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Featured Application: The result of this paper is a deep-learning-based application for vehicle
moving-violation detection, which achieves effective detection performance under various
lighting conditions. The technique can be used as an assistance tool for on-road closed-circuit
television cameras.

Abstract: In this paper, we develop a real-time intelligent transportation system (ITS) to detect
vehicles traveling the wrong way on the road. The concept of this wrong-way system is to detect such
vehicles as soon as they enter an area covered by a single closed-circuit television (CCTV) camera.
After detection, the program alerts the monitoring center and triggers a warning signal to the drivers.
The developed system is based on video imaging and covers three aspects: detection, tracking, and
validation. To locate a car in a video frame, we use a deep learning method known as you only look
once version 3 (YOLOv3). Therefore, we use a custom dataset for training to create a deep learning
model. After estimating a car’s position, we implement linear quadratic estimation (also known as
Kalman filtering) to track the detected vehicle during a certain period. Lastly, we apply an “entry-exit”
algorithm to identify the car’s trajectory, achieving 91.98% accuracy in wrong-way driver detection.

Keywords: convolutional neural networks (CNNs); intelligent transportation system (ITS); you only
look once version 3 (YOLOv3); linear quadratic estimation (LQE)

1. Introduction

With the development of the fourth industrial revolution, the role of the intelligent transportation
system (ITS) is becoming more and more crucial for ensuring the safety and efficiency of drivers. The
purpose of a vision-based ITS is to extract useful and precise traffic data, and to use surveillance
technologies as efficiently as possible. According to the National Information Society Agency, there
were more than eight million closed-circuit television (CCTV) cameras installed in Korea by the year
2018, which gives the country one of the highest cameras-per-capita rates in the world. CCTV footage
certainly cannot be a perfect solution for all traffic violations. However, it is widely and increasingly
used by government officials to identify serious violations, along with evidence, testimonies, and
documents. Typically, driving the wrong way down a road happens for several reasons: the driver is
distracted or confused; the driver did not notice the pavement markings or traffic signs; the driver
intentionally breaks the rules; etc. Even though recent pavement delineations and signs are innovative,
they might not be enough to alert drivers to wrong-way entry, and car accidents continue to happen.
Even though it is almost impossible to control human driving behavior, it is important to classify and
understand irregular activity in usual traffic scenarios in order to prevent serious car crashes. So far, the
identification task is performed by people who work in monitoring companies. Nevertheless, with the
significant increase in camera devices, the need for automated intelligent software is demanded even
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more. Wrong-direction detection technologies can be divided into three major categories: sensor-based
detection, radar-based detection, and video imaging-based detection. The focus of this research is to
automate the recognition of moving violations, thus requiring less human interaction, as well as to
identify (using a single video camera) vehicles entering traffic the wrong way onto the highway system
(Figure 1).
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While our proposed system relies on video imaging-based detection, it references three different
computer vision challenges such as vehicle’s localization, tracking, and determining direction.
Vision-based learning is one of the cheapest methods and requires lower labor costs by saving
people’s time, as well as lowering costs by using fewer machines and by eliminating faulty products.

2. Background

To determine a car’s direction, the car itself should be identified, so detection is the first step
in our research. Wrong direction estimation is not a contemporary problem, and in this section, we
describe and implement different techniques in computer vision to compare different detection and
tracking algorithms for vehicles. These techniques include well-known machine learning and deep
learning methods.

2.1. Vehicle Detection and Segmentation

2.1.1. Detection Using Background Subtraction

Background subtraction (BS) is a widely used technique for applying a foreground mask for
static cameras. Moving objects in the foreground are separated by calculating the foreground mask
and subtracting it from the current frame and background model, containing the static part of the
scene. Everything moving is considered characteristic of the foreground. BS is performed using two
main functions: background initialization and background update. BS algorithms have already been
implemented in open-source computer vision libraries such as OpenCV. In OpenCV, two background
subtraction methods were implemented: k-nearest neighbor (KNN) algorithm [1] and Gaussian
mixture-based background/foreground segmentation algorithm (MOG2) [2,3].
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BS showed instability on the false positive detections when it detected several closely located cars
as one (Figure 2). The method is very sensitive to changing lighting conditions and, as an example, the
results obtained during nighttime could be unacceptably inaccurate.
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2.1.2. Optical Flow

One of the machine learning methods for locating a car is an optical flow which is the pattern
learning of a moving object. The most widely used optical flow method in computer vision is called
the Lucas–Kanade method [4]. The basic idea of optical flow is to assume that the color or intensity
of a pixel is constant under displacement from one frame to the next. This optical flow estimation
algorithm also assumes that an object’s frame-to-frame displacement distance is small and local. In
addition, the objective measurement of the local level of reliability of motion information is provided.
Shi and Tomasi [5] increased tracking performance by modifying the “good feature” selection criterion
of reliability in order to evaluate the texture features of areas, which later led to the creation of the
Kanade–Lucas–Tomasi (KLT) tracker [6] (see Figure 3). However, according to Barron et al. [7], optical
flow computation techniques are very sensitive to noise and object illumination. Generally, optical
flow can be unreliable in cases where the brightness intensity changes, and object occlusions happen.
Since our task in focus requires a minimal error rate, usage of optical flow as a detector could be
unacceptable due to the changing lighting and weather conditions.

Monteiro et al. [8] described optical flow-based wrong-way driver detection. Their proposed
system was separated into three main stages: learning, detection, and validation. For the learning stage,
which is the car detection phase, they combined the Lucas–Kanade optical flow method with Gaussian
mixture models [9]. They mentioned that their system could detect vehicles moving in the wrong
direction from a 320 × 240 pixel image at 33 frames per second (fps). Accordingly, the experiments
conducted on many scenes demonstrated that their proposed system has the following properties:
wrong-way vehicle detection, speed, and robustness to illumination and weather conditions. However,
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the simulation results and experiments on system accuracy were insufficient to prove the applicability
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2.1.3. Convolutional Neural Network (CNN)-Based Detection Methods

Convolutional neural networks (CNNs) are predominantly used as learning structures for image
understanding. The benefits of using CNNs are that fewer learning parameters might be used, which
greatly improves the learning time and reduces the amount of data required to train the model. A
convolution is a weighted sum of the pixel values of an image as the window slides across the whole
image. Basically, the convolution process throughout an image with a weight matrix produces another
image. The CNN-based approach may be considered one of the best ways to precisely detect a vehicle’s
position in an image, and so far, it includes sophisticated methods such as the single shot multiBox
detector (SSD) [10], the faster regional CNN (faster R-CNN) [11], and you only look once (YOLO) [12].
All these methods have a similar average precision on detections. However, there is a significant
difference in the inference time with each method. Although the faster R-CNN (a region proposal
network) was the best detection method on Pascal Visual Object Classes (VOC) and Common Objects
in Context (COCO) dataset challenges in 2012 and 2015, respectively, we decided to use the YOLOv3
network due to the speed performance.

As Figure 4 shows, all the compared methods have similar mean average precision, but with a
huge gap between them for processing times. Since our project is highly reliant on fast processing, we
chose to use YOLOv3-416 which took 29 ms to process the COCO dataset.
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2.2. Vehicle Tracking

Car tracking is based on object-tracking techniques and includes three main processes: (1) taking
an initial set of detected objects; (2) registering the detected cars and giving them unique identifications
(IDs); (3) tracking them as they move around a continuous frame, maintaining the ID assignments, and
erasing them once the cars disappear. Moreover, object tracking allows us to count several cars in a
frame by counting unique object IDs. Ideally, an object tracking algorithm must satisfy the following
conditions:

• require the object detection phase only once;
• be much faster than the actual object detector itself;
• handle a tracked object that “disappears”;
• be robust to occlusions;
• pick up objects that are “lost” between frames.

2.2.1. Contour-Based Tracking

The main idea behind contour-based tracking is to define the boundaries of a vehicle. Ambardekar
et al. [14] proposed pose detection of a vehicle by using optical flow and camera parameters. According
to the authors, part of the system tracks the blobs and tries to correct the errors from the foreground
object detection module by estimating the three-dimensional (3D) world coordinates of the points on
the vehicles. The system then groups those points together to segment and track the individual vehicles.
The authors emphasized that their proposed technique has occlusion detection and multi-vehicle
tracking [15].

2.2.2. Kalman Filter for Tracking

Kalman filtering also known as linear quadratic estimation (LQE) is a series of measurements
observed over time (in our case, frame by frame). The Kalman filter is a powerful tracking method, for
extracting motion from video sequence surfaces over collections of points. It is an optimal estimator
that infers the parameters of interest from indirect, inaccurate, and uncertain observations. The Kalman
filter consists of two steps: prediction and update. The first step uses previous states to predict the
current state. The second step uses the current measurement, such as detection of bounding box
location, to correct the state. The Kalman filter has the following important features that tracking can
benefit from:

• predict the object’s upcoming location;
• correct the prediction based on new measurements;
• reduce noise introduced by inaccurate detection;
• facilitate the process of associating multiple objects with their tracks.

The Kalman filter tracker is fast, which is an advantage over other tracking algorithms. Therefore,
we updated the original algorithm and used it in our project as the main tracking method.

Despite quite the variety of methods, we focus on improving the time speed of detection,
robustness in different lighting conditions, and accuracy. Therefore, we combined the YOLOv3 method
for detection with the Kalman filter for tracking estimation.

3. Proposed System

3.1. Detection and Tracking

We separate our task into three main steps: detection, tracking, and direction checking. YOLOv3
is an object detection method targeted at real-time video processing. The result of the YOLOv3
model extracts a vehicle’s bounding box information in order to apply robust tracking algorithms and
identify direction.
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First, we send a continuous frame to the pre-trained YOLOv3 model that returns us bounding
boxes of vehicles. Our algorithm is based on centroid tracking, which is a multi-step process. Centroid
tracking assumes that we are passing (x, y)-coordinates in a set of bounding boxes for each detected
object in each frame. Once we have the bounding box coordinates, we compute the “centroid” (i.e.,
the center (x, y)) coordinates of the bounding boxes. Since these are the initial set of bounding boxes
presented to our algorithm, we assign them unique IDs. Then, we calculate the cost value between the
detected car and its prediction. If there are multiple detections, we need to assign each of them to a
tracker. We use intersection over union (IOU) of the tracker bounding box and detection bounding box
as a metric. We maximize the sum of the IOU assignment using the Hungarian algorithm [16]. The
machine learning package scikit-learn has a build-in utility function that implements the Hungarian
algorithm. Then we implement updated Kalman filter equations that are described by Welch and
Bishop [17] to predict multiple car objects from a video frame.

1. Prediction phase Notations: x—state mean, P—state covariance, F—state transition matrix,
Q—process covariance, B—control function (matrix), u—control input.

x = Fx + B ∗ u Predicted (a priori) state estimate; (1)

P = FPFT + Q Predicted (a priori) error covariance. (2)

2. Update phase Notations: H—measurement function (matrix), z—measurement, R—noise
covariance, y—residual, K—Kalman gain.

y = z−Hx , Innovation or measurement pre− fit residual; (3)

Sk = HPHT + R, Innovation (or pre− fit residual) covariance; (4)

K = P ∗HT
∗ Sk

−1, Optimal Kalman gain; (5)

x = x + K ∗ y, Updated (a posteriori) state estimate; (6)

P = (I −KH)P , Updated (a posteriori) estimate covariance; (7)

y = z−H ∗ x̂, Measurement post− fit residual. (8)

The formula for the updated (a posteriori) state estimate works each time for the measurement
update pair. The process is repeated with the previous (a posteriori) estimates used to project or predict
the new (a priori) estimates. An implementation of the updated Kalman filter algorithm can be found
in Algorithm 1. Then we used OpenCV drawing libraries to draw tracking lines on each detected car.
Figure 5 presents the full pipeline of our proposed method.
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Algorithm 1. Pseudo-code for Kalman filter tracker.

Object tracking function (x, y centroid)
for (iterate ≥ number of detected centroids):

if (no track vectors found)
Create tracks

Calculate cost using sum of square distance
Assign detected measurements to predicted classes using Hungarian algorithm

if (tracks with no assignment)
Identify tracks
if (tracks are not detected for long time)
Delete tracks
else
Start new tracks
Update Kalman Filter state, last results and tracks trace

3.2. Direction Estimation

This section describes the method for vehicle trajectory estimation. To check the direction of a
tracked vehicle we calculate the difference in the pixels in the FN-frames range, where N- is the number
of frames to track a unique vehicle. First, we calculate the centroid from a detected car’s bounding box
and set it to be the initial points (X0, Y0) in the frame (F0). Then, as the car moves, the position of the
centroid changes from frame to frame. Thus, we calculate the pixel difference in the range (X1, Y1) to
(XN, YN) for each frame, where X1, Y1 indicates the car’s centroid position in the frame (F1), along
with XN and YN in frame (FN). For example, let us assume we use six frames for tracking. The pixel
position difference would be ∆X =X5 − X1. Basically, we take the second frame as an initial starting
point and the sixth frame as the ending point. This is due to the ID assignment step that is done on the
first frame as soon as a car is detected. To find the direction, we do simple math: if ∆X is negative and
X5 is smaller than X1, the car is moving from right to left; vice versa, then it is moving left to right.
Algorithm 2 describes the pseudo-code to validate the car’s direction.

Algorithm 2. Pseudo-code for the direction check.

if (length of centroids > 0)
for (iterate ≥ number of detected centroids):

for (iterate ≥ N, where N number of tracking frames for unique cars)
take X1, Y1 positions from tracker
take ID for unique car
∆X = XN − X1 if (check ∆X sign and X1 with X2)
assign direction

Figure 6 visually explains the changing vehicle’s position within N = 6 frames. Green dots show
the displacement of the car through each frame. The displayed text “West” in this case shows that the
car in the video is moving from right to left.



Appl. Sci. 2020, 10, 2453 8 of 13
Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 13 

 
Figure 6. Displacement of a car within N = 6 frames. 

3.3. Direction Validation 

To determine if the car is going the right way, we created the entry-exit approach. The idea 
behind it is simple and effective. We create imaginary entry lines on the video frame. If a vehicle 
crosses the entry lines, the given unique ID of the car is stored in a list, and if it passes through the 
exit area the ID is removed from the list. 

As seen in Figure 7, we crop the video frame to the required region of interest. Traffic must go 
from the right side to the left (lines 1–4). Green lines represent correct entry and exit directions. Red 
lines represent directions in which vehicles must not move (lines 5–7). We create three imaginary 
areas for entering and exiting. Imagine the usual case when the car enters the first area. In such a case, 
when the car’s centroid passes through area A, the ID of the car is stored in list 1 and remains there 
until the car exists from any exit. If the car enters from area B, the ID is stored in list 2 and the car 
must exit in area C; otherwise, the car will be detected as the moving the wrong way, and a warning 
signal will be triggered. If the car enters in area C, this is always the wrong way and the ID of the car 
is stored in list 3 to check the area from which it exited. Even if a car enters from area C, the alert 
signal is sent when the car is moving. The algorithm validates according to the vehicle’s centroid 
position. 

 
Figure 7. The entry-exit approach (black lines represent the borders of the frame). 

Figure 6. Displacement of a car within N = 6 frames.

3.3. Direction Validation

To determine if the car is going the right way, we created the entry-exit approach. The idea behind
it is simple and effective. We create imaginary entry lines on the video frame. If a vehicle crosses the
entry lines, the given unique ID of the car is stored in a list, and if it passes through the exit area the ID
is removed from the list.

As seen in Figure 7, we crop the video frame to the required region of interest. Traffic must go
from the right side to the left (lines 1–4). Green lines represent correct entry and exit directions. Red
lines represent directions in which vehicles must not move (lines 5–7). We create three imaginary areas
for entering and exiting. Imagine the usual case when the car enters the first area. In such a case, when
the car’s centroid passes through area A, the ID of the car is stored in list 1 and remains there until the
car exists from any exit. If the car enters from area B, the ID is stored in list 2 and the car must exit in
area C; otherwise, the car will be detected as the moving the wrong way, and a warning signal will be
triggered. If the car enters in area C, this is always the wrong way and the ID of the car is stored in list
3 to check the area from which it exited. Even if a car enters from area C, the alert signal is sent when
the car is moving. The algorithm validates according to the vehicle’s centroid position.
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4. Experiments and Results

We conducted two types of experiments to check the efficiency of our work. The first consisted of
checking the car-detection accuracy under different lighting conditions, and the second consisted of
wrong-way driver detection. We were provided access to a real-world camera and created a simulation
with a car moving the wrong way.

4.1. Datasets

Data used in our project were taken from a fixed CCTV camera. We create two types of datasets:
one is for network training and testing and the other is for wrong direction checking. For the first
dataset, we have extracted 12 videos taken at different times of the day. We extract all the frames
from every video and randomly split them into training and testing at 70% and 30%, respectively. The
second type of dataset is used to check the wrong-direction detection, so it contained only data of a car
moving in the wrong way.

4.2. YOLOv3 Model Training

For the detection experiments, we trained the model by annotating real-world data. We had video
files from which we extracted frames and created our own CCTV dataset. We annotated extracted images
with a specific program [18] and trained our YOLOv3 network using 1750 images on a PC with an NVidia
RTX 2080Ti GPU, an Intel Core i5-7600 CPU, and 16 GB RAM. We chose YOLOv3-416, in which images
are resized to 416 × 416 pixels, with learning rate α = 10-3 batch size = 64 on frozen layers, and batch size
= 8 for unfrozen ones, over 100 epochs. We used the Adam optimizer with α = 10-3 for frozen layers and
α = 10-4 after unfreezing the layers. The YOLOv3 network convergence time depends on the quantity of
data used in training; so, in our case, it took four to five hours to converge. Since our model is trained
with images from the camera used in one fixed position our model applies only to the particular camera.

4.3. Detection Testing

To test detection performance, we created another dataset from unseen videos. Next, we manually
calculated the number of cars appearing in those videos. Then, we randomly selected videos taken
at different time intervals. We chose various time intervals including morning, afternoon, dusk, and
evening times. For evaluating detection precision, we decided to calculate the mean average precision
(mAP or µ) with IOU threshold µ ≥ 0.75, where the mAP with threshold is found by,

µ =
bounding box area of detected car

bounding box area from manual annotation
≥ 0.75 (9)

We manually counted the number of cars that appeared within the mentioned intervals and
annotated them to determine the cars’ positions in a frame. We counted only unique cars. The car
was considered as correctly detected one only when the IOU rate was above 0.75. As seen in Table 1,
the detection method identified cars with average mAP of 90.80% for both daytime and nighttime.
The reason for the slight change in mAP is the different lighting conditions. Since our application is
supposed to be used in real-world scenarios, we tested it for precision and speed. Therefore, along
with precision, we also checked the processing time of our algorithm, which was similar to that of
Redmon and Farhadi [16]. Despite having only one class to detect, we achieved a higher mAP score
than the authors of the original YOLOv3 (see Figure 4).

Table 1. Detection network evaluation table.
Time Interval 10:23–10:25 13:49–13:52 15:50–15:54 18:05–18:07 21:10–21:13 Results

Num. of cars 30 44 85 50 41 250
Detected cars 27 41 80 44 35 227

mAP > 0.75 (%) 90.00 93.18 94.12 88.00 85.36 90.80
APT (ms) 27 25 26 28 29 27

mAP: mean average precision; APT: average processing time (ms: milliseconds).
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4.4. Wrong-Direction Detection Testing

To justify the efficiency of our work, we provided a qualitative experiment. Testing wrong-way
detection is based more from the structure of the related facts than from the testing of the existing
assumption. Therefore, we tested our implemented “entry-exit” algorithm for wrong-direction
detection on two types of data: real data and simulated data. Due to the difficulty in getting actual
wrong way driving events, we simulated them by intentionally driving a car the wrong way. For the
first simulation case, we checked daytime wrong-direction detection. As illustrated in Figure 7, a car
going the wrong way enters from area C and is tracked until it reaches area A, which in this case is
where it exits. As soon as it reaches area C, image and information about the car were sent to the
monitoring center using the File Transfer Protocol (FTP) and Transmission Control Protocol (TCP). The
program detects moving vehicles from an 807 × 646 video frame at 30 fps.

Due to safety reasons, Korean road traffic authority (KoROAD) did not allow us to simulate
driving during nighttime. Therefore, for the second and third simulation cases we inverted daytime
and nighttime videos as shown in Figure 8 to check true-positive results. Results obtained from the
first simulation case can be seen in Table 2 where ‘positive direction’ is the number of cars moving in
the correct direction, and ‘negative direction’ is the number of wrong-way driving cases. For case 1 we
considered the case when the car was driven wrong-way in the daytime, where N is the total number of
unique cars. For case 2 we considered a horizontally flipped video from case 1 and finally for the third
case we took a flipped nighttime video to check the accuracy during nighttime. The reason we flipped
the video frame is that Monteiro et al. [8] used the image flipping method to check the accuracy of
their system. From Table 2 we can measure the performance of our wrong-direction detection system
(Table 3). Visual results are presented in Figure 8.

Table 2. Confusion matrix for three simulation cases (quantity of cars).

Case 1: N = 114 Predicted Positive Direction Predicted Negative Direction

Positive direction 110 0
Negative direction 0 4

Case 2: N = 114
Positive direction 0 0

Negative direction 12 102
Case 3: N = 36

Positive direction 0 0
Negative direction 5 31

Table 3. Performance measurement in (%).

Cases Accuracy Precision Recall F1 Score

Case 1: Daytime 100.00 100.00 100.00 100.00
Case 2: Daytime (flipped) 89.83 100.00 89.00 94.44

Case 3: Nighttime (flipped) 86.11 100.00 86.00 92.53

Another evaluation we conducted determined false-positive results. The system was tested for 24
h to identify the number of false-positives. Our program counted 5552 cars passing by the camera
within 24 h, identifying only one false-positive that occurred owing to the car’s illumination at night
(Table 4). Visual results on determining false-positive cases can be seen on Figure 9.

Table 4. Confusion matrix for real-world cases.

N = 5552 Predicted ‘NO’ Predicted ‘YES’

Actual ‘NO’ 5551 1
Actual ‘YES’ 0 0
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5. Conclusions and Future Work

We propose a combined state-of-the-art YOLOv3 method with an updated linear quadratic
equation to detect and track vehicles. To identify vehicles traveling in the wrong direction, we
contributed a unique “entry-exit” method; and for simulation, in the three cases, we achieved an
averaged accuracy of 91.98% in wrong-direction detection results. This system, as shown by the
results obtained from simulations, presents excellent performance under various lighting conditions,
so we can implement the program with real-world cameras. The current system works at 30 fps and
was implemented on one of the roads in South Korea as a part of ITS solutions. Despite the good
performance, our next milestone is adding new detection features to our network. As we experimented,
we found many cases where pedestrians crossed the road in a prohibited area, so the next step in our
research is to add violation detection of jaywalking.

Author Contributions: S.U. contributed towards the detection and tracking code. S.U. also worked on background
system checks by implementing other researchers’ works. S.U. worked on improvement parts as well as analysis
of a system and performed experiments. S.B. provided the experiments by recording and making the result
tables and made visualizations and figures for the paper. S.B. also worked on frame extractions and annotations.
K.J.W. provided all the data we used in this research and found a place where we could test our system in real-time.
K.J.W. was the motivator and provided guidance about the “entry-exit” approach for direction validations and
gave practical advice throughout the whole research process. All authors have read and agreed to the published
version of the manuscript.

Funding: This project received no external funding.

Acknowledgments: This work was supported by an Inha University research grant.

Conflicts of Interest: The authors declare they have no conflicts of interest.

References

1. Guo, G.; Wang, H.; Bell, D.A.; Bi, Y.; Greer, K. KNN Model-Based Approach in Classification. In Lecture
Notes in Computer Science, Proceedings of the OTM: OTM Confederated International Conferences “On the Move to
Meaningful Internet Systems”, Sicily, Italy, 3–7 November 2003; Springer: Berlin/Heidelberg, Germany, 2003.
[CrossRef]

2. Zivkovic, Z.; Van Der Heijden, F. Efficient adaptive density estimation per image pixel for the task of
background subtraction. Pattern Recognit. Lett. 2006, 27, 773–780. [CrossRef]

3. Zivkovic, Z. Improved adaptive gaussian mixture model for background subtraction. In Proceedings of the
17th International Conference on Pattern Recognition 2004. ICPR 2004, Cambridge, UK, 26–26 August 2004;
Volume 2, pp. 28–31.

4. Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision.
Proc. Imaging Underst. Workshop 1981, 1981, 121–130.

5. Shi, J.; Tomasi, C. Good features to track. In Proceedings of the Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, 21–23 June 1994; pp. 593–600.

6. Tomasi, C.; Kanade, T. Detection and Tracking of Point Features. In Carnegie Mellon University Technical Report
CMU-CS-91-132; School of Computer Science, Carnegie Mellon University: Pittsburgh, PA, USA, 1991.

7. Barron, J.L.; Fleet, D.J.; Beauchemin, S. Performance of optical flow techniques. Int. J. Comput. Vis. 1994, 12,
43–77. [CrossRef]

8. Monteiro, G.; Ribeiro, M.; Marcos, J.; Batista, J. Wrong-way Drivers Detection Based on Optical Flow.
In Proceedings of the 2017 IEEE International Conference on Image Processing, San Antonio, TX, USA, 16
September–19 October 2007; pp. V-141–V-144. [CrossRef]

9. Bouwmans, T.; Baf, F.E.; Vachon, B. Background Modeling Using Mixture of Gaussians for Foreground Detection—A
Survey; Recent Patents on Computer Science; Bentham Science Publishers: Shaka, UAE, 2008; Volume 1,
pp. 219–237.

10. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.; Berg, A.C. SSD: Single Shot MultiBox Detector.
arXiv 2016, arXiv:1512.02325.

11. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. arXiv 2015, arXiv:1506.01497. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/978-3-540-39964-3_62
http://dx.doi.org/10.1016/j.patrec.2005.11.005
http://dx.doi.org/10.1007/BF01420984
http://dx.doi.org/10.1109/ICIP.2007.4379785
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650


Appl. Sci. 2020, 10, 2453 13 of 13

12. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection.
arXiv 2015, arXiv:1506.02640.

13. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767v1.
14. Ambardekar, A.; Nicolescu, M.; Bebis, G. Efficient vehicle tracking and classification for an automated traffic

surveillance system. Signal Image Process. 2008, 623, 101.
15. Kanhere, N.K.; Birchfield, S.T.; Sarasua, W.A. Vehicle Segmentation and Tracking in the Presence of Occlusions.

Transp. Res. Board Annu. Meet. 2006, 1944, 89–97. [CrossRef]
16. Kuhn, H.W. The Hungarian Method for the assignment problem. Naval Res. Logist. Q. 1955, 2, 83–97.

[CrossRef]
17. Welch, G.; Bishop, G. An Introduction to the Kalman Filter. Special Interest Group on Computer

Graphics and Interactive Techniques. 2001. Available online: https://www.cs.unc.edu/~{}tracker/media/pdf/
SIGGRAPH2001_CoursePack_08.pdf (accessed on 14 January 2020).

18. Tzutalin. LabelImg. Git Code. 2015. Available online: https://github.com/tzutalin/labelImg (accessed on
30 January 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/0361198106194400112
http://dx.doi.org/10.1002/nav.3800020109
https://www.cs.unc.edu/~{}tracker/media/pdf/SIGGRAPH2001_CoursePack_08.pdf
https://www.cs.unc.edu/~{}tracker/media/pdf/SIGGRAPH2001_CoursePack_08.pdf
https://github.com/tzutalin/labelImg
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Vehicle Detection and Segmentation 
	Detection Using Background Subtraction 
	Optical Flow 
	Convolutional Neural Network (CNN)-Based Detection Methods 

	Vehicle Tracking 
	Contour-Based Tracking 
	Kalman Filter for Tracking 


	Proposed System 
	Detection and Tracking 
	Direction Estimation 
	Direction Validation 

	Experiments and Results 
	Datasets 
	YOLOv3 Model Training 
	Detection Testing 
	Wrong-Direction Detection Testing 

	Conclusions and Future Work 
	References

