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Abstract: Image blurs are a major source of degradation in an imaging system. There are various blur
types, such as motion blur and defocus blur, which reduce image quality significantly. Therefore, it is
essential to develop methods for recovering approximated latent images from blurry ones to increase
the performance of the imaging system. In this paper, an image blur removal technique based on
sparse optimization is proposed. Most existing methods use different image priors to estimate the blur
kernel but are unable to fully exploit local image information. The proposed method adopts an image
prior based on nonzero measurement in the image gradient domain and introduces an analytical
solution, which converges quickly without additional searching iterations during the optimization.
First, a blur kernel is accurately estimated from a single input image with an alternating scheme
and a half-quadratic optimization algorithm. Subsequently, the latent sharp image is revealed by a
non-blind deconvolution algorithm with the hyper-Laplacian distribution-based priors. Additionally,
we analyze and discuss its solutions for different prior parameters. According to the tests we conducted,
our method outperforms similar methods and could be suitable for dealing with image blurs in
real-life applications.

Keywords: image blur; blur kernel; sparse optimization; image deblurring

1. Introduction

Image deblurring is important in many fields, such as surveillance, traffic control, astronomy, and
remote sensing [1-3]. Blurs occur due to a variety of reasons, such as moving objects, focus issues, and
atmospheric turbulence. They significantly deteriorate the quality of the image. The blurring procedure
is always described by a point spread function (PSF), also known as blur kernel. When the PSF is
known, the blur can be removed by conventional deconvolution methods, such as Weiner filtering
and the Lucy—Richardson algorithm. However, when the PSF is unknown, the issue constitutes a
blind-deconvolution problem, which is a notoriously vague inverse problem that has perplexed the
scientific community for decades.

Therefore, recovering an approximated latent image from a blurred observation is essential for
improving the performance of an imaging system, in addition to having several applications [4-6].
One approach to handle this problem is to build parameterized models for specific blur types, i.e.,
employ motion length and angle to describe a motion blur, the radius of a disk to model the defocus
blur, and a Gaussian model to simulate the atmospheric turbulence blur. Subsequently, Dash and
Majhi suggested a radial basis function neural network with image features based on the magnitude
of Fourier coefficients to estimate the motion lengths [7]. Jalobeanu et al. exploited the maximum
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likelihood estimator on the entire dataset available to estimate the parameters for a Gaussian model [8].
Kumar et al. utilized the Tchebycheff moment to estimate the variance of a Gaussian model [9]. Yin
and Hussain combined the non-Gaussianity measures for independent component analysis to estimate
the parameters for the motion length, disk radius, and turbulence degrees [10].

However, the methods based on parameter estimation fail when dealing with a random PSE.
Because the blind deconvolution problem is ambiguous, it could be regularized by some image priors,
which favor the original nature of images over noisy and blurry ones. In this perspective, numerous
image priors have been proposed in recent years. The Gaussian prior is one of the simplest and most
commonly used priors because it implements ridge regularization in the image gradient domain as
the penalty term in the cost functions and turns the problem into a quadratic convex optimization
problem, which can be solved by a number of numerical methods [11]. However, the Gaussian prior is
not adequately effective because natural images are mainly non-Gaussian [12,13].

Recent advances in digital image processing and sparse representation have led to the development
of new methods based on the statistical characteristics of natural images. Fergus et al. asserted
that the distribution of gradient magnitudes of a natural image has a heavy tail and sharp top, and
proposed an effective method based on the variational Bayesian approach [14]. Levin et al. introduced a
hyper-Laplacian prior to the image gradient and used the iterative reweighted least squares to solve
the cost function [15]. Joshi et al. put forward a prior on local color statistics with the hyper-Laplacian
prior for denoising and deblurring [16]. Wang et al. proposed a prior based on total variation [17].
Xu and Jia combined the total variation with an {1 constraint deconvolution method to efficiently reduce
outliers and preserve image structures [18]. Pan et al. restored the latent image in the dark channel [19].
Yang et al. proposed an ¢1-based constrained method combined with a genetic algorithm to restore a
clear image [20]. These methods adopt the £,-norm or quasi-norm forms as the image priors, which
achieve high quality results.

Furthermore, learning-based methods are also practical approaches in this field. Zhu et al.
proposed a method that reveals the priors from Gibbs sampling [21]. Roth et al. adopted the fields
of experts to learn image priors with contrastive divergence [22]. Raj et al. proposed an image prior
based on a Markov random field [23]. Schuler et al. used a multi-layer perceptron to learn an image
deconvolution scheme on a dataset of natural images with large quantities [24]. Zhang et al. trained
a set of convolutional neural network priors, which act as a constraint of model-based optimization
methods to cope with the image restoration problems [25].

In this paper, we propose a deblurring framework consisting of two stages. First, an accurate
blur kernel is estimated from an input blurry image via a nonzero constrained function as the image
prior. Compared to the conventional sparsity-based techniques, the optimization procedure of our
method has a lower computational complexity due to the analytical solution of the mathematical
model. Subsequently, we propose a deconvolution algorithm on sparse representation for latent image
restoration. Experimental results and comparisons indicate that our method outperforms others.

This study makes a novel contribution to the literature as summarized below:

e Animage prior based on nonzero measurement on four orientations of the image gradient domain
is proposed. The image histogram charts show that the frequency of nonzero values in the gradient
domain of a blurry image is far more than that in a clear one, and the nonzero measurement is
suitable for a constraint for image deblurring. The solution for the cost function with the proposed
image prior is also analyzed and discussed.

e  The blur kernel is obtained under a ridge regularization on the PSF because the measurements on
an image are enough to estimate the blur kernel in the maximum a posteriori (MAP) framework.
During the optimization, we propose a solution based on a conjugate gradient method combined
with Newton’s method; this solution could prevent us from calculating the inversion of a Hessian
matrix and solve the cost function efficiently.

e  Considering the statistical features of natural images, we presented a non-blind image deconvolution
algorithm by applying the concept of hyper-Laplacian distribution-based prior. Its target image is
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constrained by an £, quasi-norm in the cost function. We analyze and discuss the solutions for
different p values.

e  We tested our method on both simulated motion blurs and atmospheric turbulence blurs in
real-life applications. In addition, we comparatively analyzed our method, in terms of the cost
durations, estimated accuracy of the blur kernels, and quality assessment of the restored images,
and adopted several approaches related to blur removal.

The remainder of this paper is organized as follows: Section 2 introduces the imaging system and
the principle of image blurs. Subsequently, we present the details of our proposed deblurring method,
including the blur kernel estimation technique and the image deconvolution algorithm. The results of
the experiments and comparative analysis performed are described in Section 3. Section 4 summarizes
the study and presents concluding remarks.

2. Materials and Methods

Image blur is one of the most common phenomena of image degradations, which can generally be
regarded as a linear, shift-invariant system. Furthermore, it can be expressed by a convolution model
as follows [14-20]:

g=kof+n @

where f and g represent the original and observed blurry images, respectively; k is the blur kernel; the
symbol “®” represents the convolution operator; and 1 stands for the additive noise generated during
image acquisition or transmission.

2.1. Image Prior and Our Method’s Framework

From previous studies a practical framework of blind image deblurring is the blind iterative
deconvolution algorithm [15-19]. Its fundamental principle is expressed as follows:

(f,fc) = argnjr}}cn lkof-g |I§ +a1 Py + axPy (2)

where the first term, || k® f— g |2, is the data fidelity term which indicates the prior of the additive noise
1 in Equation (1), Py and Py represent the priors of the original image and the blur kernel, respectively,
while a7 and ay are their corresponding weights.

For the image prior model, we assume that the first-order derivatives of the image f in four
directions are represented in Equation (3) by:

Viflx, ) = flx y) = flx, y +1)

Vof(x, y) = flx,y) = fx +1,) 3)
Vaf(x,y) = flx,y) —fx+ 1Ly +1)

Vaf(x,y) =flx,y) —flx-1,y-1)

where x and y represent the coordinates of a digital image; and the operator V,, withn e N = {1, 2, 3, 4}
indicates the image gradients in four orientations: 0, t/2, /4, and 37/4, respectively. In the following
context, the images and blur kernels are represented by lexicographic order, which is to list every pixel
in raster scan order as one long vector [26]. This process is convenient for analysis and mathematical
calculations.

In this paper, to measure the image sparsity, we utilized the nonzero measurement in the image
gradient domain in the four orientations as the image prior, and we defined the prior as follows:

Pr=Y (1= 8(|Vafi + [Vaf| + [Vaf] + [Vaf])) 4)

i€eQ)
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where the subscript i represents the ith element of the image gradient domain in lexicographic
order discussed above, and () is the support domain of the images. Notation || represents the
magnitude. The function 6(m) is the Kronecker delta function, which returns 0 if m # 0 and 1 if m = 0.
In general, Equation (4) aims at counting the number of nonzero elements in image gradient domains
in four orientations.

In Figure 1, the first column shows an example of a clear image and a blurry one. The statistical
charts in the second column constitute their corresponding image histograms. It shows that the pixel
intensities are more concentrated in the blurred image, which implies that the gradient domain of the
blurred image has a better sparsity than that of the clear one. The third column shows the statistical
charts of nonzero values in the gradient domain in four orientations (V1 + V2 4 V3 4 V4), which
confirms that the frequencies of nonzero values of the blurred image in gradient domain are higher
than those in the clear image.

0.020 0.15

0.015

80

80

Figure 1. Example of the histograms on a clear and blurred image. First column: the upper is a clear
image and the lower is a motion-blurred image. Second column: statistics of pixel value distributions
in the two images. Third column: statistics of nonzero value distributions in the gradient domains of
the images (x-axis represents the pixel value, y-axis represents the statistical frequency.)

In the view of MAPD, the estimators can get closer to the true values on the condition of more
measurements. Since the size of the blur kernel is far smaller than that of the images, the observed
image g supplies enough measurements for estimating the blur kernel alone [27]. Thus, the blind
deconvolution problem of solving Equation (2) can be transformed into an alternating scheme, i.e., the
blur kernel should be estimated at first, and then the latent sharp image can be acquired by a non-blind
deconvolution method.

2.2. Estimation of Blur Kernel and the Intermediate Latent Image

To estimate the blur kernel, Equation (2) can be divided into two parts as follows:

f= argrr}in lk®f-g II% +a1Ps

P - 2 (@)
k= argrr}(m lk®f-gll5 +axPx

where the two subproblems above are solved alternately. Their solutions are represented in the
following section. In addition, to avoid the algorithm’s converging to local minimums, we adopt a
coarse-to-fine scheme during the blur kernel estimation. The image pyramid technique is applied to
generate the target image from the coarsest level to the finest level [26]. Figure 2 shows the framework
of the proposed method.
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Figure 2. Framework of the proposed method in a coarse-to-fine scheme. The “Down sampling”
step is accomplished through the Gaussian pyramid technique; the “Estimating” step is described in
Section 2.2; the “Deblurring” step is discussed in Section 2.3.

2.2.1. Solve fwith a Given k

As discussed in Section 2.1, we use a notation in the form of a norm constraint || V£ ||. to represent

the image prior Py proposed in Equation (4) for simplicity. Then, the first subproblem of Equation (5)
can be written as:

f: argn’;}n lkf-g ||% +aqll VF . (6)

where the result of f is an intermediate variable that is used for estimating an accurate blur kernel.
Furthermore, it cannot be regarded as the deblurring result because it loses multiple image details
and retains only the outlines. The above mentioned minimization can be solved via the split Bergman
iteration. With auxiliary variable u = (ul, u?,ud, u4) the cost function of Equation (6) turns into another
optimization problem:

I}‘i,“ Ik®f-gll3 +p1 Il Vi~ ull3 +aqll ull, ?)

where Vf = (Vif, Vaf, Vaf, Vaf) represents the collection of the gradient in the four orientations, and
the intermediate coefficient, 81, is varied during the optimization process. The optimization of fin
Equation (7) converges to the solution of Equation (6) as 1 approaches to infinity. The alternating
scheme of the subproblem is described as follows:

i = argmin || u [l + E1| Vf—u |}

; , s
j = argmin | ko =g I+ 1 Vf-u ®

where the result value of f represents the intermediate latent image.
Considering the ith element of u# and Vf, the @i-subproblem in the first part of Equation (8) can be

o= Z(argmuiin 1- 6[Z|u?|] + % Z(V"fi - u?)z] )

i€Q) neN neN

expressed as:

where the bold variable u; = (u}, ul.z, uf’, u?) to be minimized under the “argmin” function represents

the ith element of u. It can be seen from the above equation that the solution of Equation (9) is able to
be acquired via element-wise optimization.
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Let ¥ (u;) represent the minimization problem, i.e., the “arg min” function, for the ith element in
the right-hand side of Equation (9), and it can be expanded as follows:

BT (vt ;=0 (Vn sl =0)
Yiw) =1 e , .
LB R (V-] w0 (I 20)

It can be seen from Equation (10) that when u; # 0, the inequality ¥ (u;) > 1 always holds. As a
result, when ¥ (0) > 1, the minimum of ¥ (#;) is 1, when ¥ (0) < 1, the minimum of ¥ (u;) is ¥ (0).

The optimization of Equation (10) is discussed as follows:

(1) When ¥(0) > 1, the solution for ¥ (u;) = 1is u; = Vf.

(2) When ¥(0) < 1, ¥(u;) reaches the minimum when u; = 0.

Overall, the solution for Equation (9) is obtained in Equation (11) as follows:

(Vif, VA VA V) (Vi) > 1

ne

=
Il

(11)
(0,0,0,0) , otherwise

As to the f-subproblem in the second part of Equation (8), it is a convex quadratic optimization
problem whose solution can be achieved in frequency domain as follows:

GoK'+B1 Ypen Dno U,

ﬁ‘:
KoK+ p1 Yonen Duo Dy,

(12)

where F, G, K, and U, stand for the discrete Fourier transform (DFT) of f, g, k, and u;;; D, is the DFT
of the differential operators in the four orientations; notation o is the Hadamard product; and the
superscript * represents the complex conjugation. Generally, the denominator should be adjusted to
the floating-point relative accuracy depending on the platform to avoid any divide by zero cases in
practical implementations.

2.2.2. Solve k with a given f

As the differential operations are linear, the blurs in the image gradient domains also satisfy
the convolution model in Equation (1). Moreover, the blur kernel k can be estimated with more
accuracy in the gradient domain than directly solving the second subproblem in Equation (5) with
pixel intensities [28]. In the following contexts, the analytical solution for the k-subprolem is discussed
in the matrix form, and the second part of Equation (5) can be rewritten as:

K = argmin (FK - G) (FK - G) + a,K'K (13)

where F = (F; + F, + F3 + F;) and G = (G1 + G2 + G3 + G4); G, and G, with n € N represent the
block circulant matrices with circulant blocks generated from Vfand Vg; and K is rearranged from k in
a vector form so as to transform the convolution operation to the matrix multiplication [26,29].

The optimization of the above equation is a least squares problem, and its closed-form solution
can be achieved with the help of fast Fourier transform. However, the division and truncation in the
frequency domain will lead to the amplification of both noise and estimation error. However, in this
paper, we solve the optimization problem in the pixel domain directly with an effective conjugate
gradient method combined with Newton’s method.

Let B(K) stand for the “arg min” function in the right-hand side of Equation (13), then its gradient
VB(K) and Hessian matrix H are calculated in Equation (14) as follows:
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VB(K) = 2FTFK - 2FT G + 2K
(14)
H =2FTF+2a,I

where I is an identity matrix of the same size as F'F, and the variable K is eliminated in the Hessian
matrix when calculating their second-order partial derivatives. The solution of K can be achieved by
Newton’s descent method. Furthermore, since 8(K) is quadratic, the searching process converges
within only one iteration [30]. Assume the starting point is Ko = 0, then the minimum is achieved for:

K =Ky-H'VB(K)
15
=2H'F'G (15)
Considering that the computation of the inverse of the Hessian matrix H directly is very complicated
and impracticable, and computing the inversion H™! is not the final aim, the solution of Equation (15)
can be converted to the following form:
HK = 2F'G. (16)

It can be seen that Equation (16) is a linear system of equations; it can be solved by the conjugate
descent method effectively. During the alternating optimization, it should be noted that the blur kernel
must be kept positive and normalized so as to satisfy the property of a PSE. As a result, the negative
elements of the estimated K are set to zero, and its elements, K;, are then normalized to hold }_ K; = 1.

2.3. Image Restoration

With the estimated blur kernel k from the above method, the latent image can be revealed by
nonblind deconvolution algorithms, such as Wiener filtering and the Lucy-Richardson method, which
were introduced decades ago. These deconvolution algorithms are classic and have been widely
implemented in many fields. However, they are sensitive to noise, especially when the blur kernels are
estimated incorrectly, and the ringing effect is unavoidable. Therefore, inspired by the kernel estimation
discussed above, the sparse representation techniques can also be applied in the restoration of the
latent image. Based on the statistical character of natural images in recent studies, the distributions
of image gradient domains tend to have heavy tails and sharp tops, which means that most of their
distribution is on small values, but the probability of large values is much greater compared to the
Gaussian distribution [14-19]. Therefore, the hyper-Laplacian distribution-based prior can be used as
a regularization term in the cost function as follows:

f= argrr}in lk®f-gli3 +al (fo, Vyf) ||p (17)

where p is derived from the hyper-Laplacian model, which signifies the slope of the exponential term
of the density function. In Equation (17), it becomes the constraint term as a quasi-norm form, || - ||p,
as shown above. V,fand V,f are the image gradient domains in the horizontal (x-axis), and vertical
(y-axis), respectively. The optimization can be solved by half-quadratic penalty method similar to that
of Equation (7). With auxiliary variable v = (Ux, vy), the alternating scheme is shown as follows:

. 2
o = argminl| 0 ll, + 211 (Vsf, Vof) = (0, 0)) I

) 18
f=argmin|l kaf-g I +all (Vof, Vuf) = (25, v) I, o

The solutions for the #-subproblem vary with different p values. In particular, when p = 1, the
analytical solution can be obtained in Equation (19) by the soft thresholding algorithm [17] as follows:

0 = sgn(v) max{0, |[v| - T} (19)
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where T = ay/(2B2) is the threshold and sgn(-) represents the signum function.

It should be noted that the solutions in the horizontal and vertical orientation have the same form
in the following Equation (20)—(22), therefore the subscripts related to orientations are omitted for
briefness and convenience.

In general, for an arbitrary p, the minimization problem can be solved by setting the derivative of
the #-subproblem to zero. Therefore, for the ith element of v and Vfin horizontal orientation, we get:

- 2p2
ploi~'sgn(v;) + i(vi ~Vf)=0 (20)
az

In particular, when p = 0.5, the ?-subproblem in Equation (18) can be simplified to a cubic
function: )

a
vf’ - ZVfivi2 + Vfizui - (ﬁ) sgn(v;) =0 (21)
which can be solved using Cardano’s formula [31].
When p = 2/3, the 9-subproblem in Equation (18) can be expanded as a quartic function:

3
ot —3Vfo? 4 3VF0? -V, - (;"—;Z) —0 (22)
which can be solved using Ferrari’s and Descartes’ solutions [31].

For some special cases where p > 1, analytical solutions can be referred to in [32]. However, for
the remaining p values, no analytical solution exists, and the Newton-Raphson root finding method is
more effective [30].

The f-subproblem is similar to Equation (12) and, hence, its solution can also be determined in the
frequency domain in Equation (23), as follows:

GoK'+ Vi oD} + BoVy o Dy,
KoK*+ B2Dy o D} + oDy o D,

P

f=IDFT

(23)

where “IDFT” stands for the inverse discrete Fourier transform operation; Vy and V), stand for the
DFT of vy and vy, respectively; and Dy and Dy, is the DFT of the differential operators in horizontal
orientation, Vy, and vertical, Vy, respectively. The treatment for zero denominator is the same as that
in Equation (12).

2.4. Smooth the Image Boundaries

When processing a digital image in the frequency domain via DFT, this indicates that the pixel
domain is assumed to be periodical. This means that the top and bottom of the image are connected
similar to the left and right sides. In practice, the image size should be expanded to a proper size and
be padded with zeroes or other values to avoid aliasing, according to the Nyquist sampling criterion,
which dramatically reduces the smoothness of the padded image.

One approach to address this issue is to pre-process the image to be symmetric when padding, and
then use the “edgetaper” function in MATLAB, which only blurs the edges of the input image with a
specified PSF and keeps the center region. In this way, the pixel values in the boundary are equal to the
weighted sum of the original image and become differentiable. However, this method cannot ensure C>
continuity. In this paper, we padded the images by minimizing the summation of second-order partial
derivatives of the image borders to satisfy the 2nd-order smoothness. This technique was also referred
to by Liu and Jia [33].

3. Results and Discussion

In this section, the proposed deblurring method is verified by both simulated motion-blurred
images and atmospheric turbulence blur in real-life applications. For simulations, the test images were
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taken from the Kodak Lossless True Color Image Suite [34], and were numbered as “Img01,” “Img02,”
etc., for ease of comprehension. Figure 3 shows examples of the ground truth images for which the
testing process is outlined in the following subsections.

Figure 3. Examples of the ground truth images. (a) Img02: “RedDoor.png”; (b) Img07: “Flowers.png”;

(c) Img21: “Lighthouse.png.”.

We compared the proposed method with several other blind image deblurring methods. Shan et al.
used both the image gradient domain and pixel domain in the cost function for the data fitting term,
together with a natural image prior and uniform prior [35]. Cho and Lee used the shock filter and bilateral
filter with multiple orientations of images to enhance the structures, with the aim of ensuring that the
histograms of the gradient domain of the reconstructed images are similar to those of the original [36].
Krishnan et al. proposed an image prior model based on a piecewise function that approximates the
statistical characteristics of natural images using a sparsity representation technique [37]. They solved
the deblurring problem using an iterative shrinkage-thresholding algorithm. Wu and Su used the graph
Laplacian matrix as the cost function and obtained the clear image by an iterative solution [38].

3.1. Comparisons of Blur Kernel Estimations

The ground truth of blur kernels was taken from Levin et al. who represent a variety of PSFs of
motion blurs in daily life. Blur kernels are numbered as “(a),” “(b),” etc., for convenience [27]. Their
sizes range from 13 X 13 to 27 X 27 and their support domain varied from 10 to 25 pixels. The labels
and sizes are listed in the first two lines in Table 1.

Table 1. Comparison results of the blur kernel estimation. The cost durations are recorded in seconds,
and the best results of mean square error (MSE) are shown in bold.

Number (a) (b) (o) (d) (e) f) (g (h)
Size 19x19 17x17 15x15 27x27 13x13 21x21 23%23 23%23

Method Duration  64.572 63.431 56.714 81.508 50.356 67.938 69.447 74.999

PSF

in [35] MSE 0.6182 0.2592 0.2259 0.1062 0.6942 0.2656 0.1457 0.0975
Method Duration  6.9690 6.9370 6.8580 7.5930 6.1690 7.0620 7.0930 7.3120
in [36] MSE 0.4893 0.3763 0.3722 0.0977 0.7499 0.2036 0.0867 0.1339
Method Duration  95.979 56.916 35.043 211.07 25.636 110.29 131.32 143.96
in [37] MSE 0.6249 0.7617 0.2892 0.3221 0.4817 0.3404 0.1711 0.4252
Method Duration  71.577 70.950 65.525 126.08 58.953 77.165 110.45 119.04
in [38] MSE 0.5624 0.3650 0.1807 0.1364 0.2374 0.2312 0.1012 0.1525
Proposed Duration 14.702 14.327 13.796 28.076 13.171 18.061 21.624 21.653
method MSE 0.4823 0.1540 0.1024 0.0675 0.1110 0.1161 0.0627 0.0821

3.2. Comparison of Deblurring Results.

The first row of Figure 4 shows the eight ground truth blur kernels. To evaluate the effectiveness of
blur kernel estimation, a test image, namely “Img?21,” was artificially blurred by the eight ground truth
blur kernels, therefore eight simulated blurred images were obtained. Subsequently, these blurred
images were used as the inputs of the proposed method and other methods discussed above.
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Figure 4. Comparison results for blur kernel estimation. (a-h): 8 blur kernels listed in Table 1. First

row: ground truth blur kernel. Second row: method in [35]. Third row: method in [36]. Fourth row:
method in [37]. Fifth row: method in [38]. Last row: proposed method.

To evaluate the blur kernel estimation more objectively, the mean square errors (MSE) of the
estimated blur kernels were calculated and are listed in Table 1. The cost durations for the deblurring
methods were also recorded. Our method was implemented in MATLAB, and the comparisons were
assessed using a Windows platform with an Intel Xeon E5-2620 v4 CPU (2.1 GHz, 8 cores) and 32 GB
RAM. The comparison results are shown in Figure 4.

Table 1 shows that the proposed method achieves faster convergence than most of the other
methods. Because the method in [36] adopts the fast Fourier transform technique both in the kernel
estimation and in the deblurring process, we estimated the blur kernel in the pixel domain directly,
using the conjugate descent method. Although our estimation of the blur kernels required more time,
we avoided truncation and division operations in the high-frequency domain; this effectively improved
the estimation accuracy. In practice, the estimated blur kernels of our method achieved the best visual
effects and achieved the lowest MSE as shown in the last row of Figure 4 and Table 1.

In our experiments, to evaluate our method and compare it with other similar ones, we used the
peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) as the full-reference image
quality assessment (FRIQA) parameters, which are shown in Equations (24) and (25).

The PSNR [39] is a conventional indicator that is widely employed for measuring the quality of
image reconstruction:

12

=10]lg——M—M 24
018 VSE(x )" (24)

PSNR(x,y)

where x and y represent the reference image and deblurred result, respectively, MSE(x,y) = x — y%
represents the mean square error between them, and L stands for the image dynamic range.

The SSIM [39] is a full-reference metric for measuring the similarity between two images, x and y,
and is defined as follows:

(2% + C1)(200y + C2)
(B +7+C) 02+ 03 +C)

SSIM(x,y) = (25)
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where xand y are the mean values, o, and oy, are the standard deviations, and oy, is the cross-covariance.
Furthermore, C; = (k;L)? and C; = (k,L)? are factors used to ensure stability in case of division with
a small denominator, with k; = 0.01 and k, = 0.03 in general.

An example of “Img02” blurred by kernel “(b)” and the deblurring results are shown in Figure 5.
The white ball and the latch, as well as the wood grains and cracks, are blurred and indistinct, as shown
in Figure 5a. The deblurring method described in [35] significantly reduces the blur in Figure 5b, but
the result is still unsatisfying. The methods described in [36,37] introduce the ringing effect, both
around the ball and wood cracks, as they are obvious in Figure 5¢,d. This phenomenon is reduced by
the method described in [38] as shown in Figure 5e. However, wood grains in the image are not clear

enough. In contrast, as it can be seen in Figure 5f, the proposed method restores both the texture and
the background.

Figure 5. Comparison results for the “RedDoor.png” image: (a) blurry image; (b) method in [35]; (c)
method in [36]; (d) method in [37]; (e) method in [38]; (f) proposed method.

Figure 6 shows an image, namely, “Img07,” blurred by kernel “(a).” As can be seen in Figure 6b,
the deblurring method described in [35] reduced some of the blurriness; however, the visual effect is
still lacking. Particularly, the shutters in the background are still not clear enough, and the estimated
blur kernel shown in the top left is a little rough when compared with others. Moreover, as it can be
seen in Figure 6¢,d, the method described in [36,37] restored the sharpness, but introduced strong
artifacts, especially around the petals and leaves. These limitations were overcome by the method
described in [38] (see Figure 6e), as well as by the proposed method (see Figure 6f), which restored
most of the details, and the shape of its estimated blur kernel is the closest to the ground truth data.

Figure 6. Comparison results for the “Flowers.png” image: (a) blurry image; (b) method in [35]; (c)
method in [36]; (d) method in [37]; (e) method in [38]; (f) proposed method.
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Figure 7 shows another example blurred by kernel “(f)”; the image here is “Img21.” The lighthouse
and cabins are blurred and unclear in Figure 7a. As can be seen in Figure 7b, the deblurring method
described in [35] reduced some of the blurriness; however, the visual effect is still lacking. In addition,
as can be seen in Figure 7c, the method described in [36] restored the sharpness but introduced strong
artifacts along the roofs and the white tower. In Figure 7d, because the method described in [37]
estimated a blur kernel with numerous outliers, its deblurring result is not as good as the others.
The limitation was partially overcome by the method described in [38]. There were still, however,
some outliers in the estimated blur kernel shown in Figure 7e; the general outlines of the kernel were
estimated correctly. In contrast, the proposed method not only estimated the most appropriate blur
kernel, but also obtained a clear result with high quality.

Figure 7. Comparison results for the “Lighthouse.png” image: (a) blurry image; (b) method in [35]; (c)
method in [36]; (d) method in [37]; (e) method in [38]; (f) proposed method.

Table 2 lists the original FRIQA data of a comparative analysis performed on the examples.
For all of these—"Img02,” “Img07,” and “Img21,”—the PSNR and SSIM were the highest for the
proposed method.

Table 2. Full-reference image quality assessment data of the comparison results of Figures 5-7.

Test Images FRIQA Method in Method in Method in Method in Proposed

[35] [36] [371 [38] Method

“RedDoor.png” PSNR 28.660 26.126 27.126 28.633 28.986
Pig SSIM 0.9751 0.9570 0.9660 0.9764 0.9787

“F] " PSNR 27.411 26.082 27.429 27.826 28.240

owers.png

SSIM 0.9049 0.9120 09173 0.9122 0.9177

2y »  PSNR 25.197 24.297 24.887 25.577 25.841

ighthouse.png

SSIM 0.8816 0.8724 0.8651 0.8791 0.8867

More comprehensive comparisons were carried out on all 24 tested images in the Kodak Lossless
True Color Image Suite, which was introduced at the beginning of Section 3 [34]. The statistics related
to the PSNR and SSIM, as determined from a comparative analysis of all the simulated motion-blurred
images, are shown in Figures 8 and 9, respectively. In the deconvolution procedure, any slight noise or
outliers in an estimated blur kernel can cause errors in the image gray values; the shapes and offsets of
the blur kernels can also affect the pixel positions in the deblurred results. In addition, the testing ground
truth images were wrapped with gray or black boundaries. As the PSNR value is based on the MSE of
the images, it mainly depends on image contrast and gray scales. Additionally, the SSIM value uses the
image absolute means and the standard deviations. These two metrics have their advantages and make
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up for each other’s shortcomings. In this paper, therefore, we use both metrics to evaluate the deblurring
results. As can be seen in Figures 8 and 9, the PSNR values of our results for “Img03” and “Img10” are
lower than others, but their SSIM values are the highest. Similarly, the phenomena of “Img04” and
“Img22”, with lower SSIM values, but the highest PSNR values, derive from the same reasons. Once
again, it can be seen that the proposed method was superior to other methods in most cases.

-4-Shan et al. -B-Cho and Lee. -7 -Krishnan et al. -4-Wu and Su. -*-Our mcthod|
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Figure 8. Statistics related to the average peak signal-to-noise ratios (PSNRs) for the comparison results

of all the test images.
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Figure 9. Statistics related to the average structural similarity indexes (SSIMs) for the comparison
results of all the test images.

3.3. Real-Life Applications

In building and infrastructure construction, a theodolite is used to measure angles between
designated visible points in the vertical and horizontal planes. In special tasks, however, such as
long-range detection in the morning, the imaging quality is greatly reduced by atmospheric turbulence.
In our project, a customized theodolite equipped with a high-speed camera was used to capture
photo sequences (in gray scale) of targets over 1.5 kilometers away in the open air of a military base.
The photographs were taken early in the morning on a sunny day in autumn. The focal length of
the camera was 2000 mm; the exposure time was 4 ms; and the frequency was 50 frames per second.
Some examples of the targets captured over long distances are shown in this paper. The deblurring
results obtained using this method are shown in Figures 10-12. In Figure 10a, the numeric character
on the watchtower is dim and illegible, and the stairs are unclear. In Figures 11a and 12a, the edges
of the chimney and the signal pole are indistinct. Figure 10f clearly shows that the character on the
watchtower and the outlines of the stairs are more detailed. The area around the edges of the chimney
and pole are clearer than in the images obtained using other methods, as shown in Figures 11f and 12f.
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. .
Figure 10. Comparison results for the “Towerbmp” image: (a) blurry image; (b) method in [35]; (c)
method in [36]; (d) method in [37]; (e) method in [38]; (f) proposed method.

Figure 11. Comparison results for the “Chimney.bmp” image: (a) blurry image; (b) method in [35]; (c)
method in [36]; (d) method in [37]; (e) method in [38]; (f) proposed method.

Figure 12. Comparison results for the “Pole.bmp” image: (a) blurry image; (b) method in [35]; (c)
method in [36]; (d) method in [37]; (e) method in [38]; (f) proposed method.

To evaluate the deblurring methods for images without ground truth, we used the Blind Image
Quality Index (BIQI) and the Spatial-Spectral Entropy-based Quality (SSEQ) index as the non-reference
image quality assessments (NRIQA). Both of these constitute a scoring mechanism: a 2-D image is
inputted and then a score is outputted (100 represents the worst quality while 0 represents the best).
The BIQI was proposed based on distorted image statistics (DIS), and the proposers found that the
distortions of natural images have unique characteristics using DIS, and the images can be classified into
distortion categories via these characteristics; details can be obtained from [40]. The SSEQ index utilizes
down-sampled responses as inputs, then a local entropy feature vector of twelve dimensions can be
extracted, and the image quality scores are generated from these features via a learning-based method [41].
Table 3 shows the original NRIQA data of a comparative analysis performed on the examples.

Table 3. Non-reference image quality assessment data of the comparison results of Figures 10-12.

Test Images NRIQA Method in Method in Method in Method in Proposed

[35] [36] [37] [38] Method

“ 1 BIBQ 46.347 38.829 41.496 39.855 37.293
Tower.bmp

SSEQ 37.831 46.839 40.268 36.637 35.693

“Chimney.bmp” BIBQ 57.800 52.974 58.437 52.889 51.953

SSEQ 69.902 52.127 59.659 49.884 33.326

“Pole bmp” BIBQ 52.357 45.612 46.507 45.246 41.586

SSEQ 45.693 52.588 44.672 39.171 37.514

4. Conclusions

In this paper, we proposed and evaluated an image deblurring method based on sparse
representation. We determined the image prior based on the nonzero measurement in the gradient
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domain of natural images, which is an efficient prior for blur kernel estimation. We optimized the
cost function via the split Bergman iteration that turned the non-convex problem into an alternating
scheme, and the blur kernel could be estimated correctly in a coarse-to-fine manner for avoiding local
minima. Subsequently, we revealed the latent image through a similar technique with the help of the
hyper-Laplacian distribution-based prior with the estimated blur kernel. In the interim, to reduce
ringing effects, we preprocessed the image boundaries to achieve second-order smoothness. Moreover,
the deblurring algorithm converged quickly owing to the analytical solutions of the subproblems. The
results of experiments and comparative analysis shows that the proposed method can obtain improved
results compared with other similar deblurring methods. In addition, our method is effective when
dealing with atmospheric turbulence blurs in real-life applications. Because our deblurring framework
is based on a linear system, it works well on spatially invariant blurs in most scenarios. In the future,
the deblurring model can be extended to nonlinear blurs for wider applications.
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