
applied  
sciences

Article

Exploring the Impact of Multitemporal DEM Data on
the Susceptibility Mapping of Landslides

Jiaying Li 1,2,3, Weidong Wang 1,2, Zheng Han 1,*, Yange Li 1 and Guangqi Chen 3

1 School of Civil Engineering, Central South University, Changsha 410075, Hunan, China;
184801058@csu.edu.cn (J.L.); 701139@csu.edu.cn (W.W.); liyange@csu.edu.cn (Y.L.)

2 Key Laboratory of Heavy-haul Railway, Ministry of Education, Changsha 410075, Hunan, China
3 Department of Civil and Structural Engineering, Kyushu University, Fukuoka 819-0395, Japan;

chen@civil.kyushu-u.ac.jp
* Correspondence: zheng_han@csu.edu.cn; Tel.: +86-18874163071

Received: 5 March 2020; Accepted: 2 April 2020; Published: 6 April 2020
����������
�������

Featured Application: Landslide susceptibility assessment and other geological disaster assessment
issues.

Abstract: Digital elevation models (DEMs) are fundamental data models used for susceptibility
assessment of landslides. Due to landscape change and reshaping processes, a DEM can show obvious
temporal variation and has a significant influence on assessment results. To explore the impact of
DEM temporal variation on hazard susceptibility, the southern area of Sichuan province in China
is selected as a study area. Multitemporal DEM data spanning over 17 years are collected and the
topographic variation of the landscape in this area is investigated. Multitemporal susceptibility
maps of landslides are subsequently generated using the widely accepted logistic regression model
(LRM). A positive correlation between the topographic variation and landslide susceptibility that was
supported by previous studies is quantitatively verified. The ratio of the number of landslides to the
susceptibility level areas (RNA) in which the hazards occur is introduced. The RNA demonstrates
a general decrease in the susceptibility level from 2000 to 2009, while the ratio of the decreased
level is more than fifteen times greater than that of the ratio of the increased level. The impact
of the multitemporal DEM on susceptibility mapping is demonstrated to be significant. As such,
susceptibility assessments should use DEM data at the time of study.

Keywords: multitemporal DEM; control factors; susceptibility assessment; LRM; historical
landslide events

1. Introduction

Geohazards are some of the most uncontrolled impacts on local and global economies, as well
as on people’s livelihoods. Almost nowhere on the planet is free from the damage of geohazards [1].
An essential component of predicting possible geohazard zones is the identification of an area that is
vulnerable to future landslides [2,3]. Landslides are common geohazards that destroy local resources
and environments. Therefore, susceptibility assessments of landslides have been widely investigated
to improve their capability for use with these hazards [4,5].

Current studies commonly focus on two major issues regarding the susceptibility assessments
of landslides—selection of evaluation indices and establishment of a rational assessment model.
Relevant reviews [6–9] demonstrate that exiting studies have proposed various remarkable models for
susceptibility assessment of landslides, such as logistic regression models (LRMs) [10]. Meanwhile, in
recent decades, the rapid development of machine learning algorithms in susceptibility assessments
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has been seen over time. LRMs are some of the most classic and commonly used methods, which
have the advantages of minimal computation, high detection speed, and good adaptability [11]. LRMs
have extensive applications in forecasting [12,13] and susceptibility assessment [14,15]. These studies
provide a solid foundation for the susceptibility assessment of landslides, and advance the knowledge
of susceptibility assessment with machine learning algorithms.

In addition to an assessment model, the rational selection of indices is quite important for
susceptibility assessment of landslides. Generally, indices such as lithology, elevation, and topography
are introduced as the controlling factors, which are strongly related to the susceptibility assessment
of landslides [16–20]. The rational selection of these indices remains a subject of scientific debate in
many studies because the importance of different indices may vary from case to case. A review of
previous studies [21] provides a guideline for addressing this issue. However, the generalizability of
these results is subject to certain limitations, while another essential problem regarding the temporal
variation of indices and the influence of this on susceptibility is still confusing and requires more
attention. The susceptibility result will be questionable if the data for one index is out of date owing
to the absence of a current data source, which is the case in digital elevation models (DEMs). So far,
however, few researchers have highlighted the impact of outdated data sources on the reliability of
susceptibility results, and few previous studies have investigated the mechanisms involved.

A DEM is the digital representation of a terrain surface. These models have been widely applied
in geohazard planning, terrain surface analysis, and other fields [22]. Generating a DEM generally
involves data from different sources [23], including global multiresolution topography (GMRT) models,
shuttle radar topography mission digital elevation models, and advanced space-borne thermal emission
and reflection radiometer global digital elevation models (ASTER GDEMs).

Among the abovementioned indices, elevation, topography, and slope are closely related to
the DEM data [24]. In the majority of the previous studies, it has been suggested that DEM data
should be consistent with the study date [25–29]. However, because of landscape changes and
reshaping processes (e.g., earthquakes and engineering construction), the DEM data usually show
obvious temporal variation. An example of significant temporal variation of DEM data was shown
by Cucchiaro et al., who substantiated that the DEM difference of the eastern Italian Alps within
one month is up to 0.14 m [30]. Pineux et al. demonstrated that the changes experienced by a DEM
over time are obvious and unpredictable [31]. DEM data have significant influence on susceptibility
assessments of landslides, mainly through influencing factors such as elevation, topography, and slope.
Elevation is one of the most influential factors controlling landslide occurrences in a study area, while
topography and slope are also important in susceptibility assessments [18,29,32]. However, studies
have not considered the obvious temporal variation in DEMs.

In the present paper, multitemporal DEMs area are obtained for the study and the elevation
changes demonstrated in the DEMs are analyzed. The DEM data for three years (1992, 2000, and
2009) are used to analyze factors affected by a DEM. The susceptibility results for the three years
are evaluated using the different DEM-dependent factors and the same DEM-independent factors.
Quantifying the index, the susceptibility assessments are then obtained using a generally accepted
LRM model. Additionally, the maps of susceptibility levels in the study area are obtained within the
geographic information system (GIS). The influence of DEM data at different times on a susceptibility
assessment and the influence of the specific values of the elevation differences on the assessment level
are obtained. Meanwhile, the impact of historical landslide events on the susceptibility assessment is
analyzed. The study aims to achieve a better evaluation of the impact of multitemporal factors on the
susceptibility assessment of landslides.
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2. Study Area

2.1. Study Area and Landslide Data

The southern area of Sichuan province in China is a region with frequently occurring landslides.
The study area covers the three districts of Panzhihua, Liangshan, and Ya’an (Figure 1). The area is
located at a latitude of 26◦03′–30◦56′ north and a longitude of 100◦03′–103◦52′ east. The area also
belongs to the Sichuan Basin, adjacent to the Qinghai–Tibet Plateau in the west. It has a complex
topography mainly composed of plains, hills, mountains, and plateaus; furthermore, the relative
elevation is more than 3200 m.
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The climate in the study area is a typically humid subtropical monsoonal climate that is hot
in summer and mild and humid in winter, with plentiful rainfall and mist. The vertical climate
differs greatly, and the annual average temperature distribution gradually increases from northwest to
southeast. The average temperature ranges from 5.3 to 15.7 ◦C, with annual average rainfall ranging
from 1500 to 1800 mm. The study area is, therefore, extremely rainy. The rainfall is mainly concentrated
from June to October, which accounts for approximately 70%–75% of the annual rainfall. The maximum
daily precipitation reaches 300–500 mm. Meanwhile, part of the study area is located in the Himalaya
earthquake zone, which suffers from permafrost, avalanches, and landslides. The stratum of the study
area is complete (from Archean to Quaternary). The dominant lithology is sedimentary rock, majorly
consisting of dolomite, limestone, siliceous rock, shale, and sandstone [33]. The surface water system
is developed, and there are many tributaries of the Yangtze River. The groundwater is distributed
widely and buried shallowly, which is affected significantly by the rainfall and landform [34].

The Chinese Geological Environment Monitoring Institute collected the landslides information
in this region through the China Geological Survey, including locations and occurrence times, and
released it to public in its Bulletin of National Geological Hazards [35]. The annual total number of
historical landslide events is shown in Figure 2. More than 85% of the historical landslide events were
induced by natural environmental factors, such as rainfall and earthquakes, while only a few events
were induced by human factors, such as mining and slope cutting. As the source data in the Bulletin of
National Geological Hazards are not distinguished by landslide type, the general landslides analyzed
in the study are of various types.
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Figure 2. Number of historical landslide events in various years.

In this study, the total number of historical landslide events from 2000 to 2016 and the number of
those hazards in various years after 2004 are obtained. However, we can only obtain the total number
of historical landslide events for the period between 2000 and 2004. Thus, to better analyze the impact
of a DEM on susceptibility assessment, we divide the historical landslide events into two broad types:
the landslide events during the period ranging from 2000 to 2009, and the period ranging from 2010 to
2016. The historical landslide events in the study area from 2000 to 2009 and from 2010 to 2016 (Figure 3)
can be obtained from the China Geological Environment Information database (http://www.cigem.cn).
A total of 341 historical landslide events from 2000 to 2009 and 218 historical landslide events from
2010 to 2016 were recorded.
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2.2. Influencing Factors

Selecting the influencing factors is a key step in a landslide susceptibility assessment [36,37];
however, the causes of landslides are complex. To date, hundreds of influencing factors have been
identified that are potentially important to susceptibility assessments [38]. For example, areas with
high elevation and steep slopes are highly prone to landslides [39]. Lithology is also related to
landslide occurrences, because different lithologies can withstand different levels of triggering factors.
The distances to structure lines, rivers, and roads have important impacts on the spread and size of
landslides in the study area [40]. Pourghasemi et al. investigated global susceptibility during the
period of 2005–2016 [28]. Nearly 100 factors were summarized to reveal the commonly used factors. In
accordance with the relevant studies [29,41,42] and the study area, we select eight influencing factors:
elevation, topography, slope, lithology, distance to a structure line, distance to a river, average annual
rainfall, and distances to roads.

Table 1 lists all the DEM data for the study area and their sources. The Open Topography
Facility provided the GMRT data, which is hosted at the San Diego Supercomputer Center,
University of California San Diego. This facility has built a strong cyberinfrastructure framework for
managing and processing high-resolution topography data from light detection and ranging (LiDAR)
(http://opentopo.sdsc.edu/datasets?listAll=true). Meanwhile, the Shuttle Radar Topography Mission
(SRTM) DEM and Global Digital Elevation Model (GDEM) DEM were provided by the Geospatial
Data Cloud site of the Computer Network Information Center in the Chinese Academy of Sciences
(http://www.gscloud.cn/). The DEM data at the same resolution for 1992, 2000, and 2009 were then
obtained using a resampling tool in the GIS environment (Figure 4). There are three resampling methods
in the resampling tool, namely nearest neighbor, bilinear interpolation, and cubic convolution methods.
Nearest neighbor is selected in the present study because the method is simple, fast, and applicable.

Table 1. Digital elevation model (DEM) data used in this study and their sources.

DEM Data Survey Date Data Type Resolution Coordinates Source

GMRT * Data
Synthesis 1992 KML 90 m WGS84 Open Topography

SRTM ** DEM 2000 IMG 90 m UTM/WGS84 Geospatial Data Cloud site
GDEM ***

DEM 2009 IMG 30 m UTM/WGS84 Geospatial Data Cloud site

* GMRT is short for Global Multi-Resolution Topography. ** SRTM is short for Shuttle Radar Topography Mission.
*** GDEM is short for Global Digital Elevation Model.
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The DEM data for 1992, 2000, and 2009 were used to analyze factors affected by the DEM.
Meanwhile, the data of other factors, namely lithology, distance to the structure line, distance to the
river, and average annual rainfall, remained the same and were provided by China Railway Number 4
Engineering Group Co., Ltd. (745 Heping Road, Wuhan, Hubei, China), and the Roads and Traffic
Authority of China. Because of the diversity of lithological layers in the study area, the lithology is
divided into four groups in Table 2 [43]. Thus, the zoning maps of the four factors were obtained
(Figure 5).

Table 2. Lithology and structure in the study area.

Groups Structure Lithology

Group 1 Loose structure Clay, gravelly soil, clay rock, thin layer siltstone
Group 2 Cataclastic structure Siltstone, shale, phyllite, thin layer slate

Group 3 Stratified structure Thick layer sandstone, conglomerate with argillaceous rocks,
siliceous rock with argillaceous shale

Group 4 Block structure Limestone, siliceous rock, thick layer conglomerate,
dolomite, phosphate rock
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3. Methodology

3.1. Flowchart

The research methodologies applied in the present study are as shown in Figure 6. The flowchart
consists of four major steps, as follows:

(a) Data preparation. The multitemporal DEM data, influencing factors, and historical landslide
events are prepared;

(b) Data preprocessing. The multitemporal DEM data is compared to eliminate the noise based on
coverage probabilities for confidence intervals;

(c) Susceptibility assessment of landslides. The assessment results for 1992, 2000, and 2009 are
obtained using a LRM;

(d) Comparison and analysis. The assessment results for 1992, 2000, and 2009 are compared
to obtain the impacts of the elevation difference and the historical landslide events on the
susceptibility assessment.
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3.2. Confidence Interval

In the present study, because of the noise in the DEM data reducing the accuracy of data analysis
significantly, not all DEM data are reliable. Therefore, the noise needs to be eliminated to determine the
reliability of the DEM data. The confidence level of the DEM data is assessed to improve the accuracy
of data analysis.

The confidence interval is a commonly-used interval estimation method used for sample statistics,
which shows the confidence probability of the measured parameter value [42,44]. The elevation
difference is considered as the sample data in the present study. The average value of elevation
difference is µ, and the standard deviation is σ. The confidence probability is obtained as follows:

Pr(c1 ≤ µ < c2) = 1− α (1)

where α is the significance level and the interval (c1, c2) is the confidence interval. Therefore, the
confidence interval of the average value is (µ− σZα/2,µ+ σZα/2), where = Zα/2 is the corresponding
standard score. In general, the confidence probability in the literature [42,45,46] is 90% or 95%, and
Zα/2 is 1.645 or 1.96, respectively.
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3.3. LRM

The LRM is a statistical model used to predict the probability of a categorical occurrence using
one or more independent variables [47]. The purpose of LRM is to obtain the relationship between a
dependent variable and multiple independent variables that have been identified.

In the present study, the independent variables are the influencing indices of landslides, and the
dependent variable is the probability of the landslide occurring. By transforming the universal formula
of LRM, Y is obtained:

Y = C0 +
n∑

i=1

CiIi (2)

where C0 is the LRM constant coefficient, Ci is the LRM coefficient, Ii is the landslide index,
Y = ln(P/(1 − P)), and P is the probability of the landslide occurring. The LRM coefficient Ci and the
LRM formula can be obtained using Statistical Product and Service Solutions (SPSS) software.

3.4. Ratio of Number of Landslides to Area (RNA)

RNA denotes the ratio of the number of historical landslide events to the area of the susceptibility
levels at which historical landslide events are located. The RNA of the level i is obtained with the
following equation:

RNAi = ni/Ai (3)

where RNAi is the number of landslides per area at a particular level i; ni is the number of historical
landslide events at level i; and Ai is the area of level i in the assessment.

4. Results

4.1. Elimination of Noise

As mentioned above, the DEM has a significant effect on susceptibility assessment through three
indices, namely elevation, topography, and slope. The changes in the DEM from 1992 to 2000 and from
2000 to 2009 are obtained to explore the impact of the temporal variation of DEM data on susceptibility
assessment. Meanwhile, the average values and standard deviation of the elevation differences are
obtained from the topography changes revealed by the DEM data. The confidence probability is
considered as 95% in this study. The corresponding standard scores and confidence intervals are,
therefore, calculated (Table 3). After the noise is eliminated, the optimized map of topography changes
from 1992 to 2000 and from 2000 to 2009 are obtained (Figure 7).
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Table 3. Confidence interval of elevation differences for the periods ranging from 1992 to 2000 and
from 2000 to 2009.

Data Average Value (m) Standard
Deviation (m) Standard Score Confidence

Interval (m)

From 1992 to 2000 −1.859 66.826 1.960 (−132.837, 129.120)
From 2000 to 2009 0.965 59.204 1.960 (−115.075, 117.005)

4.2. Susceptibility Assessments of Landslides

The susceptibility assessment maps of the study area in 1992, 2000, and 2009 are obtained in the
GIS environment using LRM (Figure 8 and Table 4). The susceptibility is classified into four levels
based on the natural breaks classification (NBC) method, which is based on natural groupings inherent
in data. The NBC identifies groups of similar values and maximizes the differences between classes.
The features are divided into classes whose boundaries are set based on relatively big differences in the
data values. Here, level I, level II, level III, and level IV denote low, moderate, high, and very high
susceptibility, respectively. The area percentages of various susceptibility levels in the study are shown
in Table 4.
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Table 4. Susceptibility assessment of landslides using LRM scores.

Susceptibility
Level

1992 2000 2009

Area
(103 km2)

Percentage
(%)

Area
(103 km2)

Percentage
(%)

Area
(103 km2)

Percentage
(%)

Level I 26.445 34.23 22.342 28.91 23.378 30.21
Level II 26.127 33.82 17.969 23.25 15.781 20.39
Level III 13.573 17.57 17.128 22.16 20.747 26.81
Level IV 11.116 14.39 19.842 25.68 17.473 22.58

As shown in Figure 8 and Table 4, the results of the susceptibility assessment vary from year to
year. The areas with low and moderate susceptibility (levels I and II, respectively) in 1992 are the
largest, while the area with very high susceptibility (level IV) is the largest in 2000. The rapid decrease
in the level IV area from 2000 to 2009 is noticeable. One possible explanation for the decrease is that the
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slopes where landslides occurred became stable in the short term, owing to the excessive landslides that
occurred from 2000 to 2009; thus, the susceptibility level of the study area decreased after the hazards.

The susceptibility maps are obtained using different DEM-dependent factors, while the
DEM-independent factors are constant in the assessment. Comparing these results illustrates the
significant influence of the DEM data from different years on the susceptibility assessment.

4.3. Assessment Levels of Historical Landslide Events

Figure 8 and Table 5 show the susceptibility assessment levels at which historical landslide events
occurred from 2010 to 2016.

Table 5. Historical landslide event levels.

Susceptibility
Level

1992 2000 2009

Number RNA *
(103/km2) Number RNA

(103/km2) Number RNA
(103/km2)

Level I 33 1.25 34 1.52 26 1.11
Level II 79 3.02 44 2.45 38 2.41
Level III 53 3.90 60 3.50 59 2.84
Level IV 53 4.77 80 4.03 95 5.44

* RNA denotes the ratio of number of landslides to area.

It can be clearly seen in Table 5 that the combined number of historical landslide events designated
as levels III and IV is 106, 140, and 154, respectively, in 1992, 2000, and 2009. The RNA for level IV
in 2009 is 5.44 × 10−3/km2, which is the largest among the RNA values over the three years. The
most ideal assessment of landslides would be most landslides occurring in level IV areas. There is a
significant positive correlation between the RNA and the accuracy of the assessment. Therefore, the
results of the susceptibility assessment using the DEM for 2009 are more accurate than the results using
the DEM for 1992 and 2000.

It is apparent from Table 5 that the small change in elevation over time has a great influence on
the susceptibility assessment of landslides. However, in previous research, the survey data are not
explained or the data are significantly different from the assessment time.

4.4. Differences between the Assessment Levels

Comparisons are performed using the susceptibility assessments of landslides in the study area
from different periods. Figure 9 and Table 6 compare the differences between the assessment results for
1992 and 2000 and between those for 2000 and 2009, showing that the area where the level difference is
zero is the largest area. Meanwhile, the area with increased susceptibility is much larger than the area
with decreased susceptibility in the period ranging from 1992 to 2000, which is contrary to the results
for the period ranging from 2000 to 2009.

Table 6. Differences in the assessment levels.

Level Difference
1992 and 2000 2000 and 2009

Area (103 km2) Percentage (%) Area (103 km2) Percentage (%)

−3 0.041 0.053 0.516 0.667
−2 0.633 0.819 1.232 1.592
−1 5.433 7.030 13.308 17.193
0 41.923 54.244 48.466 62.614
1 26.954 34.876 12.799 16.535
2 1.928 2.495 0.893 1.154
3 0.373 0.483 0.190 0.245
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5. Discussion

5.1. Comprehensive Comparison of Assessment Results for 1992, 2000, and 2009

We compare the areas and RNA values of various assessment levels for the years 1992, 2000, and
2009 (Figure 10a,b), and the level differences from 1992 to 2000 and from 2000 to 2009 (Figure 10c).
Figure 10 is quite revealing in several ways. First, the RNA for level IV in 2009 is larger than that in
1992 or 2000. Because of the positive correlation between the RNA and the accuracy of the assessment,
the accuracy of the assessment is further exemplified in studies using the DEM for 2009. As Figure 10c
shows, there is a significant difference between the two results. The area with increased susceptibility
in the period ranging from 1992 to 2000 is larger than that in in the period ranging from 2000 to 2009.
The observed increase in the area with increased susceptibility could be attributed to the frequent
landslides from 2000 to 2009 (e.g., the various landslides caused by the 2008 earthquake).
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5.2. Impact of Elevation Difference on the Susceptibility Assessment

In addition to the above analysis, we analyze the impact of elevation differences on the susceptibility
assessment and the relationships between the elevation differences and the differences in assessment
levels. Therefore, the areas with varying level and elevation differences are presented (Table 7).

Table 7. Numbers of historical landslide events at various assessment levels from 1992 to 2000 and
from 2000 to 2009.

Area (km2)
Level Difference

−3 −2 −1 0 1 2 3

Elevation
differences

(m)

From 1992
to 2000

−140 to
−100 1.30 9.26 104.72 774.13 392.15 17.64 2.48

−100 to −60 3.26 37.75 357.01 2921.89 1763.27 101.98 15.73
−60 to −20 7.41 123.31 938.88 8591.50 5593.55 380.83 74.53
−20 to 20 23.08 351.42 2576.43 17,433.58 11,260.52 882.75 170.13

20–60 4.74 85.47 1016.90 8718.41 5753.17 417.77 85.52
60–100 1.19 20.40 352.12 2867.55 1774.61 105.39 21.12

100–1400 0.38 5.49 92.77 667.04 444.31 22.78 4.15

From 2000
to 2009

−140 to
−100 3.36 12.28 147.25 470.17 149.40 14.39 1.74

−100 to −60 20.63 66.89 834.75 3121.54 955.57 58.83 13.3
−60 to −20 90.56 246.75 2709.11 10,030.34 2757.22 155.02 37.61
−20 to 20 299.11 629.70 5964.38 20,745.68 4914.82 370.04 74.94

20–60 88.4 228.38 2748.58 9998.40 2771.69 202.98 40.93
60–100 12.2 43.28 790.68 3456.15 1050.63 79.12 18.63

100–1400 1.8 4.89 113.25 644.07 199.38 13.01 2.90

Table 7 demonstrates that the decrease in elevation results in a decrease in the susceptibility
assessment level. There is a positive correlation between the elevation difference and the difference in
the assessment level. Regardless of the level difference, the elevation difference is much larger in the
area ranging from −20 to 20 m than in other areas.

5.3. Impact of Historical Landslide Events on Susceptibility Assessment

Most of the factors influencing susceptibility assessments have been explored in several
studies [48–50]. However, much of the historical research overlooks the impact of historical landslide
events on the assessment [51]. In contrast, because the slopes where landslides occur become stable
in the short term following these events, the susceptibility of the area will consequently decrease.
Therefore, historical landslide events have a significant effect on susceptibility assessments.

The numbers and percentages of historical landslide events at various assessment levels from
2000 to 2009 and the RNA values of the various assessment levels are investigated, allowing the change
in the assessment levels of the historical landslide events to be obtained (Table 8 and Figure 11).

In Figure 11, the circles represent the percentages of historical landslide events or the RNA values
at various assessment levels. It can be seen from Figure 11 that over one-third of the historical landslide
events (38.71%) occur at a decreasing assessment level. A total of 54.24% of the historical landslide
events are within the same assessment level. If the assessment level area is larger, then there may
be more historical landslide events within that assessment level. To rule out the possible influence
of area size, the RNA is considered to be the most important factor. The RNA at decreased levels
(81.31 × 10−3/km2) is more than fifteen times greater than the RNA at increased levels (5.25 × 10−3/km2).
Previous studies [52,53] do not take into account the impact of historical landslide events; therefore, the
above results can establish the importance of historical landslide events for susceptibility assessments
of landslides.
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Table 8. Numbers and percentages of historical landslide events at various assessment levels and RNA
values of various assessment levels.

Values
2000

Level I Level II Level III Level IV

2009

Number

Level I 68 25 4 8
Level II 2 35 28 20
Level III 0 13 23 47
Level IV 0 0 9 59

Percentage

Level I 19.94% 7.33% 1.17% 2.35%
Level II 0.59% 10.26% 8.21% 5.87%
Level III 0 3.81% 6.74% 13.78%
Level IV 0 0 2.64% 17.3%

RNA
(10−3/km2)

Level I 3.73 6.36 5.80 15.50
Level II 0.59 3.93 9.50 36.83
Level III 0.00 2.69 2.57 7.31
Level IV 0.00 0.00 1.97 4.77Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 18 
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5.4. Advantages and Limitations

The elevation, topography, and slope—depending on the DEM—are usually the main factors
affecting susceptibility [23]. The existing studies assume that the influencing factors for susceptibility
are constant over time [15,54]. However, the DEM data always change significantly over time owing
to landscape reshaping, such as landslides and engineering construction [30,31,55]. A susceptibility
assessment is, therefore, closely related to the data source [56], and as such the susceptibility maps of
the study area are not consistent.

Despite this, the existing studies have analyzed the susceptibility of landslides using a single
time-related data source without considering whether the date of the data source is consistent with the
study date [57,58]. Therefore, it is necessary to understand the temporal evolution of influencing factors
(e.g., topography) and the influencing mechanisms of the factors on the susceptibility assessment [59,60].
The changes in influencing factors are significant in earthquake- and landslide-prone areas [61], such
as the study area. Therefore, more research regarding the impacts of factors on the susceptibility of
landslides needs to be undertaken. It is better not to evaluate susceptibility simply using constant factors.

The present study performs a preliminarily analysis of the impact of multitemporal DEM on
susceptibility and shows that DEM variation has an impact on the susceptibility assessment using
DEM-dependent factors. The analysis undertaken here can extend the knowledge regarding the
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impacts of multitemporal data on susceptibility and can aid preliminary studies on the mechanism
causing the influence of factor variation.

DEM variation closely relates to local geotechnical properties, which change the susceptibility
assessment of landslides. However, the reasons for DEM variation are debated. The mechanism
explaining the consequent influences of geotechnical properties on DEM variation remains a scientific
challenge. In addition, considering the large spatial extent and period (about 77,000 km2, 17 years) in
the present study, changes between the three susceptibility maps could not be completely explained
by DEM variation. There are also data limitations and difficulties in analyzing the interactions of
various factors.

6. Conclusion

In the present paper, DEM data for 1992, 2000, and 2009 are obtained to evaluate the susceptibility
of landslides. Based on the DEM-dependent factors and the same DEM-independent factors, the
susceptibility results are evaluated using LRM.

From the assessment, we find that the results are different by using DEM data from different
times. The rapid decrease in the area of level IV from 2000 to 2009 is noticeable. The RNA for level IV
in 2009 is larger than in 1992 and 2000. The area of increased susceptibility is much larger than that
of decreased susceptibility based on the results of the assessment level differences from 1992 to 2000,
which differ from the results from 2000 to 2009.

From the assessment results, we conclude that the DEM data have an impact on the susceptibility
assessment in the study area. It is also worth noting that the influences of the specific values of the
elevation differences on the assessment results are obtained. Meanwhile, the influence of historical
landslide events on the susceptibility assessment is obtained by analyzing the hazard data and the
differences between the assessment results. The most obvious finding to emerge from the analysis is
that the assessment level of the area with historical landslide events decreases. The present study goes
some way towards enhancing our understanding of the impacts and the mechanism of multitemporal
factors on susceptibility.
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