system engineering to model-based system engineering?” The majority of participants agreed that all

Appl. Sci. 2020, 10, 2574 16 of 18

the factors (Completeness; Consistency; Communication; Less defects) were improved. All the results
are provided in Figure 17.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 18

Figure 17. Chart of the question: “Did your work quality improve when you moved from
document-based system engineering to model-based system engineering?”

The last evaluation objective was to find out the learning time required to start using the
MBSEsec method. For this, we asked the following question: Can you approximately estimate how
long it would take to learn to model 5 new UML/SysML-based diagrams that have 13 custom
elements and 6 relations (assumption: you know domain knowledge very well, i.e., you do such
analysis in Excel in your daily work)? More than half (53%) of respondents answered that it should
take 2 to 5 days, while 26% indicated that it would take less than 2 days. Other participants had a
different opinion; here are their answers:

 It depends on how closely those new elements of the language map to the customer domain.
 Assuming mastery in SysML, it will take 2 months to learn and use the new elements in

production.

To summarize, our experiment showed that systems engineers see an importance in mitigating
security risks with MBSE tools at an early stage of the system development life cycle. All the phases
from the MBSEsec method (with some additions) are relevant and important for the respondents.
The required learning time to learn additional security concepts is relatively low for practicing
MBSE users, and it also brings bigger efficiency and better work quality.

6. Conclusions and Future Works

One way to increase the certainty in a complex system creation is to remove silos between
systems engineering and security teams and tackle security risks during the systems engineering
lifecycle. The literature analysis, previous research, and feasibility study showed that systems
engineers and security engineers recognize the value of integrating security and system design
processes; also, they agree that detecting security issues at the early stages of the development
lifecycle helps to reduce the cost and risk of the engineering project.

This paper proposes the MBSEsec method for combining systems engineering and security
engineering disciplines at an early stage in an efficient and model-based way. The MBSEsec method
consists of the SysML/UML-based profile, security process definition, and recommendations on how
the specific security technique should be implemented. The method covers phases starting from
security requirements identification, continuing capturing assets and modeling threats and risks,
and finally deciding security control objectives and appropriate controls. Furthermore, the MBSEsec
method is aligned to the ISO/IEC 27001 information security standard.

The MBSEsec method usage was presented by extending the Hybrid Sport Utility Vehicle
(HSUV) model from the OMG SysML specification. There was created the HSUV security model for
the Power Control ECU that represented the phases from the MBSEsec method. The HSUV
application case study proved that all the necessary security artifacts could be created in the SysML
model (security requirements, misuse cases, asset structure definition, attack scenarios, threat and

Figure 17. Chart of the question: “Did your work quality improve when you moved from
document-based system engineering to model-based system engineering?”

The last evaluation objective was to find out the learning time required to start using the MBSEsec
method. For this, we asked the following question: Can you approximately estimate how long it
would take to learn to model 5 new UML/SysML-based diagrams that have 13 custom elements and
6 relations (assumption: you know domain knowledge very well, i.e., you do such analysis in Excel in
your daily work)? More than half (53%) of respondents answered that it should take 2 to 5 days, while
26% indicated that it would take less than 2 days. Other participants had a different opinion; here are
their answers:

• It depends on how closely those new elements of the language map to the customer domain.
• Assuming mastery in SysML, it will take 2 months to learn and use the new elements in production.

To summarize, our experiment showed that systems engineers see an importance in mitigating
security risks with MBSE tools at an early stage of the system development life cycle. All the phases
from the MBSEsec method (with some additions) are relevant and important for the respondents.
The required learning time to learn additional security concepts is relatively low for practicing MBSE
users, and it also brings bigger efficiency and better work quality.

6. Conclusions and Future Works

One way to increase the certainty in a complex system creation is to remove silos between systems
engineering and security teams and tackle security risks during the systems engineering lifecycle.
The literature analysis, previous research, and feasibility study showed that systems engineers and
security engineers recognize the value of integrating security and system design processes; also, they
agree that detecting security issues at the early stages of the development lifecycle helps to reduce the
cost and risk of the engineering project.

This paper proposes the MBSEsec method for combining systems engineering and security
engineering disciplines at an early stage in an efficient and model-based way. The MBSEsec method
consists of the SysML/UML-based profile, security process definition, and recommendations on how
the specific security technique should be implemented. The method covers phases starting from
security requirements identification, continuing capturing assets and modeling threats and risks,
and finally deciding security control objectives and appropriate controls. Furthermore, the MBSEsec
method is aligned to the ISO/IEC 27001 information security standard.

The MBSEsec method usage was presented by extending the Hybrid Sport Utility Vehicle (HSUV)
model from the OMG SysML specification. There was created the HSUV security model for the

Appl. Sci. 2020, 10, 2574 17 of 18

Power Control ECU that represented the phases from the MBSEsec method. The HSUV application
case study proved that all the necessary security artifacts could be created in the SysML model
(security requirements, misuse cases, asset structure definition, attack scenarios, threat and risk
definition, security controls, and supporting matrices, relation maps, verification rules). The MBSEsec
method principles and expectations were validated with system and security engineering practitioners.
The participants agreed that the MBSEsec method could bring a better work quality in terms of
completeness, consistency, and communication with comparatively small training effort.

We are planning to expand and update the MBSEsec approach according to the users’ feedback as
well as research whether our method is appropriate for security issues identification while rebuilding
legacy software systems.

Author Contributions: Conceptualization, D.M.; methodology, D.M.; software, D.M.; validation, D.M.; formal
analysis, D.M.; investigation, D.M.; resources, D.M.; data curation, D.M.; writing—original draft preparation,
D.M.; writing—review and editing, D.M. and R.B.; visualization, D.M.; supervision, R.B.; project administration,
R.B.; funding acquisition, R.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. International Council on Systems Engineering. Systems Engineering Handbook; Version 3.1; International
Council on Systems Engineering: San Diego, CA, USA, 2007.

2. Madni, A.M.; Sievers, M. Model-based systems engineering: Motivation, current status and research
opportunities. Syst. Eng. 2018, 21, 172–190. [CrossRef]

3. Mazeika, D.; Morkevicius, A.; Aleksandraviciene, A. MBSE driven approach for defining problem domain. In
Proceedings of the 11th System of Systems Engineering Conference (SoSE), Kongsberg, Norway, 12–16 June
2016; pp. 1–6.

4. Morkevicius, A.; Aleksandraviciene, A.; Mazeika, D.; Bisikirskiene, L.; Strolia, Z. MBSE Grid: A simplified
SysML-based approach for modeling complex systems. In Proceedings of the 27th INCOSE International
Symposium, Adelaide, SA, Australia, 15–20 July 2017; pp. 136–150.

5. Madni, A.M.; Purohit, S. Economic analysis of model-based systems engineering. Systems 2019, 7, 12.
[CrossRef]

6. Carroll, E.; Malins, R. Systematic Literature Review: How Is Model-Based Systems Engineering Justified?
Sandia National Laboratories. 2016. Available online: https://www.osti.gov/biblio/1561164 (accessed on
10 October 2019).

7. NIST 2019. Security Considerations in the System Development Life Cycle. Available online: https:
//nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-64r2.pdf (accessed on 14 October 2019).

8. Dubois, É.; Heymans, P.; Mayer, N.; Matulevičius, R. A systematic approach to define the domain of
information system security risk management. In Intentional Perspectives on Information Systems Engineering;
Nurcan, S., Salinesi, C., Souveyet, C., Ralyté, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2010.

9. Raspotnig, C.; Kárpáti, P.; Opdahl, A.L. Combined assessment of software safety and security requirements:
An industrial evaluation of the CHASSIS method. J. Cases Inf. Technol. 2018, 20, 46–69. [CrossRef]

10. ISO/IEC 27001. Information Technology—Security Techniques—Information Security Management Systems—
Requirements; Technical Report; ISO: Geneva, Switzerland, 2013.

11. Evans, R.; Tsohou, A.; Tryfonas, T.; Morgan, T. Engineering secure systems with ISO 26702 and 27001.
In 2010 5th International Conference on System of Systems Engineering; IEEE: Piscataway, NJ, USA, 2010; pp. 1–6.
[CrossRef]

12. Mazeika, D.; Butleris, R. Integrating security requirements engineering into MBSE: Profile and guidelines.
In Security and Communication Networks; Hindawi: London, UK, 2020; pp. 1–12.

13. Object Management Group. About the Unified Architecture Framework Specification Version 1.1 Beta.
Available online: https://www.omg.org/spec/UAF (accessed on 27 October 2019).

http://dx.doi.org/10.1002/sys.21438
http://dx.doi.org/10.3390/systems7010012
https://www.osti.gov/biblio/1561164
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-64r2.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-64r2.pdf
http://dx.doi.org/10.4018/JCIT.2018010104
http://dx.doi.org/10.1109/SYSOSE.2010.5544065
https://www.omg.org/spec/UAF

Appl. Sci. 2020, 10, 2574 18 of 18

14. Morkevicius, A.; Bisikirskiene, L.; Bleakley, G. Using a systems of systems modeling approach for developing
Industrial Internet of Things applications. In Proceedings of the 12th System of Systems Engineering
Conference (SoSE), Waikoloa, HI, USA, 18–21 June 2017; pp. 1–6. [CrossRef]

15. Raspotnig, C.; Karpati, P.; Katta, V. A combined process for elicitation and analysis of safety and security
requirements. In Enterprise, Business-Process and Information Systems Modeling; Springer: Berlin, Germany,
2012; pp. 347–361.

16. Jürjens, J. UMLsec: Extending UML for secure systems development. In The Unified Modeling Language;
Springer: Berlin, Germany, 2002; pp. 1–9.

17. Jurjens, J.; Shabalin, P. Tools for secure systems development with UML. Int. J. Softw. Tools Technol. Transf.
2007, 9, 527. [CrossRef]

18. Mouratidis, H.; Jurjens, J. From goal-driven security requirements engineering to secure design. Int. J. Intell.
Syst. 2010, 25, 813–840. [CrossRef]

19. Roudier, Y.; Apvrille, L. SysML-Sec: A model driven approach for designing safe and secure systems.
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development
(MODELSWARD), Angers, France, 9–11 February 2015; pp. 655–664.

20. Roudier, Y.; Apvrille, L. SysML-Sec: A model-driven environment for Developing Secure Embedded Systems.
In Proceedings of the 8th Conference on the Security of Network architecture and Information Systems
(SARSSI’2013), Mont de Marsan, France, 16–18 September 2013.

21. OMG Systems Modeling Language. Version 1.5. Available online: https://www.omg.org/spec/SysML/1.5/PDF
(accessed on 12 November 2019).

22. Woo, S.; Jo, H.J.; Lee, D.H. A practical wireless attack on the connected car and security protocol for in-vehicle
CAN. IEEE Trans. Intell. Trans. Syst. 2015, 16, 993–1006. [CrossRef]

23. Chattopadhyay, A.; Lam, K. Security of autonomous vehicle as a cyber-physical system. In Proceedings of
the 7th International Symposium on Embedded Computing and System Design (ISED), Durgapur, India,
18–20 December 2017; pp. 1–6. [CrossRef]

24. Intel Automotive Security Research Workshops, 2016. Available online: http://www.intel.com/content/da
m/www/public/us/en/documents/product-briefs/automotive-security-research-workshops-summary.pdf
(accessed on 9 February 2020).

25. Riaz, M.; Williams, L. Security requirements patterns: Understanding the science behind the art of pattern
writing. In Proceedings of the 2nd IEEE International Workshop on Requirements Patterns (RePa), Chicago,
IL, USA, 24–28 September 2012; pp. 29–34. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/SYSOSE.2017.7994942
http://dx.doi.org/10.1007/s10009-007-0048-8
http://dx.doi.org/10.1002/int.20432
https://www.omg.org/spec/SysML/1.5/PDF
http://dx.doi.org/10.1109/TITS.2014.2351612
http://dx.doi.org/10.1109/ISED.2017.8303906
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/automotive-security-research-workshops-summary.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/automotive-security-research-workshops-summary.pdf
http://dx.doi.org/10.1109/RePa.2012.6359977
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Analysis of Related Work
	Overview of ISO/IEC 27001
	Modeling Approaches and Techniques for Security Analysis
	Unified Architecture Framework (UAF)
	CHASSIS
	UML Sec
	SysML Sec Methodology

	Security Techniques Comparison

	MBSEsec Method
	Applying the MBSEsec Method
	Evaluation
	Conclusions and Future Works
	References

