
applied  
sciences

Article

A Distributed Indoor Mapping Method Based on
Control-Network-Aided SLAM: Scheme and Analysis

Jian Tang, Jingren Wen and Chuang Qian *

GNSS Research Center, Wuhan University, Wuhan 430079, China; tangjian@whu.edu.cn (J.T.);
jrwen@whu.edu.cn (J.W.)
* Correspondence: qc_gnss@whu.edu.cn; Tel.: +86-132-355-06666

Received: 24 February 2020; Accepted: 30 March 2020; Published: 2 April 2020
����������
�������

Abstract: Indoor mobile mapping techniques are important for indoor navigation and indoor
modeling. As an efficient method, Simultaneous Localization and Mapping (SLAM) based on Light
Detection and Ranging (LiDAR) has been applied for fast indoor mobile mapping. It can quickly
construct high-precision indoor maps in a certain small region. However, with the expansion of the
mapping area, SLAM-based mapping methods face many difficulties, such as loop closure detection,
large amounts of calculation, large memory occupation, and limited mapping precision. In this
paper, we propose a distributed indoor mapping scheme based on control-network-aided SLAM to
solve the problem of mapping for large-scale environments. Its effectiveness is analyzed from the
relative accuracy and absolute accuracy of the mapping results. The experimental results show that
the relative accuracy can reach 0.08 m, an improvement of 49.8% compared to the mapping result
without loop closure. The absolute accuracy can reach 0.13 m, which proves the method’s feasibility
for distributed mapping. The accuracies under different numbers of control points are also compared
to find the suitable structure of the control network.
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1. Introduction

With the rapid development of the geographic information industry, demand for location-based
services (LBS) is growing rapidly. Fast-updated online maps (e.g., Google Maps, Baidu Maps, GaoDe
Maps) have made outdoor LBS, such as positioning, navigation, and first-aid applications, more
convenient and faster [1]. However, for indoor environments where people spend most of their time [2],
the lack of indoor environment maps is very serious. Even Google Indoor Maps, which may represent
the industry state of the art [3], covers only a small part of indoor environments. The lack of indoor
maps severely limits the development of indoor LBS, so an efficient, low-cost, high-precision indoor
mapping technology is urgently needed to solve this problem [4].

After decades of development, mobile mapping has been proven to be an effective outdoor
mapping method. Mobile mapping systems can complete outdoor environment mapping quickly and
accurately with the assistance of GNSS (Global Navigation Satellite System), INS (Inertial Navigation
System), or other sensors. However, in indoor environments where GNSS is denied due to satellite signal
occlusion, it is more difficult to obtain the position and orientation for mapping [4–7]. The traditional
mapping methods, such as utilizing a stationary total station to measure the feature points and get
accurate indoor sparse mapping results, are time-consuming and cannot meet the need for fast updating
of indoor maps. Another conventional method is obtaining indoor maps by utilizing static laser
scanning, but its cost and efficiency cannot meet the requirements of low cost and fast updating of
indoor mapping [4].
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In recent years, Simultaneous Localization and Mapping (SLAM) has been proven to be an efficient
and promising technology for solving the indoor mapping problem. SLAM can construct a consistent
map by localizing a robot relative to the map at the same time, which has been investigated in the
community of robotics for more than two decades. Light Detection and Ranging (LiDAR)-based
SLAM is one of the most stable and popular methods for mapping, positioning, and navigation in
indoor environments because LiDAR can provide high-precision range information over long distances
compared with other sensors, which can improve the positioning and mapping precision [8]. There
have been many studies on LiDAR SLAM utilizing 2D or 3D LiDAR, such as Hector SLAM [9],
Gmapping [10], Karto SLAM [11], and Cartographer [12]. The framework of SLAM can be divided
into filter-based and graph-based types. The filter-based SLAM frameworks include Extended Kalman
Filter (EKF) SLAM [13–15] and Particle Filter (PF) SLAM [16]. Graph-based SLAM has gradually
become the mainstream SLAM framework by modeling the SLAM problem as a constrained sparse
graph with a front end and back end. It is a state-of-the-art technique with respect to calculation speed,
location accuracy, and mapping accuracy [17].

Although SLAM technology has been successfully applied in the field of indoor mapping to
produce high-precision indoor maps, the positioning and mapping accuracy will gradually degrade
with the expansion of the mapping area [18], and it is difficult for SLAM to correctly detect loop closure
to eliminate the cumulative error in large-scale indoor environments [19]. Moreover, the computational
pressure will increase rapidly with the expansion of the mapping area, especially for filter-based
SLAM [20,21].

Distributed indoor mapping methods based on multirobot cooperation SLAM systems can
decompose a large-scale mapping problem into multiple small-area mapping problems, which can
greatly improve the efficiency and reduce computational pressure. The most important challenge
in cooperation SLAM is how to stitch the maps from multiple tasks or multiple robots together by
determining the relative positioning between multiple mapping results [22,23]; because SLAM is a
relative positioning process, the coordinate system of the mapping result is usually determined by
the first frame of data. There have been many studies on estimating the relative position, such as by
seeking overlap of the local map [24,25], adding special sensors which can make each robot see the
others [22,26], and cooperative localization methods [27–29]. Although these methods can achieve
distributed indoor mapping, they depend on accurate matching algorithms to determine the relative
positioning, which requires adjacent areas to have sufficient overlap, reduces mapping efficiency,
and increases hardware costs.

In order to improve the accuracy of SLAM, other sensors are integrated, such as GNSS in
outdoor environments [30,31] and Pseudo-GNSS/INS [32] and Wi-Fi [33] in indoor environments.
However, the accuracy of indoor positioning is lower than that using GNSS. For high-accuracy
indoor mapping, the NavVisM6 indoor mobile mapping system improves accuracy by using “SLAM
anchors”, which are ground control points with accurate absolute coordinates [34]. The mapping
results of control-network-aided SLAM are then in an absolute coordinate system. When combining
distributed mapping methods with control-network-aided SLAM, each mapping result will be in a
unified coordinate system, which means that the multiple mapping results can be stitched conveniently
without the need for estimating the relative positioning. In this paper, we propose a distributed indoor
mapping scheme based on control-network-aided SLAM. The relative and absolute mapping accuracy
of the control-network-aided SLAM are analyzed to verify the feasibility of the scheme.

The main contributions of this paper are the following: 1. A distributed indoor mapping
scheme based on control-network-aided SLAM is proposed to improve indoor mapping efficiency
for large-scale environments; 2. The control-network-assisted SLAM is analyzed in detail from the
perspectives of relative accuracy and control point density; 3. The feasibility of the distributed
mapping scheme is verified through absolute accuracy analysis. The rest of the paper is organized
as follows: Section 2 introduces the methods and materials utilized in this paper, including map
generation, IMU (International Mathematical Union)-aided SLAM, control-network-aided SLAM
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back-end optimization, and distributed indoor mapping based on control-network-aided SLAM;
Section 3 introduces the field test and presents the field test results; the field test results are discussed
in Section 4; and Section 5 draws the conclusions.

2. Method

Control-network-aided SLAM is the foundation of the proposed distributed indoor mapping
scheme. In the SLAM problem, there exist two different strategies to obtain the position of the robot:
feature matching and scan matching. Feature matching refers to positioning by matching significant
feature points (such as feature lines or corner points) extracted from LiDAR scan data with feature
maps. However, it is relatively difficult for 2D LiDAR scans to extract distinctive features because
LiDAR scan data do not contain rich feature information like visual images do [19]. Scan matching
refers to positioning by matching two or more consecutive LiDAR scan data with a grid map or point
cloud. Scan matching is a widely used method for calculating relative poses in LiDAR-based SLAM,
which can be divided into scan-to-scan matching and scan-to-map matching methods. Scan-to-scan
matching accumulates error quickly, as it only uses the observation information of two consecutive
LiDAR scans. Scan-to-map matching can obtain a more accurate relative pose because it can limit
the accumulation of errors. In this paper, we use an optimization-based method to get more accurate
mapping results. Firstly, the map generation and update methods utilized in the SLAM process
are introduced. Secondly, the IMU-aided scan-to-map matching is described in detail. Thirdly, the
control-network-aided SLAM back-end optimization is explained. Finally, the distributed mapping
scheme is designed based on control-network-aided SLAM.

2.1. Map Generation and Update

Occupancy grid maps, which are a location-based environment model, are one of the most
commonly used map models in mobile robot environment modeling. The basic idea of an occupancy
grid map is to discretize the environment into a series of grids of the same size according to the
map resolution, and each grid is set with an occupancy probability value to indicate the probability
of occupation [35]. In this paper, a multiresolution occupancy grid map is used to represent the
environment, which is similar to the image pyramids used in the field of computer vision. We first set
the total number of occupied grid map resolutions and then divide it from top to bottom according to
the different resolutions until it is divided into the minimum resolution grid; the map center and map
boundary also need to be set at the beginning. When new LiDAR scan data are to be inserted into the
multiresolution occupancy grid map, we first perform a scan matching search on the lower-resolution
map layer to obtain a rough pose and then on the higher map layer to achieve a high-precision result,
which can greatly reduce calculation pressure. The pose obtained from the scan-to-map matching
process is used to update the entire map synchronously; thus, we can ensure that maps of different
resolution are always consistent.

We use the same occupancy grid state update strategy as Google’s Cartographer. Whenever new
LiDAR scan data are to be inserted into the occupancy grid map, we first compute a group of grid
points for hits and another disjoint group of grid points for misses. Figure 1 shows the relationship
between the scanning point and the grid points. For each hit, the nearest grid point will be inserted
into the hit group, and for each miss, we insert the grid points that intersect the line between the
scan origin and each scan point (not including the grid points that are already in the hit group) [12].
The occupancy probability of the grid point will be set if it has not been observed before and is in the
hit set or miss set. If a grid point has been observed before, the occupancy probability for hits and
misses is updated as follows.

odds(x) = p
1−p ,

Mnew(x) = clamp
(
odds−1(odds(Mold(x))·odds(phit))

) (1)
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2.2. IMU-Aided Scan-to-Map Matching

In the scan-to-map matching process, which is also called the front end, high-precision initial
pose estimates can improve the accuracy of matching, which is calculated by the IMU mechanization
algorithm in this paper. The main task of IMU mechanization is to use the output values of the
gyroscope and accelerometer to calculate the navigation parameter through the position, velocity, and
attitude update algorithms, which is a process of recursive calculation. The speed differential equation
under the navigation coordinate system can be expressed as

.
V

n
en = Cn

b f b + gn
−

(
2ωn

ie +ωn
en

)
×Vn

en, (2)

where Vn
en is the projected velocity under the coordinate system n of the coordinate system e (that

is, the ground speed) relative to the coordinate system n; f b is the specific force outputted by the
accelerometer; 2ωn

ie ×Vn
en is the Coriolis acceleration; ωn

en ×Vn
en is the centripetal acceleration of the

carrier relative to the Earth; and gn is the acceleration of gravity. The quaternion equation for positional
update can be expressed as

qe(k)
n(k)

= qe(k)
e(k−1)

qe(k−1)
n(k−1)

qn(k−1)
n(k)

(3)

where the position quaternion qe(k−1)
n(k−1)

at time tk−1 is known information and qn(k−1)
n(k)

, qe(k)
e(k−1)

can be
calculated as

qn(k−1)
n(k)

=

 cos ‖0.5ζk‖
sin ‖0.5ζk‖
‖ζk‖

ζk

 (4)

qe(k)
e(k−1)

=

 cos ‖0.5ξk‖

−
sin ‖0.5ξk‖
‖ξk‖

ξk

 (5)

where ζk, ξk is the rotation vector of the ECEF (Earth-Centered, Earth-Fixed) coordinate system
and navigation coordinate system from time k − 1 to time k. Thus, we can get a relatively correct
position from the IMU mechanization algorithm, which can narrow the search window of the LiDAR
scan-to-map matching. Using this method, we can properly solve the problem of data association and
there is no need for an exhaustive pose search.
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The Gauss–Newton method is utilized to find the optimal match between the current LiDAR scan
data and the map that has been constructed. Given an occupancy grid map obtained from previous
LiDAR scan data and the initial pose (provided by IMU) of the current LiDAR scan data, we seek to
find the optimal rigid transformation Tξ =

(
px, py,ψ

)
to minimize the occupancy probability residual:

argmin
ξ

K∑
k=1

[1−Msmooth(Tξhk)]
2 (6)

where Tξ transforms point hk from the LiDAR scan coordinate system to the map coordinate system;
Msmooth(Tξhk) returns the occupancy probability at the coordinate Tξhk and is a smooth version of the
occupancy probability values in the map. We use bilinear interpolation here to calculate the occupancy
probability value Msmooth(Tξhk), and the gradient is computed as

∇Msmooth(Tξhk) = (
∂Msmooth
∂x

(Tξhk),
∂Msmooth
∂y

(Tξhk)). (7)

The four closest integer coordinates around the position Tξhk are needed to calculate the gradient
during the calculation because the discontinuous nature of the occupancy grid map makes it impossible
to calculate the derivative directly and will limit the calculation accuracy.

2.3. Control-Network-Aided SLAM Back-End Optimization

The scan-to-map matching strategy adopted by the front end can reduce the accumulation of
positioning errors and mapping errors to a certain extent. However, as the mapping area expands, its
positioning accuracy and mapping accuracy will gradually decrease. To further solve this problem,
back-end optimization is performed by using the relative constraint information between discontinuous
frames, which is called loop closure, to suppress the accumulation of errors. Submap-based back-end
optimization is applied in this scheme. It selects some scans in one submap to match the other
submaps by scan-to-map matching to obtain the relative pose between the submaps, which is the
most time-consuming process. If we find a good match between submaps, the corresponding relative
constraint is added to the back-end optimization problem to eliminate the cumulative error. Back-end
optimization can also be expressed as a nonlinear least square problem that can be written as

argmin
{M}m, {S}n

1
2

∑
i j

ρ(E2(ξm
i , ξS

j ;
∑

i j
, ξi j)) (8)

in which the submap poses {M}m = ξM
1 , ξM

2 · · · ξ
M
m and the scan poses {S}n = ξS

1 , ξS
2 · · · ξ

S
n in the world

coordinate system are optimized by relative constraints; ξi j indicates the relative pose relationship
between submap i and LiDAR scan j; and

∑
i j represents the covariance matrix. The residual E is

calculated as
E2(ξm

i , ξS
j ;

∑
i j

, ξi j) = e(ξm
i , ξS

j ; ξi j)
∑
−1

i j
e(ξm

i , ξS
j ; ξi j) (9)

e(ξm
i , ξS

j ; ξi j) = ξi j −

 R−1
ξm

i
(tξm

i
− tξS

j
)

ξm
i;θ − ξ

S
j;θ

 (10)

and ρ in (8) is a loss function to reduce the effect of outliers since a wrong constraint might be added to
the back-end optimization problem during the process of loop closure detection.

The absolute coordinate information of the control network can be treated as position constraint
information to the submap too, which needs to be considered in the process of back-end optimization.
Firstly, a reasonable control network is laid out according to the actual situation of the survey area,
and the control network is measured using a total station to establish an absolute coordinate system.
During the data acquisition process, the LiDAR scanning center can be aligned with a control point on
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the motion path. At the same time, the aligned scanning frame data are marked with a special number
by the data collection software. The residual of such constraints can be computed as

e(ξCNC
marked, ξSan

marked, ξCNC/Scan) = tξCNC
marked

−RξCNC/Scan tξSan
marked

(11)

where ξCNC
marked, ξSan

marked are the pose of the marked scan frame in the absolute control network coordinate
system and in the submap coordinate system of SLAM, respectively; ξCNC/Scan describes the
transformation relationship between the absolute control network coordinate system and the submap
coordinate system of SLAM.

2.4. Distributed Indoor Mapping Based on Control-Network-Aided SLAM

According to Section 2.3, the mapping results of control-network-aided SLAM can be converted
into the coordinate system defined by the control point coordinates. If all the control points are
measured uniformly, then the mapping area can be divided into many small blocks for mapping.
The results of these distributed mappings will be in a unified coordinate system without matching each
other to obtain their relative positions, which can greatly simplify the mapping process and improve
the mapping efficiency. Figure 2 illustrates the process of the distributed indoor mapping scheme
based on control-network-aided SLAM.
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3. Field Tests and Results

3.1. LiDAR/IMU Integrated System Overview

As shown in Figure 3, a LiDAR/IMU integrated hardware system was designed and built; it
contained an Xsens MTi-G IMU and Hokuyo UTM-30LX-EW LiDAR. The data from the LiDAR and IMU
were transmitted to the laptop through the network port and USB port, respectively. The Xsens MTi-G
IMU is a MEMS-level device and its sampling frequency is 200HZ; other major performance indicators
are as follows: gyroscope bias is 200 degrees/h, accelerometer bias is 2000 mGal. UTM-30LX-EW
LiDAR operates at 40 Hz, its field of view is 270 degrees with an angular resolution of 0.25 degrees,
and its maximum effective range is 30 m with a range accuracy of ±30 mm at 0.1~10 m and ±50 mm at
10~30 m.
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3.2. Field Test Overview

A series of field tests were designed and carried out in a large indoor parking lot (about 10,000
square meters) to evaluate the performance of the distributed indoor mapping scheme based on
control-network-aided SLAM. The experimental environment is shown in Figure 4. In the parking
lot, we designed and laid out a control network that contained 35 control points, and the coordinates
of the control points were measured using a total station. The parking lot was divided into four
independent mapping blocks, as shown in Figure 5. The LiDAR/IMU integrated hardware platform
was mounted on a mobile platform. During the data acquisition, when the mobile hardware platform
moved near a control point, we carefully adjusted the movement of the mobile hardware platform to
align the LiDAR scanning center with the control point, which means that the origin of the platform
coordinate system coincided with the control point. Then, the aligned scanning frame data were
marked with a special number by the data collection software. To fully assess the accuracy and
effectiveness of the proposed algorithm, we performed corresponding field tests and compared the
mapping result with a high-precision reference map produced using a ground laser scanner to evaluate
the relative accuracy and absolute accuracy of the mapping result, and we evaluated the impact of
different numbers of control points on the accuracy of the mapping result. Accuracy assessment of the
algorithm was achieved by evaluating the accuracy of selected main feature points (such as corners
or some obvious fixed object). The high-precision reference map produced by the FARO Focus3D
X130 HDR ground laser scanner and the map produced by our algorithm could both be imported to
ArcGIS software, where we could manually extract the coordinates of the common feature points for
accuracy assessment.
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3.3. Evaluation of Relative Accuracy and Absolute Accuracy

Relative accuracy indicates the accuracy of the relative positional relationship between objects
inside the map, which is an important indicator for evaluating the consistency of the mapping result
in one SLAM process. We selected a certain number of feature points with the same name from the
high-precision reference map and our map, then calculated the coordinate conversion parameters
between the two sets of coordinate systems, and finally calculated the RMS (Root Mean Square) of
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the transformed coordinate residuals to evaluate the relative accuracy. We chose Block 1 to evaluate
the relative accuracy of the control-network-aided SLAM. The mapping results are shown in Figure 6.
The mapping result MAP_I is the result of adding the control network constraints to the back-end
optimization. The mapping result MAP_II was constructed without considering any constraints. Loop
closure was not considered in MAP_I or MAP_II. Table 1 shows the RMS of the coordinate error of
the selected common feature points. The RMS values of the coordinate error of the selected common
feature points of MAP_I and MAP_II were 0.08 m and 0.16 m, respectively. The mapping results show
that adding control network constraints can effectively eliminate the cumulative error to improve
the accuracy of the mapping result; the relative accuracy was improved by 49.8% compared to that
of MAP_II. The accuracy of MAP_I reached the centimeter level without considering loop detection,
which means that we can improve the accuracy of SLAM where it is difficult to detect loop closure by
utilizing the method of adding control network constraints. The reason for this is that control point
information includes the relative constraints between the submaps, which is similar to loop closure
and can improve the accuracy of SLAM.
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result without control network or loop closure constraints.

Table 1. RMS (Root Mean Square) comparison of different mapping results.

Mapping Result Constraint Type Number of Common Feature Points RMS

MAP_I Control Network 27 0.08 m
MAP_II No constraints 27 0.16 m

Absolute accuracy indicates the consistency of the mapping results in different SLAM processes in
the distributed mapping, which can be analyzed by the difference between the mapping results and the
reference map in the control network coordinate system. It also refers to the accuracy of map stitching
in various parts after distributed mapping. In order to analyze the absolute accuracy, the high-precision
reference maps were converted into the control network coordinate system using target balls, which
were placed artificially with known coordinates. The absolute position error of the same named points
in the two maps which were in a unified coordinate system (high-precision reference map and MAP_I
in Section 3.3) was calculated to analyze the absolute accuracy, which determined the accuracy of map
stitching. We separately selected common feature points, such as corners or other obvious fixed objects,
from MAP_I and the converted high-precision reference map, and then calculated the RMS of the
absolute position errors to indicate the absolute accuracy. The RMS of the absolute position error of



Appl. Sci. 2020, 10, 2420 10 of 14

the selected common feature points was 0.13 m, which indicates that the mapping results of different
blocks can achieve good splicing.

3.4. Evaluation of the Influence of Control Point Density

In order to assess the influence of the density of control points on the relative and absolute accuracy
of the mapping result, we compared the accuracy of the mapping results by adding different numbers
of control points distributed evenly to assess the effect of density of control points on the mapping
result. The control points in Block 1 are shown in Figure 7. The RMS values of the relative and absolute
accuracy are shown in Table 2. These show that the density of control points has a significant impact
on the accuracy of the mapping result: there is a trend that as the density of control points increases,
the accuracy of the mapping increases accordingly. The relative accuracy and absolute accuracy of the
mapping result were increased by 41.86% and 31.19% when the number of control points increased
from 4 to 8. However, the improvement in mapping accuracy was not so obvious when the number
of control points increased from 8 to 12. The results indicate that the number of control points does
have an influence on the accuracy of the mapping result, but when the control points reach a certain
number, the accuracy of the mapping result is not increased significantly by adding more control
points. In practical applications, we need to reasonably choose the number of control points and
control network structure according to the actual situation to achieve reasonable accuracy.
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Table 2. RMS comparison of different mapping results (adding different numbers of control points).

Result Number of Control
Points

Number of Common
Feature Points

RMS of Relative
Accuracy

RMS of Absolute
Accuracy

MAP_III 0 27 0.16 m -
MAP_IV 4(1,2,12,17) 27 0.15 m 0.19 m
MAP_V 8(1,2,4,6,7,12,16,17) 27 0.09 m 0.13 m
MAP_VI 12(1,2,3,4,5,6,7,8,12,13,16,17) 27 0.08 m 0.13 m

3.5. Evaluation of Distributed Indoor Mapping

To further analyze the feasibility of the distribution mapping scheme, the control-network-aided
SLAM was utilized to obtain the other parts (Blocks 2–4) of the parking lot. The LiDAR/IMU integrated
system mounted on a vehicle started from any position in any block and completed the mapping
separately. As we added control network constraints to the back end in the four mapping tasks,
the mapping results of the four blocks are all in the absolute coordinate system of the control network.
The distributed SLAM results are shown in Figure 8. We can see that the overlap between the distributed
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SLAM results of adjacent blocks is almost coincident, which indicates the feasibility of the distributed
mapping scheme. We further analyzed the stitching accuracy of the distributed mapping results, which
is shown in Table 3. We selected 56 (28 pairs) common feature points from the overlapping parts of
different mapping results and calculated the RMS of the position error as 0.14m. This is basically
consistent with the absolute accuracy analyzed in Section 3.3.
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Table 3. Stitching accuracy of distributed mapping results.

Result Number of Blocks Number of
Control Points

Number of Common
Feature Points

RMS of
Position Error

MAP_VII 4 35 28 0.14 m

4. Discussion

On the basis of IMU-aided SLAM, the further introduction of control network information can
effectively improve the relative accuracy of mapping. The control point information can introduce
absolute correction information into the SLAM process, which can improve the relative accuracy of
SLAM. At the same time, the introduction of control point information into the SLAM back end can
be used to convert the mapping results to the global frame where the control point coordinates are
located, so that large-scale mapping can be divided into multiple small mapping areas. The absolute
accuracy was calculated by comparing the feature points of the mapping result and the reference map
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and reached 0.13 m, which is similar to the stitching accuracy in the distributed mapping process.
Existing distributed mapping methods can also perform distributed mapping well, but they require
relative matching between maps to achieve map stitching. When the relative matching is accurate,
its accuracy may be better than that of our scheme. Our proposed scheme is a simplified scheme which
can omit the time-consuming process of relative matching to improve efficiency with a limited loss of
accuracy and obtain viable distributed mapping results. The results obtained by our scheme can also
provide a good prior value for relative map matching.

5. Conclusions

In this paper, we proposed a distributed indoor mapping scheme based on control-network-aided
SLAM to solve the problem of mapping for large-scale environments. Compared to other SLAM-based
solutions with mapping results in different local coordinate systems, our scheme may be more efficient,
without the need to transform all results into a unified coordinate system through a map-matching
algorithm. The experimental results show that the relative accuracy can reach 0.08 m, which is an
improvement by 49.8% compared to the SLAM result without any constraints. Moreover, the absolute
accuracy can reach 0.13 m and the stitching accuracy can reach 0.14 m, which proves that the
mapping results of different SLAM processes using this method can be stitched directly without a
matching process.
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