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Abstract: We introduce a computational approach to study porphyrin-like transition metal complexes,
bridging density functional theory and exact many-body techniques, such as the density matrix
renormalization group (DMRG). We first derive a multi-orbital Anderson impurity Hamiltonian
starting from first principles considerations that qualitatively reproduce generalized gradient
approximation (GGA)+U results when ignoring inter-orbital Coulomb repulsion U′ and Hund
exchange J. An exact canonical transformation is used to reduce the dimensionality of the problem
and make it amenable to DMRG calculations, including all many-body terms (both intra- and
inter-orbital), which are treated in a numerically exact way. We apply this technique to FeN4 centers
in graphene and show that the inclusion of these terms has dramatic effects: as the iron orbitals
become single occupied due to the Coulomb repulsion, the inter-orbital interaction further reduces
the occupation, yielding a non-monotonic behavior of the magnetic moment as a function of the
interactions, with maximum polarization only in a small window at intermediate values of the
parameters. Furthermore, U′ changes the relative position of the peaks in the density of states,
particularly on the iron dz2 orbital, which is expected to affect the binding of ligands greatly.

Keywords: DFT and beyond DFT methods; density matrix renormalization group; electronic
correlations and degenerate ground states; porphyrins; transition metals; graphene

1. Introduction

Porphyrins and metalloporphyrins attract a great deal of interest due to their crucial role in
biological processes such as respiration and photosynthesis. These, and similar molecules such
as phthalocyanine, are polyaromatic complexes that can accommodate a range of atoms at their
centers to induce changes in magnetic and optical properties [1–4]. As a result of their versatility,
these complexes have found a range of exciting applications in spintronics [5–14], optoelectronics [15,
16], solar cells [17–22], and as building blocks of magnetic materials [23–29] or highly tunable qubits
for quantum computing applications [30]. These complexes display important correlation physics,
such as spin and orbital variants of the Kondo effect in phthalocyanine (FePc) molecules deposited on
the (111) surface of noble metals [31–38]. Porphyrin-like centers can be embedded in graphene and
carbon nanotubes for oxygen reduction catalysis [39–48]. Finally, transition metals can be a source of
magnetism [49] to provide another knob for realizing unconventional functionalities.

Despite the relative simplicity of graphene and a transition-metal atom, understanding the
combined electronic structure of a transition-metal center embedded in the graphene matrix
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remains a challenge as the transition metal atom typically involves an incomplete d shell that
gives rise to confinement-induced correlations and magnetism. Studies of iron porphyrins and
other heme-like molecules have been carried out within the framework of density functional theory
(DFT) [44,50–57], DFT+DMFT (dynamical mean-field theory) [35,58,59], quantum Monte Carlo [60,61],
coupled-cluster [51], molecular dynamics [62], and configuration interaction techniques [63]. Here, we
discuss a new approach in which we use the DFT to construct a material-specific effective model
Hamiltonian, which is then solved via the density matrix renormalization group (DMRG) [64–68]
technique along with a unitary transformation to account for the many-body physics in a numerically
exact way. Due to the large number of geometries, transition-metal centers, and axial ligands involved,
a versatile method such as that discussed here to account for strong correlation effects will be useful
for exploring the properties and possible applications of these complexes.

Finding accurate approximations to the exchange-correlation functional represents the central
problem of DFT. The simplest such functional is the local density approximation (LDA) [69].
LDA generally yields reasonable ground-state properties of 3d magnetic metals, including magnetic
moments and Fermi surfaces [70]. LDA however does not correctly capture the phase diagrams
of magnetic materials, including in particular the lowest energy crystal structure of elemental
iron, where it predicts non-magnetic iron to be face-centered cubic and ferromagnetic iron to be
body-centered cubic. The generalized gradient approximation (GGA) [71] provides a systematic
improvement over the LDA with the added variational freedom by including the density gradient
in the construction of the exchange-correlation functional. The GGA correctly predicts the relative
stability of the ferromagnetic phase of pure Fe in addition to giving a good description of its ground
state properties [72]. Further studies of iron porphyrin-type molecules based on the GGA+U scheme
have revealed that interaction effects on the iron play an important role in determining the ground
state magnetic moment [52,58,73].

In this paper, we consider a FeN4 center embedded in a graphene lattice. For this purpose,
we take a FeN4C10H10 complex as the fundamental building block for this center, which was referred
to as the D1 center in [47]. D1 centers have been realized experimentally in graphene and carbon
nanotubes [40,44]. We adopt this configuration since it requires minimum structural modification of
the graphene backbone. While GGA calculations with U = 0 capture the magnetic ground state quite
well [55], U is needed to describe the energy splittings in the spectrum. Using a more physical value
for the effective on-site Coulomb repulsion U of about 4 eV and the Hund interaction strength J of
about 1 eV, the spin state changes to a high-spin state, as expected. However, these calculations still
neglect the inter-orbital Coulomb effects, which will be shown below to be important.

The outline of the paper is as follows. The five-orbital Kanamori–Anderson effective Hamiltonian
is derived in Section 2. The method used to solve our model Hamiltonian is discussed in Section 3.
The solution for the molecule and graphene and the corresponding phase diagrams are described
in Section 4. The concluding section provides a summary and discussion of our main results.

2. Model Hamiltonian

In order to derive a simplified model Hamiltonian, we focus on taking into account only the
most relevant features that determine the electronic structure and occupation of the transition metal
atom. Correlation effects in the carbon and nitrogen atoms are neglected, and the organic backbone
of the molecule is constructed by using an LCAO-based tight-binding Hamiltonian. Exact numerical
methods are used to account for the many-body physics introduced by the central atom, which we
model as a multi-orbital Anderson-like impurity. Generalized Anderson impurity models have been
applied previously to porphyrin-like molecules [32,34,37,38,74,75] to predict potential energy surfaces
and electronic coupling factors [63,76] for various transition-metal complexes. The advantages of
our model Hamiltonian approach are that in this way, we can account for the many-body correlation
effects in a numerically exact way, and also, the computations can be scaled relatively easily to handle
systems with multiple impurities and more complex geometries.
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The transition-metal center is created by removing six carbon atoms from the graphene sheet
and replacing these with four nitrogens and a single iron atom, as shown in Figure 1a. For simplicity,
we assume the structure to be planar with point-group symmetry D2h. In order to identify the active
orbitals, we start by considering the carbon atoms to build a model for graphene. The carbon atoms
are connected by σ-bonds of hybrid sp2 orbitals, formed from linear combinations of carbon 2px,
2py, and 2s orbitals. The π-bonds are weaker than the σ-bonds, formed by the remaining pz orbitals.
The graphene sheet is then functionalized by adding hydrogen atoms bonded with each dangling sp2

orbital of the carbons at the edges.

Figure 1. (a) A FeN4 complex embedded in a graphene sheet. (b) The FeC10N4 complex functionalized
by 10 hydrogen atoms.

We approximated the values of the hopping parameters to approximate the results for bulk
graphene. Modeling the pz orbitals then only requires a simple nearest-neighbor hybridization t,
resulting in the well-known two-band model of graphene. Graphene’s σ bands require a more
sophisticated approach; see Appendix A for details. As an approximation, the N-C hopping is set
equal to the C-C hopping. The nitrogens however have a remaining orbital that points toward iron.

Looking at the coordination of iron and nitrogen atoms, the complex is approximately square
planar with D4h symmetry, which is useful in determining the bonding orbitals and the crystal-field
splitting. Using only the 3d-orbitals of iron, dx2−y2 will form a σ bond with the dangling sp2 orbital from
the nitrogen, while π-bonds will form from the iron dxz, dyz and nitrogen 2pz orbitals, where we define
the x and y axes to point along the lines connecting the Fe and the N atoms. The five dimensional
(l = 2) irreducible representation of K (the continuous rotation group) becomes reduced to four
irreducible representations when the symmetry is decreased to D4h. If only electrostatic effects are
considered, the crystal field splitting is predicted to be as seen in Figure 2a. However, this does not
capture higher order effects or Jahn–Teller distortions [77]. For a more accurate description, the levels
in a graphitic structure are arranged as in [47], as shown in Figure 2b. As discussed below, the positions
of the energy levels are adjusted to match the occupations of the 3d orbitals approximately given by
the DFT at U = 4.0eV. They are then held fixed in all other calculations.

Figure 2. (a) Splitting of d levels under D4h symmetry. ∆0 is the splitting in an octahedral field.
(b) Arrangement of energy levels used throughout this work following a similar convention adopted
by Aoyama et al. [47]. The difference between the π and z2 orbitals is small and has been reversed to
match the occupation of the orbitals according to DFT calculations.
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For iron, we include Coulomb and Hund interactions. The resulting general form of the
Hamiltonian can be written as [78,79]:

Hint = ∑
m1,m2,m′1,m′2

σ1,σ2,σ′1,σ′2

〈m1m2σ1σ2|V |m′1m′2σ′1σ′2〉 × d†
m1σ1

d†
m2σ2

dm′2σ′2
dm′1σ′1

(1)

In the preceding expression, m labels the d-orbitals and V (r) is the screened Coulomb potential.
This can be simplified to four matrix elements known as Kanamori parameters [80]: the intra-band
Coulomb interaction U, the inter-band Coulomb interaction U′, the inter-band exchange interaction J,
and the pair-hopping amplitude J′ (Notably, in quantum chemistry codes such as Gaussian, Jaguar,
and DMol, Coulomb integrals are denoted by the symbol J and not U. The symbol J is used here
for magnetic exchange or Hund couplings, following common practice in the physics literature.).
It can be shown [81] that J = J′ due to the symmetry of the orbitals involved and the fact that all
coefficients are just integrals of the Coulomb term over the radial part of the wave functions. In order
to ensure rotational invariance in orbital space, the condition U = U′ + 2J must be satisfied [78] for all
combinations of orbitals. The effects of the crystal field on the Coulomb interactions are ignored and
are assumed to be relatively small. The interaction part of the Hamiltonian now takes the form:

Hint = U ∑m n↑mn↓m + ∑m>m′
(

U′mm′ −
Jmm′

2

)
nmnm′ − 2 ∑m>m′ Jmm′~Sm~Sm′ −∑m>m′ Jmm′d†

↑md†
↓md↑m′d↓m′ (2)

The interactions U, U′, and J can be expressed in terms of the Racah parameters A, B, and C,
as shown in Table 1. The values of B and C were given in [82] for Fe3+ and Fe2+ and are restated
in Table 2. While U and J take different values for different pairs of orbitals, the interaction
U = A + 4B + 3C is orbital independent.

Table 1. Values of U′ and J for different 3d orbitals according to the derivation in [78].

m m′ U′ J

xy, xz, yz xy, xz, yz A−2B + C 3B + C
xz, yz z2 A + 2B + C B + C
xz, yz x2−y2 A−2B + C 3B + C

xy z2 A−4B + C 4B + C
xy x2−y2 A + 4B + C C

x2−y2, z2 x2−y2, z2 A−4B + C 4B + C

Table 2. Racah parameters for iron in different ionic states.

Ion B(eV) C(eV)

Fe2+ 0.114 0.501
Fe3+ 0.126 0.595

Our calculations assumed that there were approximately six electrons in the iron orbitals so that
we were close to Fe2+. This leaves only one free parameter for the interactions, i.e., A, or equivalently
U, since all U and U′ have the same dependence on A (note that J is independent of A). In general,
it is the competition between U and J that determines if the complex is high or low spin.

In addition, spin-orbit coupling can be introduced as it becomes important for heavier elements
that could substitute the iron in similar molecules. However, this interaction for iron is relatively
small (≈0.05 eV) [83], and we have neglected it in our calculations, although it has been shown to
be relevant in iron-based superconductors [84]. Notably, multi-orbital models for transition metals
have also been used in dynamical-mean-field calculations of (bulk) correlated materials to discuss
orbital-selective Mott transitions in iron-based superconductors, where the results can be sensitive to
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crystal-field splitting [35,85–87]. Our focus in this study, however, is on understanding the correlation
effects on a material-specific model Hamiltonian for the FeN4 cluster in graphene.

3. Method

Once all the parameters for the model are obtained, the problem can be recast and solved using
the DMRG method. In order to do so, we mapped the problem onto an equivalent one-dimensional
model by employing an exact canonical transformation, as presented in [88,89] and reviewed in detail
in [90] and closely related to the chain mapping used in DMFT [35]. An outline of the method is
as follows.

A conventional Hamiltonian for impurity problems will have the form:

H = Hl + Himp + V . (3)

Here, Hl denotes the single-particle tight-binding Hamiltonian for the lattice, which could include
more than one band, and it can be obtained from DFT calculations. Himp and V describe the impurity
and the coupling between the impurity and the lattice, respectively. Note that this method is applicable
regardless of the geometry or dimensionality of the non-interacting Hamiltonian. The key is to map
Hl onto an equivalent one-dimensional chain. First, for simplicity, let us consider a single-impurity
problem with one orbital per site. The more general case involving multiple orbitals and impurities
will be discussed in the next section. The first step is to define the “seed” state to perform a Lanczos
recursion as:

|Ψ0〉 = c†
r0
|0〉 , (4)

where c†
r0

creates an electron at orbital r0 and |0〉 is the vacuum state. For an Anderson-like impurity,
which is the case here, we chose the seed to be the impurity orbital. The remaining states are then
constructed with the following iterative procedure:

|Ψ1〉 = Hl |Ψ0〉 − a0 |Ψ0〉 (5)

|Ψn + 1〉 = Hl |Ψn〉 − an |Ψn〉 − b2
n |Ψn−1〉 (6)

an =
〈Ψn|Hl |Ψn〉
〈Ψn|Ψn〉

b2
n =

〈Ψn|Ψn〉
〈Ψn−1|Ψn−1〉

. (7)

The equations for an and bn can be obtained by requiring the states to be orthogonal. Note,
however, that at this stage, the states are not normalized.

After this transformation, Hl assumes a tri-diagonal form:

Hl =


a0 b1 0 0
b1 a1 b2 0
0 b2 a2 b3

0 0 b3
. . .

 , (8)

which corresponds to a one-dimensional Huckel Hamiltonian. Equivalently, in second quantization,
it reads:

Hl =
L

∑
i=0

aiñi +
L−1

∑
i=0

bi+1(c̃†
i c̃i+1 + h.c.) , (9)

where c̃†
i and c̃i are the normalized creation and destruction operators, respectively, ñi = c̃†

i c̃i is
the particle number operator, and L is the total length of the chain. The diagonal an terms are
on-site potentials, while the bn’s are the new hopping along the chain. This is an exact canonical
transformation. The remaining missing orbitals correspond to different symmetry sectors of the
Hamiltonian, are completely decoupled from the impurity, and can be safely ignored, which highlights
the power of this change of basis.
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Coming back to the transition-metal complex, in our case, we had two orbitals (iron dxy and
dyz) coupled to different sites (nitrogens) that will generate two orthogonal chains along the lines
very similar to those described above, except that we would now require two seeds for the π-bonded
nitrogen pz orbitals. Labeling these as |α0〉 and |β0〉, we chose these as:

|α0〉 =
1
2


1
1
1
1

 |β0〉 =
1
2


1
−1
1
−1

 , (10)

where the labeling refers to the nitrogen sites in Figure 1 (Note that due to symmetry, only these two
–out of four– wave-functions couple to the d orbitals of the transition metal because the other degrees
of freedom live in an orthogonal Hilbert space). After the Lanczos iterations are carried out, two chains
represented by the red sites in Figure 3 are generated. The coupling Hamiltonian between the nitrogen
and iron then becomes,

Hc = −t′{d†
xy(|α0〉+ |β0〉) + d†

yz(|α0〉 − |β0〉)} . (11)

For the σ-bands, the single seed mapping can be used starting from the dx2−y2 orbital. The hopping
integrals between the nitrogen and carbon 2s, 2px, and 2py orbitals are obtained from the tight- binding
model described above. After this transformation, we obtain the green chain in Figure 3. As expected,
due to the symmetries of the problem and the resulting dimensional reduction, the total number of
orbitals in the equivalent system is smaller than that in the original system. The magnitude of the
hopping between the iron and nitrogen sp2 orbitals can be used as a fitting parameter, while the
π-coupling between the nitrogen and iron can be estimated via comparison with DFT results to yield
t′ ≈ 1.6 eV. In order to study the problem of iron embedded in bulk graphene, we extended the two
sides of the chain in Figure 3 to the desired length as discussed in [88].

Figure 3. Chain geometry of FeC10N4 after the Lanczos mapping. Red sites correspond to carbon
atoms. Orange sites correspond to the orbitals of the seed |α0〉 and |β0〉 on the nitrogen atom (see text).
Blue sites represent the 5 d-orbitals of iron. The box (dotted lines) indicates the region where interactions
are included, and black lines denote hopping.

4. Results

DFT is known to have difficulties in describing correlated electrons in open d and f shell systems.
In particular, DFT can fail in predicting if the ground state has low, intermediate, or high total spin
polarization (this failure can however be mitigated if we allow spin contamination (spurious mixing
of different spin-states) in the calculations [55]). Conventional DFT methods, such as LDA or GGA,
also fail to account for the effects of the Coulomb interaction between localized electrons properly.
For these reasons, the calculations presented here were performed using GGA+U within the VASP
package [91,92]. One main source of error in the GGA+U scheme arises from the fact that the U and J
terms in the Hamiltonian (or functional) are handled in a mean-field fashion, resulting in the single
Ue f f = U − J parameter. With this in mind, we first compared our exact DMRG results with DFT+U
calculations, where we ignored all many-body terms except for the intra-orbital Coulomb repulsion
and the Hund coupling of the spins. In other words, Hint = U ∑m n↑mn↓m − 2 ∑m 6=m′ Jmm′~Sm~Sm′ .
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In order to benchmark our approach, we began with the iron complex, FeC10N4, depicted
in Figure 1. Here, we used level splittings between the d orbitals that matched the occupations
obtained from GGA+U using the physically relevant value of U = 4 eV, as shown in Table 3 (Note that
obtaining exact agreement between the DFT results and our model Hamiltonian was not possible due
to the complex interplay between various terms in the Hamiltonian. The results shown were as close
as we could get by searching within the multi-dimensional parameter space and fixing the value of U.
Our formulation was SU(2)-invariant, so that any high-spin ground state would be a (2S + 1)-fold
degenerate multiplet.). The ground-state occupation and magnetic moment of iron (total spin) as a
function of U is shown in Figure 4. Calculations were carried out by varying the number of electrons
and the value of the total spin S. The ground state was then obtained by minimizing the energy.
The spin was seen to remain zero until the Coulomb interaction reached a value of U ≈ 3.0 eV. As the
value of U increased beyond this point, the occupation of the iron levels decreased as the magnetic
moment increased until it saturated at S = 2 (〈N〉 = 4). For large values of U, Coulomb repulsion
prevented double-occupation of orbitals. Over the range of 3.5 ≤ U ≤ 4.5, the ground state has
S = 1, which is the physically interesting range (Note that different Racah parameters should be used,
in principle, for various occupations of the iron atom, for simplicity, we used a fixed value of these
parameters, which corresponded to Fe2+).

Figure 4. Electronic occupation and magnetic moment of the iron atom for U′ = 0. The top panel shows
the total occupation of the five iron orbitals. The bottom panel gives the total value of Sz. The arrow
points to the S = 1 phase, which is consistent with experiments and DFT calculations.

When all the interaction terms were included in the Hamiltonian, the ground state changed
drastically. In order to gain insight into this result, we considered a rigid shift, −VFe ∑m nm, in the
position of the Fe energy levels. This ad hoc potential could be physically thought of as representing the
screened interaction with the nucleus, so that it could be used as a parameter to mimic the occupation
of the levels for various transition metals. In Figure 5, we show the overall occupation of the molecule,
the Fe atom, and the total spin S, as a function of U and VFe. The parameter regime of interest for Fe2+

(S = 1) was seen to reside in a narrow band of values in the so-called C231 electronic configuration
(d2

xyd3
πd1

z) [93]. Other bands in the figure correspond to a different ionic state of iron or a different
atomic species. Within each region, the occupation of various energy levels did not vary much. Figure 6,
which focuses on the parameter regime corresponding to VFe = 0, shows that the total charge and spin
of the transition metal atom depended strongly on U. The physically-relevant region with S = 1 and
〈N〉 ∼ 6 occupied the small range 2.3 < U < 2.8. More importantly, increasing U further eventually
led to a low-spin state (S = 1/2 or S = 0), as opposed to the high-spin state reached above without
inter-Coulomb repulsion. The high-spin states in this model were thus limited to a finite window of U.
This was due to the fact that as U was further increased, all orbitals became single-occupied, and the
inter-orbital interactions began to dominate.
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Figure 5. Phase diagram of the full interacting Hamiltonian: (a) total occupation of the system; (b) total
spin S; (c) occupation of the transition metal atom 〈N〉Fe; (d) spin 〈Sz〉Fe of the transition metal atom in
the maximally polarized state Sz = S.

Figure 6. The top panel shows the total occupation of the five iron orbitals as a function of U and
VFe = 0 for the full interacting Hamiltonian. The bottom panel gives the total value of Sz. The arrow
points to the physically interesting range corresponding to S = 1.

We turn now to discuss the effects of passivating our defect center via hydrogen atoms bonded to
the dangling sp2 bonds of the carbons. Calculations carried out with and without bonded hydrogens
showed that there was not much overall change in the underlying physics, although occupation of
the dx2−y2 orbital was modified somewhat, and the effect was negligible when the U′ terms in the
Hamiltonian were not included in the calculations. In all cases we considered, hydrogens did not
significantly affect the overall spin state of iron. For these reasons, we only show the results without
the hydrogens.
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Table 3. Occupations and magnetic moments of various iron orbitals. The first two columns are results
from DFT+U calculations. The next three columns are obtained from the method described in the text
with U′ = 0, while the last three columns refer to calculations in which all inter-orbital interactions
are included.

DFT+U U′ = 0 Full H

Orbital 〈N〉 〈Sz〉 〈N〉 〈Sz〉 〈N〉 〈Sz〉
xy 1.79 0.05 2.00 0.00 2.00 0.00
z2 1.07 0.40 1.00 0.50 1.0 0.50

x2 − y2 0.83 0.04 0.77 0.04 0.53 0.03
π 1.35 0.26 1.26 0.27 1.11 0.26

Figures 7 and 8 show the projected density of states for the five iron orbitals calculated with
dynamical DMRG [94,95] and DFT+U, respectively. The top panel in Figure 7 (without inter-orbital
Coulomb interactions) shows qualitative agreement with DFT+U calculations (Figure 8) in the xy,
z2, and x2 − y2 channels. States in the π channel in Figure 7, however, are more spread out than in
Figure 8 due to greater hybridization with the conduction electrons. Note that the states associated
with the z2 and xy orbitals were sharp and did not experience substantial charge fluctuations,
and for this reason, these states were reasonably described within the mean-field treatment, while
many-body effects were reflected mainly in the π channel. Similar effects were also seen in the
exact diagonalization calculations on a simplified five-orbital model [35] of a flat band with constant
hybridization (our DMRG calculations reproduced the exact diagonalization results, but were not
limited to small clusters). Parameters such as U, the energy levels of the d-orbitals, and the couplings
were adjusted to obtain agreement with the occupation and magnetic moment given by DFT, since
we expected DFT to be a reasonable approximation when inter-orbital interactions were neglected.
The differences between DMRG and DFT reflected the effects of: (i) approximations inherent within
the DFT, (ii) the parameters used in our DMRG modeling based on the DFT results, and (iii) the
fact that we ignored Coulomb interactions between iron and nitrogen, as well as other parts of the
defect complex even though these interactions were to some extent accounted for by the effective
hopping parameters.

As expected, the inclusion of interactions led to modifications in the partial density of states.
It was clear that the U′ terms shifted the energies slightly upward, with the exception of the dxy

orbital, which was practically unchanged. Note however that the value of U was reduced substantially,
from U = 4.0 to U = 2.6, indicating the importance of interaction terms. The dz2 orbital was also
affected greatly as seen from the splitting between the related peaks in Figure 7, which was controlled
by U, while its relative position with respect to other orbitals was dictated by U′ and J. These results
indicated that interaction effects would induce substantial changes in the binding energies of ligands,
which normally involved the dz2 orbital.

We also extended our modeling to include more carbon atoms in order to gain insight into the
effects of embedding our defect center in a “bulk-like” flake of graphene. Here, our calculations
included all interaction terms. As shown in Figure 9, for certain values of U, the spin actually increased
compared to the molecular case. An intermediate S = 3/2 phase, which was not found before,
appeared around U ≈ 2.6 eV, indicating that the surrounding material played a significant role
in the physics of the defect center: a continuous density of states in bulk graphene compared to
discrete “delta”-like peaks in the molecular case may allow for additional screening in the spirit of the
Kondo effect.
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Figure 7. Partial density of states associated with various d-orbitals of iron for spin ↑ (positive values)
and ↓ (negative values). The top panel is for U′ = 0 (non-interacting), and the bottom panel refers to
results for the full interacting Hamiltonian. The total number of electrons in both cases is Ntot = 16.

Figure 8. Partial density of states for various d-orbitals of iron calculated with DFT+U for U = 4 eV
using the generalized gradient approximation (GGA) functional.

Figure 9. Same as Figure 6, except that the defect center is embedded in a flake of graphene. The top
panel corresponds to the local occupation of the iron atom, while the bottom panel shows 〈Sz〉Fe as a
function of U.

5. Conclusions

We investigated heme-like iron centers in graphene and the FeC10N4 molecule using an exact
canonical transformation within the framework of the DMRG method. The DMRG technique has
been used in quantum chemistry calculations as a solver for first-principles Hamiltonians in the same
spirit as configuration interaction calculations [96–99]. Our approach took advantage of the weakly
correlated nature of the carbon bond, which could be accounted for by DFT calculations, and recast
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the problem onto an LCAO model with an interacting transition metal center that was modeled as a
five-orbital Kanamori–Anderson impurity. This allowed us to perform a unitary transformation that
significantly simplified the Hamiltonian by reducing it to an equivalent Hamiltonian consisting of
one-dimensional chains coupled to the iron d-orbitals. This made the problem amenable to efficient
DMRG calculations in which all many-body terms were treated exactly. In this way, we obtained
the occupation and magnetic moment of the iron atom as a function of the strength of the Coulomb
interaction U and qualitatively recovered DFT results in the limit where the inter-orbital repulsion was
neglected. Interaction effects were shown to play a crucial role in the physics underlying the defect
center by shifting the relative positions of peaks in the density of states associated with various iron
orbitals. These shifts could be expected to drive substantial changes in the binding energies of various
ligands to the defect cluster. Moreover, our results demonstrated the importance of orbital-dependent
interactions to account for correlation effects in an accurate manner, and thus question the common
assumption that values of U ≈ 4 eV and J ≈ 1eV are sufficient to characterize the physics of the
transition metal atom.

The technique described in this study can be combined with other quantum chemistry approaches
such as CASPT2 [100,101], not only for benchmarking, but also to obtain realistic parameters to
model bulk-embedded transition-metal complexes by mapping the system onto one-dimensional
chains. Natural extensions of the method would include treatment of a variety of geometries of
transition-metal complexes and the effects of spin-orbit interactions and correlated hybridizations [102].
Moreover, one could investigate two iron atoms embedded in a sheet of graphene to explore the
possible emergence of indirect magnetic exchange interactions mediated by the conduction electrons.
Finally, our approach can be extended readily to handle finite temperatures and adapted to study
non-equilibrium phenomena such as transport and chemical reactions.
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Appendix A. Tight-Binding Model for Graphene’s σ-Bands

Before discussing the electronic structure of the σ bands, we briefly present the general approach
for determining the vanishing and non-vanishing matrix elements between various orbitals. For the
s and p orbitals, there are just four non-zero overlap integrals to consider: ssσ, spσ, ppσ, and ppπ.
Due to the radial symmetry of the s-orbitals, the ssσ bond has no angular dependence. σ and π bonds
are classified by whether the interatomic separation direction is parallel or perpendicular to the orbital
axis. Since the p-orbitals can orient with any angle between them (Figure A1), we project these orbitals
into their normal and parallel (σ and π) components as follows.

|p〉 = cosθ |pσ〉+ sinθ |pπ〉 .

Matrix elements between neighboring s and p states can then be written as:

〈s|H |p〉 = Hspσcosθ,
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where the definition 〈s|H |pσ〉 = Hspσ has been used, and 〈s|H |pπ〉 = 0 by symmetry. The angle θ is
defined in Figure A1. Similarly, the matrix elements between p states are:

〈p1|H |p2〉 = Hppσcosθ1cosθ2 + Hppπsinθ1sinθ2.

Figure A1. Neighboring s and p orbitals showing the angle between the centers of the orbitals and the
axis of the p orbital.

In general, sp2 orbitals are planar and form angles of 120 deg. Since the unit cell of graphene
has two atoms and each atom contributes three sp2 states, we obtain six σ-bands, which are split into
two groups of three bands each where one group lies above and the other below the Fermi energy.
Following [103], the 6× 6 matrix takes the following form:

H =



2sa 2pa
x 2pa

y 2sb 2pb
x 2pb

y

2sa h11 h12 h13 h14 h15 h16

2pa
x h21 h22 h23 h24 h25 h26

2pa
y h31 h32 h33 h34 h35 h36

2sb h41 h42 h43 h44 h45 h46

2pb
x h51 h52 h53 h54 h55 h56

2pb
y h61 h62 h63 h64 h65 h66


. (A1)

The values of the matrix elements are given by:

h11 = h44 = εs (A2)

h22 = h33 = h55 = h66 = εp (A3)

h14 = Hssσ (A4)

h15 = Hspσcosθ (A5)

h16 = Hspσsinθ (A6)

h25 = Hppσcos2θ + Hppπsin2θ (A7)

h26 = (Hppσ − Hppπ)cosθsinθ (A8)

h36 = Hppσsin2θ + Hppπcos2θ, (A9)

with all the remaining elements being zero. The numerical values for the hopping are (in eV): εs = −8.7,
εp = 0, Hssσ = −6.7, Hspσ = 5.5, Hppσ = 5.1, and Hppπ = −3.1.
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