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Abstract: The present paper reports the preparation of multilayer protonic ceramic fuel cells (PCFCs)
using a single sintering step. The success of this fabrication approach is due to two main factors: the
rational choice of chemically and mechanically compatible components, as well as the selection of a
convenient preparation (tape calendering) method. The PCFCs prepared in this manner consisted of
a 30 µm BaCe0.5Zr0.3Dy0.2O3–δ (BCZD) electrolyte layer, a 500 µm Ni–BCZD supporting electrode
layer and a 20 µm functional Pr1.9Ba0.1NiO4+δ (PBN)–BCZD cathode layer. These layers were jointly
co-fired at 1350 ◦C for 5 h to reach excellent gas-tightness of the electrolyte and porous structures for
the supported and functional electrodes. The adequate fuel cell performance of this PCFC design
(400 mW cm−2 at 600 ◦C) demonstrates that the tape calendering method compares well with such
conventional laboratory PCFC preparation techniques such as co-pressing and tape-casting.
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1. Introduction

Protonic ceramic fuel cells (PCFCs) form a class of fuel cells (FCs) providing highly efficient and
economically advantageous chemical-to-electrical energy conversion at elevated temperatures [1–5].
A proton-conducting electrolyte membrane as a PCFC’s heart transports proton charge carriers
with high levels of ionic conductivity compared with those of oxygen-ionic electrolytes of the
traditional solid oxide fuel cells (SOFCs), owing to the corresponding high mobility/concentration
of protons [6–9]. This allows the operational temperatures of the FCs to be decreased by ~100–300
◦C to reach low- (300–500 ◦C) and intermediate-temperature (500–700 ◦C) ranges [10–13]. As a
consequence, temperature-determined processes (electrode sintering, material interaction, thermal
misbalance, poisoning) occurring in PCFCs become less adverse factors in terms of their effect on
overall performance and FC degradation over a long-term period of operation [14–16].

Conventional FCs, including SOFCs and PCFCs, are comprised of a minimum of three functional
components (layers): electrolyte, cathode and anode. Each layer requires its own unique processing
regime [17–19]. In terms of the electrode-supported configuration of FCs, a thin electrolyte layer is
formed onto a Ni-based anode and then these two layers are jointly fired at high temperatures to form
a half-cell, combining the porous anode substrate and dense electrolyte. The next step consists of
cathode formation onto the electrolyte surface followed by its sintering at a lower temperature, which
produces the final FC [20–23]. As can be seen, the provided scheme includes several temperature
regimes along with their various parameters (temperatures, heating/cooling rates, soaking times).
Since the multi-stage preparation process of conventional FCs is time-, energy- and resource-intensive,
the possibility of transition to a single-stage preparation process is of high interest.
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The one-step sintering of FCs represents an important technological strategy, allowing the entire FC
to be produced using a single temperature regime. This strategy has recently been successfully used in
the fabrication of both SOFCs [24,25] and PCFCs [26,27]. However, it should be noted that the FCs in the
referenced studies were prepared by means of a co-pressing method requiring high pressing pressures.
Although such a method can be quite easily used for fabricating the single cells with a small size, its
adaptation for large-scale production presents severe challenges. Therefore, as an alternative approach,
we herein propose a tape calendering method as a simple, scalable and efficient means for one-step
fabrication of PCFCs. The possibility of one-step fabrication is based on our recent achievements
in materials science (the selection of chemically and thermally compatible materials [28,29]) and
technological (the rational parameter tuning of the tape calendering method [30,31]) fields.

2. Materials and Methods

In the present work, the tape calendering method was utilised to prepare the entire PCFC, which
was then sintered in a single step. In order to achieve successful results, it was necessary to take several
factors into consideration: (a) the electrolyte must be fully densified, while the electrodes should have a
sufficient porosity; (b) all the functional materials need to exhibit similar thermomechanical properties;
(c) no significant chemical interactions should occur at the anode/electrolyte and electrolyte/cathode
interfaces. Taking these limitations into account, BaCe0.5Zr0.3Dy0.2O3–δ + 0.5 wt% CuO (BCZD) was
selected as a proton-conducting electrolyte [28,32], while Pr1.9Ba0.1NiO4+δ (PBN) was used to form
a cathode [29]. In detail, BCZD is characterised by good protonic conductivity levels, coupled with
a high chemical stability in highly moisturised atmospheres. A small amount of copper oxide was
added as an aid [33,34] to promote BCZD sinterability. PBN was selected due to its good chemical and
thermal compatibilities with BCZD, even at 1350 ◦C [29].

The PCFC was fabricated according to the principal scheme presented in Figure 1. First, four
individual powders were prepared for the corresponding functional layers:

1. An anode supporting layer (ASL) was prepared by thorough the mixing of the NiO, BCZD and
pore former (starch) powders in a weight ratio of 60:40:20;

2. The anode functional layer (AFL) consisted of NiO and BCZD (without starch) powders mixed in
a weight ratio of 55:45;

3. An electrolyte layer (EL) was formed using the BCZD powder only;
4. A cathode functional layer (CFL) was prepared by thorough mixing of the PBN, BCZD and starch

in a weight ratio of 70:30:10.

The second stage included the preparation of mixtures of the corresponding powders in an organic
binder (components and their concentrations are provided elsewhere [30]). These mixtures were dried
overnight to remove evaporating solvents (acetone, benzene). The dried residues were rolled using a
Durtson rolling mill to fabricate the corresponding film layers with the required thicknesses. Since the
minimal gap between the rolls was ~100 µm, the PCFC with a 30 µm-thick electrolyte was prepared by
rolling the 100 µm-thick films several times: first EL with CFL, and then the obtained film with AFL to
produce the 100 µm-thick structure AFL|EL|CFL. The green ASL|AFL|EL|CFL cell was prepared by
co-rolling the latter film with a 500 µm-thick ASL film using a larger roll gap. Finally, the green cell
was co-sintered according to the following regime: heating up to 600 ◦C with a heating rate of 1 ◦C
min−1, heating up to 1350 ◦C with a heating rate of 3 ◦C min−1, isothermal soaking at 1350 ◦C for 5 h,
and cooling down to room temperature with a cooling rate of 3 ◦C min−1.

Scanning electron microscopy (SEM, TESCAN MIRA 3 LMU microscope, TESCAN, Czech
Republic) coupled with energy-dispersive X-ray spectroscopy (EDX, INCA Energy 350 microanalysis
system, Oxford Instruments Analytical, UK) was used to analyse the microstructural parameters of
the PCFC.
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Figure 1. Principal scheme of protonic ceramic fuel cells (PCFCs) fabricated by tape calendering method
and one-step sintering.

The fabricated PCFC was electrochemically characterised utilising a complex of Amel 2550
potentiostat/galvanostat (Amel, Italy) and a Materials M520 frequency material response analyser
(Amel, Italy) to obtain data on volt–ampere and impedance dependences. The impedance spectra
were collected in a frequency range of 3·104–5·10−2 Hz with an acceleration voltage of 30 mV and a
cell bias corresponding to open circuit voltage (OCV) or maximal power density (Pmax) conditions.
Humid air with water vapour partial pressure (pH2O) of 0.30 atm was used as an oxidant, while wet
hydrogen (pH2O = 0.03 atm) was used as a fuel. The required pH2O values were achieved by feeding
the corresponding gases through the water bubbler thermostated at certain temperatures (69 and
25 ◦C, respectively). The electrochemical characterisation of the PCFC was carried out at temperatures
varying from 550 to 700 ◦C; the cell was equilibrated for 1 h after each temperature change.

3. Results and Discussion

The electrode-supported PCFC fabricated via the tape calendering method followed by one-step
sintering and was characterised in terms of its microstructure. According to Figure 2, the thicknesses of
AFL, EL and CFL were estimated to be 40, 30 and 20 µm, respectively; while the thickness of the entire
PCFC was ~600 µm. The layers exhibit essential properties, including a dense state for the electrolyte
and a porous structure for the functional cathode and anode; moreover, there is a good interface contact
(adhesion) for both AFL/EL and EL/CFL couples. These results imply that the combination of the used
methods, temperature regimes and material compositions was quite well optimised. Here we should
stress that the present example of an asymmetric PCFC, co-sintered during a single stage, represents
one of the initial reports, achieving successful results comparable to those obtained via conventional
sintering at such high temperatures as 1350 ◦C. In other cases [26,27], asymmetric-type PCFCs were
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fabricated at lower sintering temperatures (below 1250 ◦C), which, as a rule, are insufficient for the
required densification of Zr-containing (especially, Zr-enriched) BaCeO3 materials.
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Figure 2. Cross-section of the fabricated PCFC with the 30 µm-thick BaCe0.5Zr0.3Dy0.2O3–δ (BCZD)
electrolyte and corresponding energy-dispersive X-ray spectroscopy (EDX) analysis.

Figure 3 shows the volt–ampere (U–j) characteristics of the PCFC recorded under OCV conditions
(when j = 0) to ~100 mV with a voltage step of 25 mV. The high current density conditions, corresponding
to a voltage range of 0–100 mV, were used in order to prevent significant heating of the cell. Analysing
the free-current conditions, the cell generates OCVs varying from 1.040 V at 550 ◦C to 0.935 V at 700 ◦C.
At low temperatures, these OCVs are very close to the theoretical values (1.056 V at 550 ◦C), but start
to deviate from them (by ~80 mV at 700 ◦C) at higher temperatures, indicating the electron transport
of the BCZD membrane [35]. Here, the theoretical levels were estimated on the basis of a Nernstian
equation for a pure protonic conductor (EH = RT/2F·ln[p′H2/p”H2]). The PCFC load results in the
generation of Pmax, which increases from 290 mW cm−2 at 550 ◦C to 470 mW cm−2 at 700 ◦C.
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Figure 3. Volt–ampere and power density curves for the fabricated PCFC at different temperatures.

The EIS analysis was further utilised to reveal the main factors affecting the overall fuel cell
performance. For this purpose, the impedance spectra were recorded in two conditions. One of these
corresponds to the conventional measurements at OCV, while the other is related to realising Pmax.
Despite the Pmax conditions describing the real operation of a fuel cell, this function has yet to be
analysed in detail in the literature.
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The EIS results presented in Figure 4 indicate that the spectra have different shapes depending
on the measurement temperatures and/or cell bias. In detail, at least three parts (described by RQ
elements, where R is the resistance, Q is the constant phase element) can be clearly distinguished at low
temperatures; these merge to enable the detection of at least two (low- and high-frequency) processes
at higher temperatures. Due to the revealed complexity, only the overall polarisation resistance (Rp)
was calculated in order to analyse the electrochemical behaviour of the PCFC electrodes. Considering
the temperature effect (Figure 4a), a typical decrease in both ohmic resistance (Ro) and Rp is observed,
which is in line with the thermo-activated nature of ongoing processes. However, when the bias is
changed from OCV conditions to PCFC load, the following interesting tendencies occur: Ro attains
almost constant values, but the Rp level grows more noticeably, implying a deterioration in the
electrochemical behaviour. The latter agrees with a number of studies [36–38], which report similar Rp

growth with decreasing cell bias. The observed Rp deterioration might either be associated with a
decrease in the p-type electronic conductivity of the proton-conducting electrolyte, thus providing a
lower current distribution at the EL/CFL interface [39,40], or with an increase in the concentration type
of Rp taking place at high current densities [41,42].
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Figure 4. Typical impedance spectra of the fabricated PCFC at different temperatures under conditions
corresponding to open circuit voltage (OCV) (a) and Pmax (b).

Figure 5 depicts the absolute values of Ro, Rp, Rt along with their ratio. As can be seen, the
overall PCFC resistance is equal to 0.86 Ω cm2 at 550 ◦C and 0.43 Ω cm2 at 700 ◦C for the OCV
conditions. At the same time, the Rp contribution is lower than 50% for all measured temperatures;
this indicates that the parameters of the electrolyte (resistance and, especially, thickness) are dominant
factors affecting the performance of the PCFC. When the cell bias corresponds to the Pmax conditions,
the overall PCFC resistance rises to 0.97 Ω cm2 at 550 ◦C and 0.48 Ω cm2 at 700 ◦C due to an increase in
Rp (its contribution attains ~51% at 550 ◦C and 16% at 700 ◦C). According to the obtained data, further
research efforts should be aimed at obtaining an improvement in electrode behaviour under load rather
than the conventional OCV conditions.
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To illustrate the prospect of the tape calendering method as a means of fabricating PCFCs via
a one-step procedure, a comparative analysis was performed (Table 1). As can be seen, the rational
selection of the functional materials, as well as the utilisation of convenient laboratory technology, allow
PCFC fabrication with promising performance across the intermediate temperature range. It should
be noted that the effect of ohmic resistance is excluded from consideration in order to provide a
clear relationship between the polarisation resistance and power density. From this viewpoint, the
achieved electrode activity competes with the electrochemical activity of electrodes as prepared by
other methods, although the number of temperature regimes is reduced to only one.

Table 1. Different PCFCs and their out-put performance at 600 ◦C 1.

A Number of
TS

Fabrication
Method/Technique

Rp (in Ω cm2)
at OCV

Rt (in Ω cm2)
at OCV

Pmax,
mW cm−2 Ref.

1 TC 0.18 0.61 397 This work

1 DP/P 0.20 2 0.45 2 449 2 [26]

1 DP/P 0.19 1.06 169 [27]

1 DP/P 0.30 0.88 300 [43]

1 DP/P 0.28 0.80 276 [44]

2 DP/P 0.19 0.48 566 [45]

3 DP/DC/SP 0.49 0.56 669 [46]

2 DP/SP 0.10 0.22 960 [47]

2 DP/SP 0.12 0.50 505 [48]

2 PI/SP 0.26 0.57 700 [49]

2 DP/P 0.40 0.69 421 [50]
1 Abbreviations: temperature regimes (TR), tape calendaring (TC), dry-pressing (DP), painting (P), dip-coating
(DC), screen-printing (SP), phase inversion (PI). 2 These data are provided for 700 ◦C.

4. Conclusions

The present work summarises technological advances in the fabrication of electrode-supported
protonic ceramic fuel cells (PCFCs) using a single temperature regime. This achievement was realised
due to the utilisation of the tape calendering (co-rolling) method recently adopted for solid oxide
fuel cells based on proton-conducting electrolyte membranes. The PCFC fabricated in this way
demonstrated both gas-tightness (1.03 V at 600 ◦C in the current-free mode) and high performance
(~400 mW cm−2 at 600 ◦C) as a result of achieving the required morphological properties—full
densification of the electrolyte and sufficient electrode porosity.
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