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Abstract

:

This paper provides an innovative deep learning architecture to improve collaborative filtering results in recommender systems. It exploits the potential of the reliability concept to raise predictions and recommendations quality by incorporating prediction errors (reliabilities) in the deep learning layers. The underlying idea is to recommend highly predicted items that also have been found as reliable ones. We use the deep learning architecture to extract the existing non-linear relations between predictions, reliabilities, and accurate recommendations. The proposed architecture consists of three related stages, providing three stacked abstraction levels: (a) real prediction errors, (b) predicted errors (reliabilities), and (c) predicted ratings (predictions). In turn, each abstraction level requires a learning process: (a) Matrix Factorization from ratings, (b) Multilayer Neural Network fed with real prediction errors and hidden factors, and (c) Multilayer Neural Network fed with reliabilities and hidden factors. A complete set of experiments has been run involving three representative and open datasets and a state-of-the-art baseline. The results show strong prediction improvements and also important recommendation improvements, particularly for the recall quality measure.
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1. Introduction


Recommender Systems (RS) are powerful tools to address the information overload problem in the Internet. They make use of diverse sources of information. Explicit votes from users to items, and implicit interactions are the basis of the Collaborative Filtering (CF) RS. Implicit interactions examples are clicks, listened songs, watched movies, likes, dislikes, etc. Often, hybrid RS [1] are designed to ensemble CF with some other types of information filtering: demographic [2], context-aware [3], content-based [4], social information [5], etc. RS cover a wide range of recommendation targets, such as travels [6], movies [7], restaurants [8], fashion [9], news [10], etc.



Traditionally, CF RS have been implemented using machine learning methods and algorithms, mainly the memory-based K nearest neighbor algorithm, and more recently the Matrix Factorization (MF) method. MF is an efficient model-based approach that obtains accurate recommendations; it is easy to understand and to implement, and it is based on the dimension reduction basis, where a reduced set of hidden factors contains the ratings information. Predictions are obtained by making the dot product of the users and the items hidden factors. There are several implementations of the MF such as PMF [11] and BNMF. An important drawback of the MF predictions is that the linear dot product cannot catch the complex non-linear relations existing among the set of hidden factors. Neural models do not have this restriction and they are called to lead the CF research in RS.



Currently, RS research is directed toward deep learning approaches [12,13]. It is usual to find neural content-based approaches: images [8,9], text [10,14], music [15,16], videos [17,18], etc. The above targets are processed by using different neural networks architectures: Convolutional Neural Networks [19], Recurrent Neural Networks [20], Multilayer Neural Networks (MNN) [3,21], and autoencoders [7,22] are usual approaches. The preceding publications are focused on content-based or hybrid filtering. CF neural approaches can be classified as: (1) Deep Factorization Machines (deepFM) [23] and (2) Neural Collaborative Filtering (NCF) [24]. NCF simultaneously processes item and user information using a dual neural network. The two main NCF implementations are (a) NCF [24] and (b) Neural Network Matrix Factorization (NNMF) [25]. Since NCF reports better accuracy than NNMF, we use it as our baseline. Figure 1 shows the NCF architecture: the input sparse data (ratings of the users and ratings of the items) is converted in dense information by means of an embedding layer. Then, a Multilayer Perceptron combines both features paths by concatenating them. Training is performed using the known ratings as labels. Once the architecture has learned, it can predict unknown ratings in a non-linear process. Our proposed architecture makes use of the NCF one, expanding it to hold training using known errors and then predicting reliabilities. We will refer to the proposed architecture as Reliability-based Neural Collaborative Filtering (RNCF).



There are some publications that combine wide and deep learning [26,27] to support CF RS. The wide side is implemented using a perceptron, whereas the deep side is implemented using an MNN. The wide component learns simple relations (memorization); the deep component learns complex relations (generalization). The proposed architecture (RNCF) focuses on the deep learning approach to catch complex relations both to predict reliabilities and to predict rating values. The wide learning cannot make these functions, but it could slightly improve the overall results. A potential future work is to expand RNCF to hold a wide learning component. The deepFM architecture [28] joins a deep and a wide component to process the raw input vectors. It simultaneously learns low and high-order feature interactions. Compared to NCF, deepFM achieves a slight accuracy improvement (0.33% Criteo dataset, 0.48% Company dataset). The proposed approach (RNCF) fits better with the NCF architecture than with the deepFM one. Additionally, the wide architectures have the size of the input layer as a drawback that jeopardizes their scalability. Given the limited room for improvement using the deepFm model, we have chosen the more regular and scalable NCF architecture as a base to create our model. There are some other approaches that provide neural networks based on improved information coming from data, such as [29], where authors extract interaction behavior from bipartite graphs. Deep-learning architectures can be designed by extracting multi-criteria information from data [30]. Additionally, a classification-based deep learning collaborative filtering approach is stated in [31], where the learning process takes as information two different binary sources: (a) relevant/non-relevant votes, and (b) voted/non-voted items.



Once we have reviewed the most important neural networks solutions that the state of the art provides us, we are going to explain the main concepts of the proposed approach by means of Figure 2. Some state-of-the-art deep learning approaches to CF RS use hidden factors of users and items as embedding [24]. Then, from hidden factors, an MNN learns the existing non-linear relations between hidden factors and ratings (Figure 2a). Once the MNN has learned, predictions can be made by feedforward running the MNN, feeding it with the hidden factors corresponding to the pairs <user, item> that have not an associated rating. These types of architectures provide improved results with regard to the classical MF approach, where predictions are obtained by means of a linear hidden factors-based dot product.



Related to the reliability or confidence of the RS recommendations, some published papers [32] provide additional information to each prediction or recommendation: its reliability. As an example, we can recommend an item with 4 stars and a reliability of 2 stars, or we can recommend another item with 3.5 stars and a reliability of 4 stars. It is probable that the recommended user will choose the second item, since even knowing that our recommendation is lower (3.5 compared to 4), it is more reliable (4 compared to 2). Using the same concept, we can select recommendations from the set of predictions taking into account not only the prediction values, but also their reliabilities. By carefully studying relations between predictions and reliabilities, probably we could extract some rules to recommend. Instead, we use a deep learning stage to learn the existing non-linear relation between predictions, reliabilities, and accurate recommendations.



A recommendation reliability is defined as its predicted error [32]. That is, in addition to predicting ratings, we also predict the error of those predictions. The hypothesis of this paper claims that the CFN state-of-the-art architectures can be improved by adding the predicted errors (reliabilities) to the MNN learning. Thus, the state-of-the-art architecture shown in Figure 2a can be improved by using the architecture shown in Figure 2b.



The question that now arises is the way to get the predicted errors: reliabilities (black circles in Figure 2b). This process will need two separated stages, as shown in Figure 2c,d. Figure 2c shows the way we can get a set of real prediction errors: first, an MF is processed to obtain the users and items hidden factors; then, we predict each existing rating in the dataset. Since we predict known ratings, we can obtain real (exact) prediction errors (top of Figure 2c). The next process (Figure 2d) is to make use of the real prediction errors to train an MNN; the MNN is fed with hidden factors in its input layer, and it learns using the real prediction errors as labels. Once the MNN has learned, it can feedforward reliabilities: error predictions (black circles) from not-voted <user, item> pairs, where each user and each item consist of their hidden factors.



Finally, to accomplish our objective: to accurately predict and recommend using hidden factors and reliabilities (Figure 2b), we must train the MNN; Figure 2e shows the way we use the known ratings (left to right faded circles) to train the MNN: known ratings are used as labels in the neural network training process, so that the MNN learns to accurately predict ratings (make predictions) from hidden factors and reliabilities. The trained MNN in Figure 2e is feedforward used to make non-linear predictions (Figure 2b).



Please note that the proposed method acts as a collaborative filtering black box that is fed just with the votes of each Recommender System. In this way, it can be used as a base to implement hybrid recommender systems containing demographic, context-based, content-based, and social information.




2. Materials and Methods


The proposed RNCF architecture gets improved recommendation results by performing three different learning processes that produce three different abstraction levels in the whole system. Borrowing diagrams from Figure 2, Figure 3 shows the overall architecture: each one of the performed processes as well as their stacked connections. The first RNCF process is drawn in the bottom gray rectangle of Figure 3; it is labeled as “Abstraction level 1”. Using the CF dataset containing the ratings casted by the users to the items, we run a machine learning MF method. In this way, we obtain two dense matrices containing the hidden factors: the users and the items matrices. From the two hidden factor matrices, predictions can be obtained by processing the dot product of each selected user and item. Usually, predictions are computed just for the not-voted items of each user, since it is not useful to recommend consumed items. In our proposed RNCF architecture, in its first learning process, we do the opposite: predictions are obtained for the voted (consumed) items (Equation (11)). This is because, in the first abstraction level, we look for the prediction errors made in the MF stage. The first stage of the proposed method can be mathematically interpreted as:


Let U be the set of users in the CF dataset.



(1)






Let I be the set of items in the CF dataset.



(2)







Let V be the set of categorical values of the ratings, where ‘•’ means ‘not consumed’


  V =  {  1 ,   2 ,   3 ,   4 ,   5 ,     •  }   



(3)






   Let    r  u , i       be   the   rating   of   the   user   u ∈ U     to   the   item   i ∈ I   ,    r  u , i   ∈ V   



(4)






Let F be the number of chosen factors for the MF method



(5)






   Let    s  u , f       be   the   hidden   factor   f ∈ F     of   the   user   u ∈ U   



(6)






   Let    q  f , i       be   the   hidden   factor   f ∈ F     of   the   item   i ∈ I   



(7)






   Let    p  u , i       be   the   prediction   of   the   rating   to   the   user   u ∈ U     on   the   item   i ∈ I   



(8)






   p  u , i   =   ∑   f ∈ F     s  u , f ·    q  f , i    



(9)






   Let    e  u , i       be   the   error   of   the   prediction    p  u , i     



(10)






   e  u , i   =    (   r  u , i   −  p  u , i    )   2    ∀  r  u , i   ≠ •  



(11)







The second stage of the proposed method is drawn in the middle of Figure 3, which is labeled as ‘Abstraction level 2’. As it can be seen, we make use of an MNN to predict the MF error of each prediction. In this case, as usual, once the neural network has learned, predictions are made for the not-voted ratings (Equation (18)). To accomplish the learning process, the neural network input is fed with the hidden factors of users and items (Equation (13)), whereas each label output is fed with each obtained error in Stage 1 of the proposed method (Equation (15)). That is, Stage 2 MNN learns the obtained errors from Stage 1 to provide the expected error of each prediction (reliability). In its learning operation, the second-stage mathematical interpretation is:


Let X be the learning set of samples used to feed the MNN



(12)






  X =  {   s  u , f   ,    q  f , i    }    ∀ u ∈ U ,   ∀ i ∈ I ,   ∀ f ∈ F   |    r  u , i   ≠ • .  



(13)






Let Y be the target set of labels used to feed the MNN



(14)






  Y =  {   e  u , i    }    ∀ u ∈ U ,   ∀ i ∈ I   |    r  u , i   ≠ • .  



(15)







Please note that in the first stage, real errors are obtained by predicting known (voted) ratings (Equation (11)), whereas in the second stage, we predict errors (reliabilities) for the not-voted ratings (Equation (18)) based on the real errors on the voted ratings. Once the MNN has learned, in its feedforward operation (prediction of errors), the second-stage mathematical interpretation is:


Let g be the stage 2 MNN feedforward process.



(16)






  Let      e ′    u , i     be   the   prediction   of   the   error   ( reliability )   obtained   in   the   Stage   2   MNN  



(17)






     e ′    u , i   = g  ( X )    ∀ u ∈ U ,   ∀ i ∈ I   |    r  u , i   = • .  



(18)






  The   MNN   learns   by   minimizing   the   error      (   e  u , i   −    e ′    u , i    )   2    ∀  r  u , i   ≠ • .  



(19)







Finally, the RNCF Stage 3 is in charge of predicting the not-voted rating values. It takes, as input, the users and items hidden factors, as well as the previously predicted reliabilities. It is expected that the predicted reliabilities will provide the necessary additional information to improve predictions and recommendations. In its learning operation, the third-stage mathematical interpretation is:


Let X′ be the learning set of samples used to feed the MNN:



(20)






   X ′  =  {   s  u , f   ,    q  f , i   ,   e ′   u , i      }    ∀ u ∈ U ,   ∀ i ∈ I , ∀ f ∈ F   |    r  u , i   ≠ • .  



(21)






Let Y′ be the target set of labels used to feed the MNN:



(22)






   Y ′  =  {   r  u , i    }    ∀ u ∈ U ,   ∀ i ∈ I   |    r  u , i   ≠ • .  



(23)







Once the third-stage MNN has learned, its feedforward prediction operation can be fed by selecting the not-voted ratings:


Let h be the stage 3 MNN feedforward process.



(24)






  Let    t  u , i     be   the   prediction   of   the   rating :  



(25)






   t  u , i   = h  (   X ′   )    ∀ u ∈ U ,   ∀ i ∈ I   |    r  u , i   = • .  



(26)






  The   MNN   learns   by   minimizing   the   error      (   t  u , i   −  r  u , i    )   2    ∀  r  u , i   ≠ • .  



(27)







Recommendation Z is chosen by selecting the N highest predictions:


  Z =  {   t  u , i    }    |    t  u , i   ≥   t ′   u , i     ,     t ′   u , i   ∈  Z c  ,    | Z |  = N .  



(28)







Now, the experiment’s design is explained, including the used baseline, chosen datasets, tested quality measures, selected parameter values in the machine and the deep learning algorithms, used framework, etc. Experiments are performed using cross-validation and they have been tested on open CF datasets widely used by RS research papers. We have selected Netflix*, MovieLens [33] and FilmTrust [34] as datasets. Table 1 contains the most relevant facts about these datasets. The cross-validation values used in the experiments are abstracted in Table 2. The chosen quality measure for prediction has been the Mean Absolute Error (MAE), whereas the chosen quality measures for recommendation have been Precision, Recall, and F1.



The Precision measure returns the proportion of relevant recommendations regarding the total number of N recommendations, where {relevant recommendations} are the ratings greater than or equal to a threshold. Recall is the proportion of relevant recommendations regarding the total number of relevant items (from the total number of items voted for the user). Please note that whereas N is a constant, the number of relevant items is not. Recall is a “relative” measure, since it is more difficult to extract relevant recommendations from a set of a few relevant items than from a large set of relevant items. The F1 score combines precision and recall, giving the same relevance to each one of them:   F 1 = 2 · P r e c i s i o n · R e c a l l /  (  p r e c i s i o n + r e c a l l  )   .



Finally, to implement the deep learning processes, we have made use of the Keras API, working on top of TensorFlow. In this case, the programming language has been Python. Keras is a user friendliness API: it minimizes the required number of user actions for common use cases. Keras allows making designs by using fully configurable modules and it provides easy extensibility. The machine learning matrix factorization has been made using the Java-based CF4J framework [35].



The baseline for our experiments is the NCF neural architecture [24]. This is a state-of-the-art approach that outperforms the existing MF methods and gets better accuracy than the Neural Network Matrix Factorization design (NNMF). The deepFM architecture [28] has achieved similar results than the NCF one. Overall, the NCF architecture provides a representative baseline that outperforms the machine learning KNN and MF; it also is a representative baseline for neural state-of-the-art approaches to the CF RS field.




3. Results


Results in this section have been split in two subsections: the first one shows and explains the prediction quality results, both for the proposed RNCF and for the NCF baseline. The second subsection is devoted to showing the recommendation quality results.



3.1. Prediction Results


As explained in the previous section, the proposed RNCF architecture contains a Multilayer Neural Network (Figure 3, abstraction level 2) that learns from the errors made in the MF predictions. Once the network has learned, it can predict “errors in predictions” (reliabilities). The smaller the predicted error, the greater its reliability. Figure 4 shows the quality of the obtained reliabilities on the MovieLens dataset. As it can be seen, the neural network is not overfitted and its testing Mean Absolute Error (MAE) is close to the 0.01 value when 15 epochs have been run. The reliability values can be considered accurate enough to feed the neural network on top of the proposed architecture (Figure 3, abstraction level 3). The Netflix and FilmTrust results are very similar to the MovieLens one; they have been omitted to keep this subsection as short as possible.



Once reliabilities can be predicted on the abstraction layer 2 of the RNCF architecture, they can feed the abstraction layer 3 (on Figure 3). Figure 5 and Figure 6 show the obtained MAE by using both the NCF baseline and the proposed RNCF. Figure 5 shows the MovieLens results, whereas Figure 6 shows the Netflix ones. FilmTrust prediction results have been omitted to keep the size of this subsection short: they show the same behavior as the MovieLens and the Netflix results.



Figure 5 shows that the neural network is not overfitted both for the NCF baseline (top graph on Figure 5) and for the proposed RNCF (bottom graph on Figure 5). Comparing the testing MAE values at the end of the training (40 epochs in the baseline and 60 epochs in RNCF), we can claim the superiority of the proposed RNCF when applied to the MovieLens dataset: an error of 0.47 versus 0.62. RNCF achieves an improvement of 24% in the quality of the predictions. From the analysis of Figure 6 (results obtained using the Netflix dataset), the same conclusions can be extracted: there is not overfitting, and RNCF achieves an improvement of approximately 22% in the quality of the predictions. Overall, the proposed method achieves a strong improvement in the quality of the RS predictions.



Since the processed version of Netflix is much bigger than the Movielens one, we have also used a bigger value for the neural network batch size hyperparameter in order to avoid a significant increase in runtime. High batch sizes tend to produce fluctuations in trends results, as shown in Figure 6 (Test MAE). These fluctuations can be smoothed by processing the average of a series of separate runs of the same neural network. Fluctuations appear on the TestMAE curve, and not on the TrainingMAE curve, due to the smaller size of the test set.




3.2. Recommendation Results


In this section, the first set of experiments tests the proposed RNCF architecture on the Netflix* dataset. F1 results are shown in the top graph of Figure 7. As it can be seen, recommendation quality is improved for all the tested values of N (number of recommendations). It is remarkable that the most improved values are the most relevant ones: around 11 recommendations for a single user. The bottom graph in Figure 7 shows the details of the F1 quality measure: we can separately see their Precision and Recall components. In this dataset, Precision does not significantly change from the baseline to the proposed RNCF, and the complete F1 improvement is due to the Recall behavior. Additionally, low numbers of recommendations (N) produce better recommendation quality improvements. As we will see, the same type of results has been found on the performed experiments using the MovieLens and the FilmTrust datasets. Regarding numerical improvement values, if we take N = 11 as a reasonable number of recommendations, we approximately obtain the following improvement percentages: Netflix 34%, MovieLens 20%, FilmTrust 12%. These improvements decrease when a higher number of recommendations is selected.



We have conducted some additional research to understand why the Recall quality measure explains most of the F1 improvement, as well as the decreasing quality improvement when the number of recommendations raises. Finally, we have found the justification: there is an inverse correlation between prediction values and reliability values. There is a tendency for higher predictions to present lower reliabilities. This finding has a deep influence on the evolution of both the Precision and the Recall quality measures: usually, recommendations are made by selecting the highest predicted values; instead, the proposed architecture ‘discards’ the non-reliable recommendations (the ones with a high predicted error). Since the proposed architecture can discard non-reliable predictions from the set of high predicted items, it will do a better job if there is a sufficient number of predictions to select and to discard, particularly due to the narrow margin that provides the low reliabilities related to high predictions. Here is where the Recall quality measure can show its behavior. Recall is a relative measure, relative to the number of relevant items: highly valued items that usually are the highly predicted ones. On the other hand, Precision is an absolute measure that depends on the constant N (number of recommendations). The Recall difference between the baseline method and the proposed one will increase as the number of relevant items increases, since the proposed method will be able to better choose the most reliable and highly predicted ones. Instead, Precision does not incorporate the number of relevant items in its equation: it just incorporates the constant N value. Finally, the higher the number of recommendations, the lower the RNCF recommendation improvement: simply, the higher the value of N, the faster the reliable items are finished, and the Recall improvement decreases.



Figure 8 and Figure 9, corresponding to the MovieLens and the FilmTrust experiments, show the same main behavior of the discussed Figure 7 (Netflix*). It is remarkable that the bigger the dataset, the higher the proposed neural architecture improvement. This is the expected result, since big datasets offer better opportunities to find items that are, at the same time, highly predicted and highly reliable. By selecting these items, our architecture can improve recommendations. This way, we can claim that the proposed RNCF deep learning architecture is scalable in the sense that it works better when the dataset size increases.





4. Discussion


In the same way that more accurate or less accurate predictions exist, there are more reliable or less reliable predictions. The proposed deep learning architecture uses its first levels of abstraction to learn and to predict the reliability of each prediction. Subsequently, the architecture learns the non-linear relationships between accuracy and reliability; in this way, we implement a filter that selects the predictions that are most likely to satisfy the user, taking into account each prediction’s reliability. This set of predictions determines the most accurate recommendations.



The results show a strong improvement in the quality of predictions. They also show an overall improvement in the recommendation quality: results from the three tested datasets show the improvement of the F1 measure. Most of the F1 improvement is due to its Recall component, since the higher the number of relevant ratings a user has issued, the greater the possibilities of the proposed method to select the most reliable predictions. On the other hand, as expected, when a large number of items is recommended, the Recall improvement decreases, since the most reliable and accurate items run out. For the above reasons, the experiments also show a recommendation quality improvement as the dataset size increases.



Since the proposed deep learning architecture only uses ratings as input data, it can be seen as a collaborative filtering black box that can be enhanced applying hybrid approaches: demographic, social, context-aware, content-based, etc. Finally, as future work, we propose (1) improving the proposed architecture results by enhancing its reliability extraction stage and (2) adding a wide learning component to the neural architecture, providing memorization by catching simple relations from multiple features.
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Figure 1. Neural Collaborative Filtering (NCF) architecture. 
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Figure 2. Proposed method (RNCF) concepts: (a) NCF baseline, (b) improved NCF by adding reliabilities, (c) extraction of the hidden factors and the real prediction errors, (d) prediction of the errors (reliabilities), (e) training stage in the RNCF architecture. NCF: Neural Collaborative Filtering, RNCF: Reliability-based Neural Collaborative Filtering. 
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Figure 3. Proposed RNCF architecture. 
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Figure 4. MovieLens. Mean Absolute Error (MAE) quality in the prediction of the reliabilities. 
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Figure 5. MovieLens. Mean Absolute Error (MAE) obtained by training both the NCF baseline (top chart) and the proposed RNCF neural architecture (chart below). Training and testing evolutions for the 60 first epochs (x-axis). 






Figure 5. MovieLens. Mean Absolute Error (MAE) obtained by training both the NCF baseline (top chart) and the proposed RNCF neural architecture (chart below). Training and testing evolutions for the 60 first epochs (x-axis).



[image: Applsci 10 02441 g005]







[image: Applsci 10 02441 g006 550] 





Figure 6. Netflix. Mean Absolute Error (MAE) obtained by training both the NCF baseline (top chart) and the proposed RNCF neural architecture (chart below). Training and testing evolutions for the 60 first epochs (x-axis). 
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Figure 7. Netflix recommendation accuracy. Top chart: F1 comparative between the NCF baseline and the proposed RNCF. Chart below: Precision and Recall comparative between the NCF baseline and the proposed RNCF; x-axis: number of recommendations (N). 






Figure 7. Netflix recommendation accuracy. Top chart: F1 comparative between the NCF baseline and the proposed RNCF. Chart below: Precision and Recall comparative between the NCF baseline and the proposed RNCF; x-axis: number of recommendations (N).



[image: Applsci 10 02441 g007]







[image: Applsci 10 02441 g008 550] 





Figure 8. MovieLens recommendation accuracy. Top chart: F1 comparative between the NCF baseline and the proposed RNCF. Chart below: Precision and Recall comparative between the NCF baseline and the proposed RNCF; x-axis: number of recommendations (N). 






Figure 8. MovieLens recommendation accuracy. Top chart: F1 comparative between the NCF baseline and the proposed RNCF. Chart below: Precision and Recall comparative between the NCF baseline and the proposed RNCF; x-axis: number of recommendations (N).



[image: Applsci 10 02441 g008]







[image: Applsci 10 02441 g009 550] 





Figure 9. FilmTrust recommendation accuracy. Top chart: F1 comparative between the NCF baseline and the proposed RNCF. Chart below: Precision and Recall comparative between the NCF baseline and the proposed RNCF; x-axis: number of recommendations (N). 
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Table 1. Used datasets and their main facts.
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	Dataset
	#Ratings
	#Items
	#Users
	Ratings Values





	Netflix* (subset)
	4,553,208
	7000
	10,000
	1 to 5



	MovieLens
	1,000,209
	3706
	6040
	1 to 5



	FilmTrust
	33,470
	2509
	1227
	0.5 to 4 step 0.5
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Table 2. Cross-validation values.






Table 2. Cross-validation values.





	Parameter
	Value





	% training
	80



	% testing
	20



	N factors
	{1, …, 96} step 5



	Recommendation threshold ( θ )
	4











© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
—Baseline F1  —Proposed method F1

08

o
16 1116 21 2 31 % 41 46 51 S5 61 66 71 76 81 8 91 9

—saseine Precsion
——Proposed method Precison

f

i T

o8

o7

08

os - == =

04 o=

kof F e =

bt -

o1 44

fl I

16 m o1 m B oM % 4 % SL % 66 T om 8 9%





media/file4.png
a)

T Predictions
Multilayer
Neural
Network
00000 00000
O0000 00000
O0000 00000
Hidden Hidden
factors of factors of
users items
I Predictions
Multilayer
Neural
Network
O0000 00000 o
O0000 00000 o
O0000 00000 o
Hidden Hidden Predicted
factors of  factors of arror
users items

10000

Errors
Predictions

T

© Dot
product
:l Hidden Factors

Items

| Hidden Factors |
Users

T

Matrix
© Factorization

§| Ratngs |0©OO
Users

d)

1 o000
e
{fh Multilayer
olelele Neural
T SRS
PPN Network

O0000 00000 —5» O
O0000 00000 5> O
00000 00000 —5» O
Factors of Factors of
users items

O0000O 00000 @
OO0000O 00000 @
O0000O 00000 @






nav.xhtml


  applsci-10-02441


  
    		
      applsci-10-02441
    


  




  





media/file18.png
0.8
0,7

0,5
04
03
0,2
01

——Baseline F1 ——Proposed method F1

11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

~—Baseline Precision - =~ Baseline Recall
—— Proposed method Precision === Proposed method Recall

N N I N I

26 31 36 41 46 51 56 61 66 71 76 81 8 91 96






media/file16.png
04

0,3

0,2

——Baseline F1 ——Proposed method F1

NN

/

1

6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

09
038
0,7
0,6
0,5
04
03
0,2
0,1

~—Baseline Precision

—— Proposed method Precision === Proposed method Recall

-~~-Baseline Recall

—p———

6 11

16

21 26 31

36

41

46

51

56 61

66

71

76

81

86

91






media/file2.png
Training ( j fairget

r,
Neural
Collaborative
Filtering
Layers
\ J

Dense | | | | Embedding layer

User latent vector Item latent vector

b =

Sparse | || | Input layer
User (u) Item (i)






media/file5.jpg
[ty

dcndings

ey






media/file3.jpg
{Predcions Q 10000 | g

Ko 2o e
Retwork —i e

predictons
00000
00000
o 00000
product facorsof facarsof
s s

[

o |
Mt -
N
Nework 1 . o)
o

E[ v Joooo

Fidden  thdden
factosof facorsof

Predted
e =3






media/file1.jpg
Neural
Collaborative
Filtering
Layers

Dense [ [ ] Embedding layer

User latent vector  Item latent vector

> >

Sparse [ ] [ Input layer
User (u) Item (i)





media/file7.jpg
Training and test MAE

— Training MAE
— Test MAE

020

015

010

005

000

25 50 75 100 125 150 15 20
Epochs





media/file10.png
0.85 4
0.80 1

0.75 -
<

M

0.70 1

0.65 1

0.60

0.70 1

0.65 -

3060-

0.50 1

Training and test MAE

— Training MAE
—  Test MAE

5 10 15 20 % 0 £ )

Epochs
Training and test MAE
— Training MAE
~ Test MAE
10 20 0 40 50 &0

(4DN) auljeseg

POYlaN pasodo.d





media/file12.png
Training and test MAE

— Training MAE
e —— Test MAE
0.70 -
068 -
066 -
064 4
062 4
0 10 2 30 40 50 60
Epochs
Training and test MAE
= Training MAE
e Test MAE
058 - .
056 -
054 -
052 -
050 -
048 -
0 10 2 30 40 50 60

(4ON) auljaseq

poyja|y pasodoid





media/file9.jpg
Training and test MAE

o8s

ors

o

o6

— Troing WA
T et

(49N) auijeseg

pousa pasodoid





media/file0.png





media/file14.png
——Baseline F1 ——Proposed method F1

0,8
0,7
0,6
v /
0,5 1‘/
/ "
0,4
" /
f/

—

/
" ,//
/

0,1

0,2
/)
/

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

-~ Baseline Precision - == Baseline Recall
~——Proposed method Precision === Proposed method Recall

- I

1 6 11 16 21 26 31 36 41 4 51 56 61 66 71 76 81 86 91 96





media/file8.png
MAE

Training and test MAE

— Training MAE
~— Test MAE
0.20 -
0.15 -
0.10 -
0.05 A
__._-\/
0.00 - " ' ; ; : ' ;
25 50 75 10.0 125 15.0 175 20.0






media/file11.jpg
on

on

o8

o8

st

I

Training and test MAE

— Twnna e
)

056

054

052

050

Epochs

E) E) % [ F) @
=
Training and test MAE
— Tonng wae
T e
) E) E) [ E) @

(4ON) uijeseg

Poylel pesodoid





media/file6.png
O0000 00000 @ —» rating
00000 00000 @ —» nating
00000 00000 @ —» rating

Multilayer
Neural
Network

Abstraction level 3
Deep Learning

Predicted ratings

Multilayer
Neural
Netwaork

00000 00000 —» error
00000 00000 —» error
00000 00000 —» error

Factors of A Factors of

A

N

Abstraction level 2
Deep Learning

Predicted errors

users items
Abstraction level 1
Errors Machine Learning
T ~
Hidden factors &
I Obtained errors
‘ Predictions

)

© Dot
product

T

I:] Hidden Factors

Items

Compressed
and dense

| Hidden Factorsl

Users

information

1

© Matrix
Factorization

T I

Items

Ratings |

Users






media/file15.jpg
01

—Baseline F1 —Proposed method F1

7 B —=

1

6 1 16 21 26 31

8 91 9%

gee

-28888¢8

R

% 4

“ s @ s N

% u






media/file17.jpg
—Baseline 1 —Proposed method F1

16 11 16 21 2 31 3% 41 4 51 S6 61 66 71

-28828888¢8.

— Baseline Precision - -~ Baseline Recall
— proposed method Precision ==~ Proposed method Recall

16 om

1 n % ow % 4w % @ 6N

% 8

% o %






