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Abstract: Ultraviolet A (UVA)-induced detrimental effects in the skin, also known as photoaging,
are mediated with several pathways including oxidative stress generation and extracellular matrix
(ECM) degradation. UVA irradiation results in excessive production of matrix metalloproteinases
(MMPs), enzymes responsible for the degradation of ECM components such as collagen. In this
study, the protective effects of (2′S)-columbianetin against UVA-induced changes in matrix
metalloproteinase-1 (MMP-1) and collagen production were investigated in human dermal fibroblasts
(HDFs). The (2′S)-columbianetin was isolated from Corydalis heterocarpa. UVA exposure increased
MMP-1 release from HDFs and diminished the release of type I pro-collagen. Treatment with
(2′S)-columbianetin reversed these effects of UVA exposure. The (2′S)-columbianetin treatment also
suppressed the intracellular expression of MMP-1 and increased type I pro-collagen expression.
UVA exposure elevated the activation of p38, c-Jun-amino-terminal kinase (JNK) and extracellular
signal-related kinase (ERK) as the mechanism to stimulate MMP-1 production. The (2′S)-columbianetin
suppressed the phosphorylation of JNK and ERK. The (2′S)-columbianetin was also stimulated
collagen production via TGFβ signaling cascade, relieving UVA-induced suppression of Smad2/3
phosphorylation and translocation. In conclusion, (2′S)-columbianetin was suggested to be a
potential cosmeceutical lead compound with antiphotoaging properties against UVA-induced
collagen degradation.
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1. Introduction

The dermis is the connective layer of the skin which connects the outermost epidermis layer
with subcutaneous tissues. Although it is not directly exposed to environmental harmful effects,
the penetration ability of ultraviolet (UV) rays causes several complications in the dermis layer upon
long time exposure [1,2]. UVA is one of the light rays that are emitted by the sun together with UVB
and UVC. UVB has the most detrimental and broad harmful effects and affects mainly the top layer of
skin, causing sunburn, redness and cancer [3,4]. UVA irradiation can penetrate deep layers of skin and
it is the main cause of premature skin aging and wrinkling [5]. UVA exposure increases the generation
of reactive species in the dermis layer of the skin [6]. The UVA-mediated skin aging, also known
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as photoaging, arises due to the deleterious effects of UVA on the collagen and elastin backbone of
the extracellular matrix (ECM) via matrix metalloproteinases (MMPs), natural ECM degraders [7,8].
UVA-induced generation of reactive species stimulates the expression and enzymatic activity of MMPs,
especially MMP-1, -2, and -9 which in turn causes the rapid digestion of collagen [9]. MMPs are
crucially involved in the remodeling of ECM, migration of cells, and photoaging [10,11]. This cascade
of stimulation leads to the damaged dermal ECM, which is the reason for the formation of wrinkles,
and prematurely aged skin [12]. Like its UVB counterpart, UVA exposure is also closely linked with
the activation of mitogen-activated protein kinase (MAPK) pathways [13]. MAPKs take part in MMP
production and the cleavage of collagen in ECM [14,15]. Furthermore, the collagen synthesis pathways
such as TGFβ/Smad are negatively affected by UVA exposure resulting in loss of elasticity in the
skin [16].

Considering the role of MMPs in the harmful effects of UV irradiation, diseases and complications
such as tumor metastasis, inflammation, atherosclerosis and cardiovascular diseases, numerous natural
MMP inhibitors have been studied and developed [17,18]. A considerable portion of these MMP
inhibitors was derived from phytochemicals such as polyphenols, flavonoids, coumarins, caffeic acids
and their derivatives [19–21]. The (2′S)-columbianetin is a coumarin with several bioactivities including
UVB-protective effects in keratinocytes [22]. In this context, the current study aimed to investigate the
protective effects of (2′S)-columbianetin against UVA induced damages in dermal fibroblasts, cells that
are responsible for connective tissue formation which is a crucial step of the skin recovery. Therefore,
as a part of the ongoing effect to develop cosmeceuticals against photoaging, (2′S)-columbianetin
(Figure 1) was isolated from Corydalis heterocarpa, a salt marsh plant from Korea, and studied for its
ability to revert detrimental effects of UVA on collagen and MMP mechanisms.
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2. Results

Prior to analysis of the potential UVA protective effects of (2′S)-columbianetin, its cytotoxicity was
assessed by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in human
dermal fibroblast (HDF) cell line. Treatment with varying concentrations (0, 1, 5, 10, 20 and 25 µM)
of (2′S)-columbianetin for 48 h showed a dose-dependent cytotoxicity in HDFs with an IC50 value of
93.89 µM (Figure 2A). Cell viability was above 90% up to 10 µM, which was chosen as the highest
dose of treatment. UVA irradiation was carried out at 10 J/cm2 dose which was previously reported to
be non-toxic for 24 h while inducing photoaging mechanisms (MMP-1 activation and inhibition of
collagen synthesis) in HDFs [23]. Ahn et al. [22] reported that (2′S)-columbianetin showed a significant
scavenging effect against UVB-mediated reactive oxygen species (ROS) generation in keratinocytes.
In the current study, any scavenging effect of (2′S)-columbianetin against UVA-mediated reactive species
was investigated in human dermal fibroblasts by measuring nitrate amount in cell culture medium as a
marker for reactive nitrogen species (NO) generation. UVA irradiation significantly increased the NO
generation in HDFs (Figure 2B). The treatment with (2′S)-columbianetin dose-dependently decreased
the UVA-induced NO generation suggesting that it might attenuate the UVA-induced reactive species
generation in addition to reported protective effects against UVB.
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Figure 2. Effect of (2′S)-columbianetin on viability of human dermal fibroblasts (HDFs) and nitrogen
species (NO) generation in UVA-irradiated HDFs. (A) HDFs were incubated for 48 h following
treatment with changing doses of (2′S)-columbianetin. Effects of (2′S)-columbianetin on the viability
of HDFs was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.
Viability of the cells was calculated from absorbance values and given as the relative percentage of
untreated control cells (0 µM). Values are means ± SD (n = 3). ** p < 0.01 compared to untreated
control group (0 µM). (B) HDFs were exposed to UVA radiation (10 J/cm2) and treated with given
concentrations of (2′S)-columbianetin. After 24 h incubation, nitric oxide generation was quantified as
the nitrate amount in the cell culture medium. Values are means ± SD (n = 3). # p < 0.01 compared to
non-irradiated blank group; * p < 0.05, ** p < 0.01 compared to UVA-irradiated untreated control group.

2.1. Effect of (2′S)-Columbianetin on the UVA-Mediated Release of MMP-1 and Type Iα1 Pro-Collagen

The HDFs were exposed to UVA radiation (10 J/cm2) with or without (2′S)-columbianetin (1, 5, 10
µM) treatment. UVA-exposed cells released substantially increased levels of MMP-1 compared to the
non-irradiated group (Figure 3A). The base MMP-1 level in HDF culture medium was 18,550 pg/mL and
UVA exposure increased this amount to 20,849 pg/mL. The presence of (2′S)-columbianetin suppressed
the UVA-induced increase in MMP-1 levels in a concentration-dependent manner. The MMP-1 levels
were reduced to 19,094 pg/mL after the 10 µM (2′S)-columbianetin treatment. The type Iα1 pro-collagen
amount in UVA-exposed HDFs was significantly lower than non-irradiated group. The amount of type
Iα1 pro-collagen in irradiated HDF culture medium was dropped to 1753 pg/mL from 1934 pg/mL of
non-irradiated HDFs. The (2′S)-columbianetin treatment increased the type Iα1 pro-collagen levels in
irradiated HDF culture medium. At 10 µM treatment group, type Iα1 pro-collagen amount was raised
to 1955 pg/mL.

2.2. Effect of (2′S)-Columbianetin on the UVA-Mediated Expression of MMP-1 and Collagen

The expression levels of MMP-1 and type I pro-collagen in UVA-irradiated HDFs were analyzed
at the gene and protein level. In addition, levels of collagen were also determined. UVA irradiation
at a dose of 10 J/cm2 notably increased the mRNA expression of MMP-1 in HDFs while decreasing
expression of type I pro-collagen (Figure 4A). Parallel effects were observed in the protein levels of
MMP-1 and type I pro-collagen (Figure 4B). However, UVA-induced changes in the MMP-1 and type I
pro-collagen were ameliorated by (2′S)-columbianetin treatment in a concentration-dependent manner.
UVA exposure resulted in decreased levels of collagen along with its precursor type I pro-collagen
(Figure 4B). The collagen level was increased by the presence of (2′S)-columbianetin in a similar fashion
to that of type I pro-collagen.
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Figure 4. Effect of (2′S)-columbianetin on the mRNA (A) and protein (B) expression levels of the MMP-1
and type Iα1 pro-collagen in UVA-irradiated HDFs after 24 h from treatment analyzed by Reverse
Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR) and Western blotting, respectively.
β-actin was used as internal loading control. RT-qPCR expression quantity was shown relative
to the untreated UVA-irradiated control, calculated by 2−(∆∆Ct) method. Western blot bands were
densitometrically quantified and plotted as relative percentage of UVA-irradiated untreated control
group. Values are means ± SD (n = 3). # p < 0.01 compared to non-irradiated blank group; * p < 0.05,
** p < 0.01 compared to UVA-irradiated untreated control group.
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2.3. Effect of (2′S)-Columbianetin on the UVA-Induced MAPK Activation

The mitogen-activated kinase (MAPK) signaling cascade was investigated to determine whether
(2′S)-columbianetin could intervene with the UVA-induced transcriptional activities of AP-1, MMP-1
expression inducing transcription factor. In this context, effects of (2′S)-columbianetin on the total
and phosphorylated (p-) levels of Jun-amino-terminal kinase (JNK), extracellular signal-related kinase
(ERK1/2) and p38 MAPKs were investigated. The UVA-irradiated HDFs expressed significantly
increased phosphorylation of JNK, ERK andp38 (Figure 5A). Treating irradiated HDFs with 10 µM
(2′S)-columbianetin effectively suppressed the phosphorylation of ERK and JNK but failed to change
the p-p38 levels significantly.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 10 
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Figure 5. Effect of (2′S)-columbianetin on the protein levels of; total and phosphorylated (p-) p38,
ERK and JNK MAPKs (A), TGFβ, Smad2/3 (total and p-), Smad7 and Smad4 (B), and nuclear levels
of p-Smad2/3 and Smad4 (C) in UVA irradiated HDFs following 24 h treatment. Protein levels
were observed by Western blotting. Bands were quantified densitometrically and shown as relative
percentage of UVA-irradiated untreated control group. β-actin and lamin B1 were used as internal
loading control. Values are means ± SD (n = 3). # p < 0.05, ## p < 0.01 compared to non-irradiated blank
group; * p < 0.05, ** p < 0.01 compared to UVA-irradiated untreated control group.

2.4. Effect of (2′S)-Columbianetin on the UVA-Induced Suppression of TGFβ Pathway

To elucidate the possible mechanisms behind the stimulatory effects of (2′S)-columbianetin on
pro-collagen and collagen levels, changes in the TGFβ signaling were investigated via analyzing the
levels of TGFβ and Smad phosphorylation. As seen in Figure 5B, UVA exposure (10 J/cm2) caused a
significant decrease in the TGFβ levels. In addition, the downstream activators of TGFβ, p-Smad2/3 and
Smad4 levels were also similarly decreased. The level of Smad7, which is the negative regulator of the
TGFβ cascade, was increased following UVA irradiation. The presence of (2′S)-columbianetin (10 µM)
reversed the effects of UVA on TGFβ pathway by increasing the p-Smad2/3 levels. Likewise, Smad4
protein level was also increased by (2′S)-columbianetin (10 µM) treatment while Smad7 protein level
was concurrently decreased. The effect of (2′S)-columbianetin on p-Smad2/3/4 complex-dependent
synthesis of collagen was further analyzed by levels of p-Smad2/3 and Smad4 in nuclear fractions of
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the HDFs. UVA exposure resulted in decreased levels of p-Smad2/3 and Smad4 in nuclear fractions
which was similarly increased by the treatment with (2′S)-columbianetin (10 µM) (Figure 5C).

3. Discussion

In the current study, (2′S)-columbianetin, a bioactive coumarin isolated from C. heterocarpa,
was studied for its anti-photoaging properties in UVA irradiated dermal fibroblasts. The
(2′S)-columbianetin was shown to possess important bioactivities which include protective effects
against UVB-induced damages in keratinocytes, cells forming the upper epidermis layer of skin, via
antioxidant and MMP-1 inhibitory activities [22]. In order to confirm its photoprotective effects against
UVA irradiation in dermal fibroblasts, the present study investigated the effects of (2′S)-columbianetin
on UVA-irradiated changes in MMP-1 and collagen production using human dermal fibroblast cell line.

UVA rays can penetrate deeper than UVB until the bottom layers of the dermis [5]. Subtoxic
UVA exposure induced several detrimental effects in the dermis such as premature skin aging, also
known as photoaging [7]. Cells exposed to UVA expressed increasing amounts of MMPs. MMPs are
key enzymes in ECM building and maintenance due to their ability to cleave main ECM components
such as collagen. MMP-1 is a member of the collagenase subfamily of MMPs and responsible for
the breakdown of ECM during regular cellular processes such as tissue remodeling and recovery
as well as diseases such as metastasis by initially cleaving the type I, II and III collagen [24,25].
However, UVA irradiation upregulates the MMP-1 production and subsequently reduces the collagen
synthesis in the dermal fibroblasts. The main outcome of these changes is loss of skin elasticity and
strength [7,8]. It was shown in Figure 3 that UVA exposure increased the MMP-1 production and
decreased the type Iα1 pro-collagen. Treating dermal fibroblasts with 10 µM (2′S)-columbianetin
notably ameliorated the effects of UVA irradiation by increasing the type Iα1 pro-collagen production
which is the precursor of type I collagen and decreasing the MMP-1 release (Figure 3). This was
further evidenced by analyzing its effects on mRNA and protein expression levels of MMP-1 and type
I pro-collagen. The (2′S)-columbianetin reversed the effects of UVA on mRNA and protein levels:
increasing pro-collagen expression while suppressing MMP-1 (Figure 4).

It was reported that UVA irradiation upregulated the production of MMP-1 through activation of
MAPKs via cell surface cytokine and stress receptors due to elevated oxidative stress [26]. UVA-induced
activation of ERK, JNK and p38 MAPKs further activates the AP-1 transcription factor which stimulates
the transcriptional expression of MMP genes [26,27]. The overexpression of MMPs in fibroblasts
causes ECM to lose its integrity. As seen in Figure 5A, UVA irradiation significantly increased the
phosphorylation of p38, ERK and JNK in HDFs. The (2′S)-columbianetin (10 µM) treatment slightly
decreased the ERK activation while significantly suppressing the activation of JNK. On the other hand,
it did not affect p38 phosphorylation. Results indicated that (2′S)-columbianetin downregulated the
UVA-induced MMP-1 production through a JNK-mediated signaling which speculatively resulted in
decreased AP-1 activity.

The collagen synthesis in dermal fibroblasts is partly regulated by TGFβ and Smad cascades [28].
Stimulated TGFβ receptor facilitates the phosphorylation of Smad2 and Smad3 which together form an
active complex with Smad4. The Smad2/3/4 complex then initiates the type I pro-collagen expression
after its nuclear translocation. This cascade is negatively regulated by Smad7 protein which inhibits
the formation of active Smad2/3/4 complex [28,29]. UVA exposure caused a decrease in the both
production of TGFβ cytokine and phosphorylation of Smad2/3 complex (Figure 5B). As expected, this
was accompanied by an increase in Smad7 level. Presence of 10 µM (2′S)-columbianetin relieved
the suppression on p-Smad2/3 levels. Likewise, Smad7 levels were decreased by (2S)-columbianetin
treatment. Effect of (2′S)-columbianetin on the Smad2/3-mediated collagen synthesis was further
investigated in the nuclear fractions of UVA-irradiated HDFs. UVA-mediated decrease in the levels of
p-Smad2/3 and Smad4 in the nucleus was countered by 10 µM of (2′S)-columbianetin which strongly
increased the nuclear levels of p-Smad2/3 (Figure 5C).
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In conclusion, (2′S)-columbianetin from C. heterocarpa exhibited protective properties against
UVA-induced photoaging in human dermal fibroblasts. Treatment with (2′S)-columbianetin suppressed
the UVA-induced MMP-1 overexpression through inhibition of MAPK phosphorylation. Furthermore,
it ameliorated UVA-induced decrease in collagen synthesis by stimulating the activation of TGFβ/Smad
cascade. Taken together, (2′S)-columbianetin is a potential candidate to be employed as a natural
cosmeceutical against UVA-induced photoaging.

4. Materials and Methods

4.1. Isolation of (2′S)-Columbianetin

C. heterocarpa plants were collected in Muando, Jeollanamdo, Korea during July 2018. Leaves,
stems and roots of plants were washed, chopped, ground and extracted using MeOH (3 l × 2) and
CH2Cl2 (3 l × 2), respectively. Each extraction process lasted 2 days. The combined crude extracts
(20.5 g) were dried in vacuo and later separated between n-hexane (3.6 g), 85% aqueous (aq.) MeOH
(6.0 g) and the remaining residue was further separated between n-BuOH (2.2 g) and water (10.0 g).
The (2′S)-columbianetin (326.1 mg) was isolated from a portion of the 85% aq. MeOH fraction [22].

4.2. Human Dermal Fibroblast (HDF) Culture and Cytotoxicity Assay

HDF cells (C-12302; PromoCell, obtained from Heidelberg, Germany) were cultured in Fibroblast
Growth Medium (C-23020, PromoCell) and kept in 37 ◦C incubators with a humidified (90% relative
humidity) atmosphere containing 5% CO2 between the experiments.

Any possible toxic effect of (2′S)-columbianetin in cells was investigated by colorimetric MTT
assay as previously described [22]. Briefly, HDFs were seeded in 96-well plates (1 × 103 cell/well) and
treated with 1, 5, 10, 20 and 25 µM (2′S)-columbianetin along with untreated control group following
>90% confluence. Culture medium was replaced with 100 µL MTT solution (1 mg/mL) following a
2-day incubation. The plate was then kept in dark at 37 ◦C for 4 h. Wells were aspired, and cells were
washed with phosphate buffer saline (PBS). Ten microliters of 100% DMSO were introduced to each
well to dissolve the formazan crystals and absorbance values of wells at 540 nm were measured using
GENios FL microplate reader (Tecan Austria GmbH, Grodig, Austria). Changes in the viability of cells
were calculated as a percentage of the untreated blank group which was considered to be 100% alive
and compared to each concentration of (2′S)-columbianetin treatment.

4.3. UVA Irradiation

HDFs were irradiated by UVA using a Bio-Sun UV Irradiation System (Vilber Lourmat, Marine,
France) fitted with a UVA source designed for microplates. HDFs grown in microplates were irradiated
at 10 J/cm2 UVA dose. Cells were irradiated in phosphate-buffered saline (PBS) without the plastic lid.
When the irradiation received matched the desired programmed energy, the UVA irradiation stopped
automatically, and subsequently the cells were incubated with DMEM without FBS until analysis.

4.4. Enzyme-Linked Immunosorbent Assay (ELISA)

Release of MMP-1 and type Iα1 procollagen in UVA-irradiated HDFs was analyzed by ELISA. Cells
(1 × 106 cell/well) were pre-incubated in 6-well plates for 24 h to reach >90% confluence and washed
with PBS prior to UVA (10 J/cm2) exposure. Following UVA irradiation, the cells were treated with or
without different concentrations (1, 5, 10 µM) of (2′S)-columbianetin for 24 h. Cell culture medium
from each well were analyzed for its MMP-1 and type Iα1 procollagen contents per manufacturer’s
instructions of the ELISA kit (R&D systems, Inc., Minneapolis, MN, USA).

4.5. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR) Analysis

Cells (1 × 106 cell/well) were grown to >90% confluence prior to UVA irradiation. Following UVA
irradiation cells were treated with or without (2′S)-columbianetin for 24 h. Total RNA was isolated
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from nonirradiated and irradiated (UVA, 10 J/cm2) HDFs using AccuPrep® Universal RNA Extraction
Kit (Bioneer, Daejeon, Korea) according to manufacturer’s instructions. Total RNA was treated with
RNase-free DNase I (Thermo Fisher Scientific, Rockford, IL, USA). The cDNA synthesis from total
RNA was performed using CellScript All-in-One cDNA synthesis Master Mix (CellSafe, Yongin, Korea)
following the producer’s directions. cDNA amplification was carried out with quantitative PCR
in a Thermal Cycler Dice® Real Time System TP800 (Takara Bio Inc., Ohtsu, Japan) following the
manufacturer’s protocol. Briefly 1.0 µL of cDNA sample and 10.5 µL of Luna® Universal qPCR
Mix (New England Biolabs, Ipswich, MA, USA) were mixed with forward and reverse primers in
nuclease-free water. The target cDNA was amplified using following forward and reverse primers;
MMP-1, forward 5′-TCT GAC GTT GAT CCC AGA GAG CAG-3′, reverse 5′-CAG GGT GAC ACC
AGT GAC TGC AC-3′; type I procollagen, forward 5′-CTC GAG GTG GAC ACC ACC CT-3′, reverse
5′-CAG CTG GAT GGC CAC ATC GG-3′; β-actin, forward 5′-AGA TCA AGA TCA TTG CTC CTC
CTG-3′, reverse 5′-CAA GAA AGG GTG TAA CGC AAC TAA G-3′. The PCR amplification was
carried out with an initial denaturation at 95 ◦C for 1 min, followed by 40 PCR cycles, each cycle
consisting of 95 ◦C for 15 s and 60 ◦C for 30 s. Relative quantification was calculated using the 2−(∆∆CT)

method. β-Actin was used as an internal control.

4.6. Western Blotting

Protein levels were investigated using immunoblotting according to common Western blotting
protocols. HDFs cultured in 6-well plates were treated with or without (2′S)-columbianetin (1, 5, 10 µM)
and exposed to UVA (10 J/cm2) irradiation prior to 48 h incubation. Following incubation, wells were
aspired and cells were lysed by vigorous pipetting in 1 mL of RIPA buffer (Sigma-Aldrich, St. Louis,
MO, USA) at 4 ◦C. Protein content of the lysates was measured with a bicinchoninic acid (BCA) protein
assay kit (Thermo Fisher Scientific) following kit’s protocol. Same amount (20 µg) of protein from
each well was loaded onto 12% SDS-polyacrylamide gel and run at 100 V. Proteins on gel were then
transferred onto a polyvinylidene fluoride membrane (Amersham; GE Healthcare, Little Chalfont,
UK) using a wet system run at 100 V for 1 h at 4 ◦C. Membranes were then incubated for 1 h at room
temperature in 5% skimmed milk for blocking. Blocked membranes were washed with 1X TBST and
incubated with primary antibodies (diluted 1:1000) against MMP-1 (sc-6837; Santa Cruz Biotechnology,
Santa Cruz, CA, USA), type I pro-collagen (sc-8782; Santa Cruz Biotechnology), collagen (sc-29318;
Santa Cruz Biotechnology), p38 (#8690; Cell Signaling Technology, Beverly, MA, USA), p-p38 (#4511;
Cell Signaling Technology), JNK (LF-PA0047; Thermo Fisher Scientific), p-JNK (sc-293136; Santa Cruz
Biotechnology), ERK (#4695; Cell Signaling Technology), p-ERK (#4370; Cell Signaling Technology),
TGFβ (#3711; Cell Signaling Technology), Smad2/3 (sc-133098; Santa Cruz Biotechnology), p-Smad2/3
(sc-11769; Santa Cruz Biotechnology), Smad7 (sc-101152; Santa Cruz Biotechnology), Samd4 (sc-56479;
Santa Cruz Biotechnology), lamin B1 (sc-374015; Santa Cruz Biotechnology) and β-actin (sc-47778; Santa
Cruz Biotechnology) in primary antibody dilution buffer containing 1X TBST with 5% bovine serum
albumin overnight at 4 ◦C. Membranes were then incubated with horseradish-peroxidase-conjugated
secondary antibodies (diluted 1:1000) specific to the primary antibody source (anti-mouse: #7076,
anti-rabbit: #7074; Cell Signaling Technology) at room temperature for 1 h. Detection of proteins on
blotted membranes was achieved using a ECL Western blot detection kit (Amersham) according to the
manufacturer’s instructions. Protein bands were imaged with CAS-400SM Davinch-Chemi imager™
(Davinch-K).

4.7. Statistical Analysis

All numerical data were given as the mean ± standard deviation. Statistical differences between
the means of the sample groups were calculated by the analysis of variance (ANOVA) followed by
Duncan’s multiple range test using SAS v9.1 software (SAS Institute, Cary, NC, USA). Any statistically
significant difference between the groups were determined at the p < 0.05 and p < 0.01 levels.
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