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Abstract: Vehicle re-identification is attracting an increasing amount of attention in intelligent
transportation and is widely used in public security. In comparison to person re-identification,
vehicle re-identification is more challenging because vehicles with different IDs are generated by
a unified pipeline and cannot only be distinguished based on the subtle differences in their features
such as lights, ornaments, and decorations. In this paper, we propose a local feature-aware Siamese
matching model for vehicle re-identification. A local feature-aware Siamese matching model focuses
on the informative parts in an image and these are the parts most likely to differ among vehicles
with different IDs. In addition, we utilize Siamese feature matching to better supervise our attention.
Furthermore, a perspective transformer network, which can eliminate image deformation, has been
designed for feature extraction. We have conducted extensive experiments on three large-scale
vehicle re-ID datasets, i.e., VeRi-776, VehicleID, and PKU-VD, and the results show that our method
is superior to the state-of-the-art methods.

Keywords: vehicle re-identification; attention mechanism; Siamese neural networks

1. Introduction

Vehicle re-identification (re-ID) returns a series of images containing the same vehicle ID as
that of an image from a database. It is widely used in intelligent transportation, public security,
and urban computing [1–3]. The straightforward way of vehicle re-ID is license-plate recognition [4];
however, a license plate is not always visible. Figure 1 shows the cases in which a vehicle ID cannot
be determined based on the license plate. For example, the license plates of vehicles are sometimes
occluded, illegally used, or invisible in some views. In particular, the number plates, models, and colors
of genuine cars are sometimes used in other vehicles for performing illegal activities, such as smuggling,
assembling, and scrapping and stealing vehicles, and the act of doing so is known as “car cloning.”
Therefore, vehicle IDs cannot be distinguished only based on license plates in several scenarios,
and therefore, vehicle re-ID through other image-based features is urgently needed (Code available
at https://github.com/WangHonglie/LFASM_pytorch).
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(a) (b) (c)

Figure 1. Cases in which vehicle IDs cannot be determined according to the license plate: (a) License
plate occlusion (e.g., dirt and reflection); (b) illegal use of license plate (e.g., License plate does not
match the car); and (c) invisible license plate.

In recent years, deep learning [5], person re-ID [6–8] and fine-grained retrieval [9,10] have gained
remarkable success. Vehicle re-ID datasets, such as VeRi-776 [3], VehicleID [11], and PKU-VD [12],
have been released, thereby facilitating research on deep learning. However, because of the
inconspicuous divergences among vehicles, vehicle re-ID is still difficult.

The main challenge of vehicle re-ID is distinguishing between two vehicles of the same or similar
types. Images of different IDs which are captured from the same view may be more alike than those
with the same ID but captured from different angles. Owing to camera resolution and shooting
angle, obtaining a very high-quality vehicle image is sometimes difficult. Thus, vehicles always have
inconspicuous differences, as shown in Figure 2. Different vehicles of the same model are similar in
global appearance, and thus difficult to distinguish. Most existing studies focus on the entire image,
and such subtle differences cannot be easily distinguished.

(a) (b)

Figure 2. (a) The two vehicles above are of the same type but have different IDs. They can be distinguished
based on the windshield stickers (green box) and ornaments (red box). The two vehicles below are of
a similar type but have different engine hoods (pink box), headlights (blue box), and air intakes (yellow box).
(b) It is obviously easier to distinguish the vehicles based on their key parts.

Unlike general classification problems, the number of categories in a re-ID problem is uncertain.
Therefore, some metric learning methods are committed to reducing the distance between images of the
same vehicle, and enlarging the distance between images of different vehicles. Schroff et al. [13] proposed
triplet loss, which directly optimizes the feature embedding. Bai et al. [14] combined the local structural
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constraints to generate feature embedding more effectively. He et al. [15] proposed the Triplet-Center loss,
which jointly considers the distances inside a class and relationships between different classes.

In this paper, we propose an effective feature extractor to find more fine-grained features by
training it using two supervising methods. The first is an end-to-end classification module, in which
a local net is aimed at selecting the regions of interest and another extractor, transposed convolutional
layer (CTL), is proposed to find more implicit features. The other supervising method is a Siamese net,
which matches the local features of two images and supervises attention better. Inspired by the spatial
transformer network (STN) [16], we propose a perspective transformer network (PTN), which has
greater degrees of freedom and can eliminate the deformation in images. To demonstrate an improved
accuracy of retrieval, we have re-ranked the re-ID results given by Zhong et al. [17], thereby effectively
ranking more true images at the top of the ranking list.

In summary, our major contributions to the literature of this field are threefold.

• We propose a local feature-aware Siamese matching model (LFASM) that can learn the local
feature matching of different images. This is done by providing additional supervision so that
the network is better trained, increasing the distance between classes, and reducing the distance
within classes.

• To focus on the informative parts, we propose a local feature net that provide supervised
attention to the regions of interest, thereby assigns different weights to different parts of the
input. Unlike some methods [18–20] based on additional information (such as spatial, temporal,
and part labels), our method is only based on the images of vehicles.

• We also propose a PTN, which can project a picture to a new view plane and eliminate
the deformation of images. Compared to STN [16], PTN has greater flexibility for
image transformation.

The remainder of this paper is organized as follows. Section 2 provides an overview of the related
work. Section 3 describes the proposed local feature-aware Siamese matching model for vehicle re-ID
and some details about our experiment. In Section 4, we discuss the experimental results, and Section 5
gives our conclusions.

2. Related Work

In this section, we review the existing studies on vehicle re-ID.

2.1. Vehicle Re-ID

Vehicle re-ID has become a major research area over the past decade. Owing to the development
of the convolutional neural network (CNN) [21,22], the extraction of deeper features of images has
become easier. Liu et al. [3] released the VeRi-776 dataset, which includes ultiview vehicle images,
and Liu et al. [11] released VehicleID on a large scale. Yan et al. [12] contributed two rich annotated
vehicle datasets, VD1 and VD2, obtained in real time from two cities, and containing high-resolution
images. Wang et al. [19] utilized 20 key-point locations of vehicles to extract orientation information
and proposed an orientation invariant feature embedding module. De et al. [23] proposed a two-stream
Siamese classification model for vehicle re-ID, and Wei et al. [24] proposed an recurrent neural
network-based hierarchical attention (RNN-HA) network, which combines a large number of attributes
for vehicle re-ID. Bai et al. [14] proposed a group sensitive triplet embedding approach that can model
the interclass differences. Recently, He et al. [20] considered both local and global representations to
propose a valid learning framework for vehicle re-ID, however, their method depends on the labeled
parts and is therefore labor-intensive. Krizhevsky et al. [21] first proposed the use of triplet loss to help
the model directly learn feature embedding. The effect of triplet loss largely depends on the choice of
training samples. Therefore, Hermans et al. [25] proposed hard mining to choose the hard positive and
negative samples to train the network better. Furthermore, Chen et al. [26] proposed a quadruplet
network for a greater impact of training.
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2.2. Fine-Grained Visual Recognition

Although the identification of the main categories of objects is easy (such as computers,
mobile phones, and water cups), determining highly refined object classification names (such as
the type of bird and model of computers) is even more challenging. The greatest challenge is that
the visual differences between the different subcategories of the same main category are minimal.
Vehicle re-ID is a typical example of fine-grained recognition, the classification of which is mainly
conducted using a part-based model and a representation learning model. Zhang et al. [27] employed
the approach of learning of the entire object as well as the use of part detectors for fine-grained object
recognition. Fully convolutional network (FCN) attention [28] can adaptively select the attention area
and efficiently position multiple object parts. Lin et al. [29] proposed a bilinear structure comprising
two feature extractors that can model pairwise feature interactions in an invariant manner.

2.3. Attention Mechanisms

The attention mechanism stems from the study of human vision. To make rational use of the
limited visual-information-processing resources, humans must select specific parts of the visual
area, and then focus on these parts. For example, when reading, only a few words are noticed at
one time and then processed. The basic idea of visual-attention mechanisms is to enable a model
to ignore irrelevant information and focus on the significant one. The attention mechanism has
various forms of implementation; these mainly include soft and hard attention. Typical examples
of soft attention include the STN [16], residual attention network [30], and two-level attention [31].
Although the hard attention model is required to predict the region of interest, it usually learns through
reinforcement learning [32].

3. Proposed Method

We propose a local feature-aware Siamese matching (LFASM) model for vehicle re-ID. In this
section, we provide a brief overview of the problem of vehicle re-ID and put forward our framework
(Section 3.1). Then, we present the local feature-aware module, which is capable of learning more
significant information (Section 3.2 and describe how we match the corresponding parts (Section 3.3).
Finally, we propose our feature extractor in Section 3.4 and its implementation in Section 3.5.

3.1. Framework and Overview

Given a query vehicle image, the target of vehicle re-ID is to obtain a set of images from the gallery
with the same ID as that of the candidate image. At present, we believe that vehicles with the same ID
have more similar image feature embeddings. Therefore, these feature embeddings must be extracted
and the similarity score between the embeddings of this candidate image and those of other images
in the gallery must be calculated. The training set is then defined as {xi, yi}N

i=1, where yi represents
the identification label of image xi and N represents the number of training images. The similarity
between query image q and gallery image g is defined as D(φ(q; θ), φ(g; θ)), where φ(·; θ) is the feature
extractor and D(·) is a metric function. To obtain a better feature extractor, the parameter θ must be
learned through gradient descent:

θ = arg min
θ

L
(

φ(x; θ)>w, y
)

, (1)

where L is the loss function, and w is the weight vector.
Figure 3 shows the framework of the proposed LFASM model for vehicle re-ID. It comprises two

branches: one in charge of the ID classification, and the other used for Siamese local feature matching
to better supervise our attention module. Each branch comprises two modules including a local net to
output an attention descriptor, m ∈ RC×H×W . The score from the array m represents the amount of
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attention required in this area. An attention-based feature extractor is used to extract the deep features
of input images.

Local Net

feature 
extractor

feature 
extractor

L

L

siamese

label

Figure 3. Framework of the proposed local feature-aware Siamese matching model (LFASM).
The dotted line highlights the end-to-end model for feature extraction. The area outside the dotted line
is the Siamese-feature-matching module.

3.2. Local Feature

This module aims to determine which informative parts deserve the greatest attention (e.g.,
outline, lights, windshield stickers, engine hood, and ornament), as shown in Figure 2. The goal of
this study is to make our system more responsive to differences in these parts in order to effectively
distinguish vehicle identities. The local feature net is an additional neural network that assigns different
weights to different parts of the input. Our local net outputs an attention descriptor, m ∈ RH×W ,
representing the values of different parts of features. To prevent m from being negative, we used
softplus [33] as our activation function. We project the attention descriptor, m ∈ RH×W , into the first
feature map, f 1 ∈ RC×H×W , by element-wise multiplication and obtain the masked feature, f ′1 ∈
RC×H×W . For each tensor, f i,j ∈ RC and mi,j ∈ R, where (i, j) is the spatial location in f 1 ∈ RC×H×W

and m ∈ RH×W , the corresponding output tensor, f ′i,j ∈ RC, can be determined as follows:

a(i,j) = m(i,j) × f (i,j). (2)

To limit the value of m(i,j) between 0–1, we normalize the attention map m by

m =
m

max
(
‖m‖p, ε

) , (3)

where p = 2 and ε = 1 × 10−12.
Figure 4 shows the key parts of the vehicle images selected by our attention model. It can be seen

that this model filters most of the background and some parts of the vehicle with poor information.
The white part of Figure 4 represents the value of m close to 1, on the contrary, the black part represents
the value of m close to 0. This module can better find the noteworthy part of the images and reduce
the noise impression in the remainder of the image, so that the model can be more focused, and can
more readily distinguish different vehicles.
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Figure 4. Visualizations of input images and their corresponding attention descriptor.White areas
represent larger weights to the images.

3.3. Siamese Match

Although local features are always used in image retrieval [34,35], their use is not sufficient to
distinguish images only according to class labels. To enhance the training of local features in the
network, we propose a Siamese feature matching module. This module allows the network to know
whether the two input pictures belong to the same ID. This is done by providing additional supervision
so that the network is better trained, increasing the distance between classes, and reducing the distance
within classes.

Given two images,
{

p, yp
}

and
{

q, yq
}

, where y represents the identification label. The features
of these two images can be denoted as φ(p; θ) and φ(q; θ), respectively. We measure the similarity of
the two feature embeddings through a dot product:

s
(

pi, qj
)
= (Wθ pi)

T(Wφqj), (4)

where i and j are the positions of p and q in the feature map, respectively. The target label y can be
computed as

y =
1
C(p) ∑

∀j
s
(

pi, qj
)

g
(

pj
)

, (5)

where C(p) = ∑∀j s
(

pi, qj
)

aims to normalize the result; g = Wg pi and Wg are the weights to be learned
for this pair of features. While yp=yq, target label y converges to 1, else it converges to 0.

3.4. Attention-Based Feature Extractor

PTN. Vehicle pictures are taken by surveillance cameras, which essentially show the projection of the
real scene on the camera chip, as in Figure 5. Owing to the different camera parameters and environmental
factors, the obtained vehicle pictures often contain varying degrees of distortion. To eliminate the effects
of projection transformations in different scenes, we propose a PTN, which predicts the transformation
θ to apply to the input image using Equation (6), as shown in Figure 6. The main structure of the PTN
comprise two convolutional networks, both of which output a 3 × 3 transformational matrix. We apply
this transformational matrix to the features after the first block. The first two rows of the transformational
matrix are identical to the affine matrix, which implements linear transformation and translation, and the
third row is used to implement perspective transformation. x′i

y′i
w′i

 = Tθ (Gi) =

 θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33


 xt

i
yt

i
1

 , (6)

where (xt
i , yt

i) are the target coordinates of the regular grid in the output feature map, and (xs
i = x′/w′, ys

i =

y′/w′) are the source coordinates in the input feature map that define the sample points. The main purpose
of PTN is to eliminate the deformation by perspective transformations of vehicles in the images.
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Figure 5. Schematic of projection transformation. (x, y) are the coordinates in the real scene,
and (xproj, yproj) are the corresponding coordinates in the camera chip. Different cameras exhibit
different degrees of distortion.

Figure 6. The perspective transformer network(PTN) architecture, composed of two convolutional
networks, is used to transform the image. θ is a 3 × 3 transformation matrix.

CTL. We used ResNet-50 [36] as the base model of the feature extractor after PTN. As mentioned
earlier, a component in the model was dedicated to extracting explicit key areas of images;
some implicit features that play an important role in the re-ID task could not be extracted at the
pixel level. Therefore, we applied the attention map M ∈ R1×H×W to the intermediate feature map.
The activated feature, f ′ ∈ RC×H×W , can be expressed as follows:

f ′ = M⊗ f , (7)

where ⊗ and f denote the element-wise multiplication and input feature, respectively. We obtained
an attention map M through a transposed convolutional layer after a convolutional layer (CTL),
as shown in Figure 7. The main purpose of the CTL is to extract the more informative part of
the feature.
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Figure 7. Diagram of a ResBlock in the Feature Extractor. To compute attention map M, we applied
a convolutional layer and a transposed convolutional layer (both equipped with batch normalization
and ReLU) on the convolution outputs in each block.

3.5. Implementation Details

In our experiments, ResNet-50 was used as the backbone network for feature extraction.
The output of class block, x ∈ Rd, was used as the acquired image representation, and d = 512 in our
experiment. We measured the feature distances of two images by calculating the cosine distances.
The stochastic gradient descent [37] with hyper-parameters (weight_decay = 5× 10−4, momentum =

0.9, nesterov = True ) was adopted for model optimization. We set the learning rate of the fully
connected layer to 0.005 and the other layers to 0.001 with a gradual decrease. All the images were
scaled to 256× 256 pixels.

Even if the features could be effectively clustered, if our query lies at the edge of the space in
its category, we inevitably obtain a considerable amount of true negatives, as shown in Figure 8.
One of the solutions to retrieve more true-positives is to enlarge the distance between different clusters.
For this purpose, we set the arcFace loss [38] to measure the distance between the images; it uses
angular distance to represent the distances between features. Furthermore, the scaling factor s was set
to 10 in our experiments. Algorithm 1 depicts the whole pseudo code algorithm employed to train the
proposed neural network architecture.

L =
1
N ∑

i
− log

es
(

cos
(

θyi ,i+m
))

es
(

cos
(

θyi ,i+m
))

+ ∑j 6=yi
es cos(θj ,i)

(8)

Algorithm 1 Framework of LFASM.

Input: Two labeled images {p, yp} and {q, yq}; Local Net θ (·, wl); Feature extractor ϕ
(
·, w f

)
Output: Feature embedding femb

1: while maximum iterations not reached do
2: Extract features: fi=ϕ

(
i, w f

)
for all i=p,q;

3: Extract attention map: ai=θ (i, wl) for all i=p,q
4: Deep feature map:φ(i; θ) = concat(ai × fi, ai)for all i=p,q
5: y← 1

C(p) ∑∀j s
(

pi, qj
)

g
(

pj
)

// i and j are the positions of p and q in the feature map,
6: femb ← φ(q; θ)

7: Fine tuning:min(L( femb, yq) + L(y, i f yq = yp))
8: end while
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Figure 8. When the query is at the edge of the space in its category (left sample), it is more easily recalled
as a false-positive. One of the methods to avoid this is to enlarge the inter class distance (right sample).

4. Experiments

4.1. Dataset and Metric

To verify the effectiveness of the proposed LFASM method, we conducted experiments on three
important datasets, namely VehicleID, VeRi-776, and PKU-VD, and compared our results with those of
the state-of-the-art vehicle methods for re-ID.

VeRi-776 [3] contains roughly 50,000 images of 776 vehicles captured by 2–18 cameras from
different view angles. Every image in the query set contained 678 images of 200 vehicles, in which the
images were captured by all the cameras in the cars.

VehicleID [11] comprises 221,763 images of 26,267 vehicles captured by different cameras and
provides three test subsets of different sizes, with 800, 1600, and 2400 gallery images, respectively,
such that we can evaluate our model on different data scales. The dataset contains images captured
from two view angles: front and back.

PKU-VD [12] contains a large number of images with rich annotations (vehicle model and color).
So far, it is the largest dataset for vehicle re-ID and is divided into two subsets: VD1 and VD2.
The images in VD1 and VD2 were captured from surveillance videos and traffic cameras, respectively.
They comprise approximately 1,098,649 and 807,260 images, respectively.

We computed the mean average precision (mAP) to evaluate the performance of our model.
Average precision (AP) is a measure that considers both recall and precision. The AP for image q can
be expressed as

AP(q) = ∑k P(k)× rel(k)
Ngt(q)

,

where Ngt(q) is the number of ground truths, P(k) is the precision at rank k, and rel(k) = 1 when the
matching of query image q to a test image is satisfied at rank k.

The mAP is the mean value of APs of all queries and can be expressed as

mAP =
∑q AP(q)

Q
,

where Q is the number of query images. The mAP combines both precision and recall and is
a comprehensive evaluation criterion.
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4.2. Main Result

We present our results on three benchmark datasets: VeRi-776 [3], VehicleID [11], and PKU-VD [12]
and compare the results with those of state-of-the-art vehicle re-ID methods. Table 1 shows the flops
counter for each parts in LFASM.

Table 1. Flops counter for each parts in LFASM.

Module Input Resolution Params (M) MACs (G)

LAF 234 × 234 51.69 19.46

PTN 234 × 234 0.97 0.09

SFM 234 × 234 8.40 0.008

LFASM 234 × 234 60.09 19.47

VeRi-776: The total numbers of query and gallery images were 1678 and 11,579, respectively.
We compared the proposed LFASM with the state-of-the-art vehicle re-ID methods. First, we considered
LOMO [39], which utilizes a handcrafted local feature for person re-ID; it solves the problems associated
with view and illumination variations. The GoogLeNet fine-tuned on the CompCars dataset [40] can
extract high-level semantic attributes of the vehicle appearance, while VAMI [41] is a viewpoint-aware
attention model used to extract the core area from different views through an adversarial network,
and QD-DLF [42] has different directional feature pooling layers. Siamese-CNN + Path-LSTM [18] is
a two-stage framework that combines complex spatiotemporal information and effectively regularizes
the re-ID results.

The comparison results on the VeRi-776, presented in Table 2 show that our proposed LFASM
model achieves accuracies of 61.92%, 90.11%, and 92.91% mAP, top-1, and top-5, respectively. The ROC
curves for the VeRi-776 are plotted in Figure 9, and the Area Under the Curve (AUC) is 0.974.
The standard deviation values (std) of ap is 0.236. To determine the effect of each component in
our model, we conducted an ablation study on VeRi-776. Our framework comprises three components:
a PTN, local aware features (LAF), and Siamese feature match (SFM). We removed one component at
a time and retrained the remaining network to evaluate the model performance in the absence of the
removed component. Our model was able to achieve accuracies of 52.69%, 83.41%, and 90.81% for mAP,
top-1, and top-5, respectively, without either PTN, SFM, or LAF, and the results were considered to be
the baseline. The results of other comparative experiments are detailed in Table 3. The performance
shows that the attention module has the most significant influence on the learning process; the other
modules were also found to have improve the experimental results.

Table 2. Performance (%) comparison of different methods on the VeRi-776 dataset.

Method mAP Top-1 Top-5

BOW-SIFT [43] 1.51 1.91 4.53

LOMO [39] 9.78 23.9 39.1

GoogleNet [40] 17.8 50.7 67.5

VAMI [41] 50.1 77 90.8

QD-DLF [42] 61.8 88.5 94.5

Siamese-CNN + Path-LSTM [18] 58.3 83.5 90.0

LFASM (Ours) 61.92 90.11 92.91
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Table 3. Ablation study on the VeRi-776 dataset.

Method mAP Top-1 Top-5

baseline 52.69 83.41 90.81

PTN 55.27 86.18 89.96

LAF + PTN 58.8 87.25 91.2

SFM + LAF +PTN 61.92 90.11 92.91

Figure 9. The receiver operating characteristic(ROC) curve of LFASM on VeRi.

VehicleID: VehicleID has a larger number of images than that of VeRi-776, with both front and
rear views of the vehicles. The testing data of VehicleID were split into three subsets, as detailed
in Table 4.

Table 4. Number of images and IDs in different sizes of VehicleID subsets.

ID 800 1600 2400

images 6493 13,377 19,777

Table 5 presents the comparison results on the VehicleID dataset. As shown, our model achieves
the highest top-1 rate and exhibits robust performance with respect to other evaluation indices.

PKU-VD: Furthermore, we tested our method on the PKU-VD dataset, in turn, the two
subdatasets: VD1 and VD2. Each subdataset is further divided into test sets of the following three sizes:
small, medium, and large. Table 6 presents the number of test images in each subdataset. We followed
the official setting provided by [12] for our model evaluation. Both VD1 and VD2 comprise 2000 query
images, and the number of gallery images is listed in Table 6. Our method was also able to achieve
good performance on a large-scale dataset, as detailed in Tables 7 and 8.



Appl. Sci. 2020, 10, 2474 12 of 15

Table 5. Performance (%) comparison of different methods on the VehicleID dataset.

Method
Small Medium Large Mean

mAP Top-1 Top-5 mAP Top-1 Top-5 mAP Top-1 Top-5 mAP Top-1 Top-5

DenseNet121 68.8 66.1 77.8 69.4 67.3 75.4 65.3 63.1 72.6 67.8 65.5 75.3

QD-DLF 76.5 72.3 92.5 74.6 70.7 88.9 68.4 64.1 83.4 73.2 69.0 88.3

Ours 76.2 91.3 93.6 72.2 88.6 92.4 71.9 89.8 93.5 73.4 89.9 93.2

Table 6. Total number of test images in VD1 and VD2.

Dataset Small Medium Large

VD1 106,887 604,432 1,097,649

VD2 105,550 457,910 807,260

Table 7. Performance (%) comparison of different methods on the PKU-VD1 dataset.

Method mAP

MGR [12] 79.1

QD-DLF [42] 87.5

LFASM (Ours) 89.3

Table 8. Performance (%) comparison of different methods on the PKU-VD2 dataset.

Method mAP

MGR [12] 74.7

QD-DLF [42] 84.6

LFASM (Ours) 86.2

Figure 10 shows the results returned by the LFASM. Each row indicates a query image and its
top-5 retrievals. As shown, the model performs effectively on most data except for those containing
vehicles with a dim background.

Figure 10. Top-5 re-ID results. Green boxes denote true positives, while red boxes denote false positives.
The five rows on the left are sampled from Vehicle-ID, and those on the right are sampled from VeRi-776.
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Feature correspondences. The main feature of LFASM is its focus on the informative parts of
images. Furthermore, we demonstrate the feature correspondence between the query and gallery
images to reveal the function of LFASM when retrieving images. We extracted the local descriptor using
an attention map and utilizing the nearest neighbor search (NNS) to find the best matches in each image.
As shown in Figure 11, our model can effectively match the key parts (i.e., lights, windshield stickers,
and engine hood). Therefore, our method can be used to retrieve images according to the number of
matches in some other scenarios. However, using the distance between the feature vectors directly,
accurate results can be obtained on the three datasets.

Figure 11. Visualization of the local-feature matches with the highest responsiveness among various
pictures obtained by extracting and comparing local features.

5. Conclusions

In this paper, we proposed a model that combines the LAFs of vehicle images. In addition
to global features, LFASM emphasizes the significant parts that are most likely to be different in
vehicles with different IDs. This encourages the model to focus on more details in local regions.
Furthermore, we applied local-feature matching, which compares the local features of two embeddings
and helps the local net to better learn an attention map. Moreover, the PTN allows images to be aligned
directly without the need to match key points, thereby facilitating image identification by the model.
The experimental results on three large vehicle datasets show that LFASM can extract discriminative
features and achieve excellent performance. On the other hand, as shown in Figure 10, the model
performs well on most data except for those containing a dim background. In some other scenarios,
such as in the case of different views of two cars or in the absence of shared parts in the two cars,
it is difficult for our model to achieve effective identification. Improving recognition of vehicles with
different views is the focus of future work.
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