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Abstract: This paper presents the optimal control approach to solve both Lambert’s problem and
Gibbs’ method, which are commonly used for preliminary orbit determination. Lambert’s problem is
reinterpreted with Hamilton’s principle and is converted to an optimal control problem. Various
extended Lambert’s problems are formulated by modifying the weighting and constraint settings
within the optimal control framework. Furthermore, Gibbs’ method is also converted to an extended
Lambert’s problem with two position vectors and one orbit energy with the help of the proposed
orbital energy computation algorithm. The proposed extended Lambert’s problem and Gibbs’ method
are numerically solved with the Lobatto pseudospectral method, and their accuracies are verified by
numerical simulations.

Keywords: optimal control; Lambert’s problem; Gibbs’ method; orbit determination; Lobatto
pseudospectral method

1. Introduction

Lambert’s problem and Gibbs’ method are both preliminary orbit determination methods.
Lambert’s problem is a two-point boundary value problem (TPBVP) that finds the trajectory in a
two-body orbit with two position vectors at a given time of flight. Gibbs’ method calculates the velocity
of the middle position using three position vectors given at three successive times.

Many methods were proposed in literature to solve Lambert’s problem. Shen and Tsiotras [1]
calculated the multiple-revolution Lambert’s solution using Battin’s method. Guibout and Scheeres [2]
solved the TPBVP using the Hamilton–Jacobi theory in conjunction with canonical transformation.
Dario Izzo [3] applied the Householder iterative method as a simple approximation. Avanzini [4]
solved Lambert’s problem using the Newton–Raphson iteration scheme. Bando and Yamakawa [5]
showed that the solution to Lambert’s problem can be obtained directly by minimizing the action
integral by Hamilton’s principle. They also showed that Lambert’s problem can be transformed to an
optimal control problem. On the other hand, only a few solutions are found in literature for Gibbs’
method and all of them are geometric-based approaches [6,7].

In this paper, we propose an alternative method for solving both Lambert’s problem and
Gibbs’ method with the same optimal control framework. Lambert’s problem is reinterpreted with
Hamilton’s principle and is converted to an optimal control problem with a similar method used in [2,5].
Furthermore, we generalize Lambert’s problem to the extended Lambert’s problem using various
weighting, constraint, and potential energy settings. The proposed extended Lambert’s problems
include the orbit determination methods with elliptical, parabolic, and hyperbolic orbits and the
initial-position-and-final-velocity-specified orbits. Two important extended Lambert’s problems are
also considered. One is the optimal control formulation of Gibbs’ method for orbit determination
and the other is the Lambert’s problem under J2 perturbation. Gibbs’ method is converted to an
extended Lambert’s problem using two position vectors and one orbital energy as boundary conditions;
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this results in a non-geometric-based Gibbs’ solution, unlike the previous solutions in the existing
literature. Gibbs’ method is solved along with the proposed orbital energy computation algorithm.
A new approach to solving Lambert’s problem under J2 perturbation is presented by modifying the
potential energy term in our optimal control framework. For numerically solving the various extended
Lambert’s problems, the Lobatto pseudospectral method (LPM) is used in this paper.

This paper is organized as follows: in Section 2, Lambert’s problem is explained and it is shown
that it can be formulated as an optimal control problem; in Section 3, various extended Lambert’s
problems are presented using different weighting, constraint, and potential energy settings within
the optimal control framework; Section 4 proposes an alternative Gibbs’ solution using an extended
Lambert’s problem along with the proposed orbit energy calculation algorithm; in Section 5, numerical
simulations are performed to demonstrate the validity of the proposed optimal control approach and a
brief introduction of LPM is given as a numerical solver for optimal control; finally, conclusions are
given in Section 6.

2. Optimal Control Approach to Lambert’s Problem

2.1. Lambert’s Problem

Lambert’s problem is a TPBVP of solving the following orbital differential equation of motion,
which is derived from the two-body problem [6,8]:

d2→r
dt2 +

µ(√
→
r ·
→
r
)3
→
r =

→

0 (1)

given the initial and final position vectors,
→
r (t1) =

→
r 1,
→
r (t2) =

→
r 2 at the given initial and final times,

t1 and t2. In Equation (1), µ is the gravitational constant, and
→
r is the position vector of one object

relative to another object. As stated above, many methods have been proposed to solve this problem.

2.2. Optimal Control Approach

This section illustrates that Lambert’s problem can be reformulated as an optimal control problem.
We adopt the method shown in [9], which starts with defining the fictitious “plant” as the following:

d
→
r

dt
=

.
→
r =

→
v (2)

where the velocity vector
→
v is regarded as the fictitious “input”. To find the trajectories of the motion

of the fictitious plant, Hamilton’s principle says that the following cost function should be minimized:

J =
∫ t2

t1

T
(
→
r ,
→
v
)
−U

(
→
r
)
dt =

∫ t2

t1

L
(
→
r ,
→
v
)
dt (3)

where [t1, t2] is the time interval of interest, T is the kinetic energy, U is the potential energy, and L
is the Lagrangian. For the two-body problem, the kinetic and potential energies should be defined
as follows:

T =
1
2
→
v ·
→
v , U = −

µ√
→
r ·
→
r

. (4)

Meanwhile, we propose that the cost function of Equation (3) be generalized, as follows, for the
context of the optimal control problem:

J = φ
(
→
r (t2), t2

)
+

∫ t2

t1

1
2
→
v ·
→
v +

µ√
→
r ·
→
r

dt (5)
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where φ
(
→
r (t2), t2

)
is the final weighting function, which depends on the final position and time. Then,

the optimal control problem is to find the “input”
→
→
v that drives the plant of Equation (2) so that the

cost function of Equation (5) is minimized and the following constraint equation is satisfied:

→

ψ
(
→
r (t1), t1,

→
r (t2), t2

)
=
→

0 (6)

The solution to this optimal control problem can be found in the literature [9,10]; the necessary
conditions for optimality are given as follows:

.
→
r =

∂H

∂
→

λ
=
→
v (7)

−

.
→

λ =
∂H

∂
→
r
= −

µ(√
→
r ·
→
r
)3
→
r (8)

→

0 =
∂H

∂
→
v

=
→
v +

→

λ (9)

where
→

λ is the Lagrange costate multiplier of the dynamics and H is the Hamiltonian, which is
defined as:

H =
1
2
→
v ·
→
v +

µ√
→
r ·
→
r
+
→

λ ·
→
v (10)

The constraints and the boundary conditions are given as follows:

→

ψ
(
→
r (t1), t1,

→
r (t2), t2

)
=
→

0 (11)

 ∂φ∂→r +

∂
→

ψ

∂
→
r


T
→
p −

→

λ


T

t1

d
→
r (t1) +

∂φ∂t
+

∂
→

ψ

∂t


T
→
p + H


t1

dt1 = 0 (12)

 ∂φ∂→r +

∂
→

ψ

∂
→
r


T
→
p −

→

λ


T

t2

d
→
r (t2) +

∂φ∂t
+

∂
→

ψ

∂t


T
→
p + H


t2

dt2 = 0 (13)

where
→
p is the Lagrange static multiplier.

Equations (7)–(9) yield the equation of the two-body problem—Equation (1)—and the Hamiltonian
of Equation (10) becomes:

H = −
1
2
→
v ·
→
v +

µ√
→
r ·
→
r
= −E (14)

which is nothing more than the negative value of orbital energyE. Since the Hamiltonian of Equation (10)
is a time-invariant function, the Hamiltonian or negative orbital energy becomes constant, which is a
well-known result from classical orbital mechanics.

Now, if the following conditions are imposed on Equations (5) and (6):

φ
(
→
r (t2), t2

)
= 0

→
r (t1) =

→
r 1,

→
r (t2) =

→
r 2, t1, t2 given

then the optimal control problem given in Equations (2), (5), and (6) is mathematically equivalent to
the standard Lambert’s problem of Equation (1).
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The process of reformulating Lambert’s problem to an optimal control problem, as illustrated
above, suggests that various extended Lambert’s problems can be generated by using different
weighting and constraint settings, which are further discussed in Section 3.

3. Extended Lambert’s Problem

Lambert’s problem can be extended to various formulations using different weighting and
constraint settings. This section suggests some extensions to the orbit determination methods with
elliptical, parabolic, hyperbolic, and the initial-position-and-final-velocity-specified orbits. An extension
to Gibbs’ method is discussed in Section 4.

3.1. The Energy-Specified Lambert’s Problem

Consider that the following conditions are imposed on Equations (5) and (6):

φ
(
→
r (t2), t2

)
= Esett2 (15)

→
r (t1) =

→
r 1,

→
r (t2) =

→
r 2

t1 given, t2 f ree

where Eset is a specified orbital energy, which may be an orbit design parameter; Equation (12) is
automatically satisfied and Equation (13) is reduced to:(

∂φ

∂t
+ H

)
t2

= Eset + H(t2) = 0 (16)

Since the Hamiltonian H or the negative value of orbital energy is constant, Equation (16) means
that the optimal trajectory satisfies the conditions of Equation (15) and has a constant energy level of
Eset. Therefore, the optimal control problem given above is mathematically equivalent to Equation (1),
with the following boundary conditions:

→
r (t1) =

→
r 1,

→
r (t2) =

→
r 2 (17)

t1 given, t2 f ree, E = Eset

Equations (1) and (17) define the energy-specified Lambert’s problem, which is a two-point
boundary value problem with the given initial position vector

→
r (t1) =

→
r 1 at the given time t1 and the

given final position vector
→
r (t2) =

→
r 2 at some time of t2 along with the given orbital energy of Eset.

The energy-specified Lambert’s problem can be used in orbit design, which connects two positions
with elliptical, parabolic, and hyperbolic orbits with various energy levels. In Section 5.2, some
numerical simulations are performed to demonstrate the feasibility of the proposed energy-specified
Lambert’s problem.

3.2. The Velocity-Specified Lambert’s Problem

If the following conditions are imposed on Equations (5) and (6):

φ
(
→
r (t2), t2

)
= −

→
v 2 ·

→
r (t2) (18)

→
r (t1) =

→
r 1,

→
r (t2) f ree

t1, t2 given

where
→
v 2 is a final velocity of orbit at t = t2 which may be an orbit design parameter, then Equation (12)

is automatically satisfied and Equation (13) is reduced to:
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(
∂φ

∂
→
r
−

→

λ

)
t2

= −
→
v 2 −

→

λ(t2) =
→

0 (19)

Since
→

λ(t2) = −
→
v (t2) from Equations (9) and (20) means that

→
v (t2) =

→
v 2 the optimal

control problem given above is mathematically equivalent to Equation (1) with the following
boundary conditions:

→
r (t1) =

→
r 1,

→
v (t2) =

→
v 2 (20)

t1, t2 given

Equations (1) and (20) define the velocity-specified Lambert’s problem, which is a two-point
boundary value problem with the given initial position vector

→
r (t1) =

→
r 1 at the given time t1 and the

given final velocity vector
→
v (t2) =

→
v 2 at the given time t2. Although the application of this problem

set cannot readily be revealed, the velocity-specified Lambert’s problem clearly extends the standard
Lambert’s problem to more general boundary conditions.

3.3. Lambert’s Problem under J2 Perturbation

If J2 perturbation is taken into account, the potential energy term in Equation (4) should be
modified as follows [8]:

U = −
µ√
→
r ·
→
r
−

µJ2R2

2
√
→
r ·
→
r

3

(
1−

3z2

→
r ·
→
r

)
(21)

where R is the mean equatorial radius of the Earth, J2 is the second zonal harmonic coefficient for the
Earth, and z is the Z-axis component of the position vector in the Earth Centered Inertial (ECI) frame.

Then, the Lambert’s problem under J2 perturbation can be reformulated to an optimal control
problem given as:

arg min
→
v

∫ t2

t1

1
2
→
v ·
→
v +

µ√
→
r ·
→
r
+

µJ2R2

2
√
→
r ·
→
r

3

(
1−

3z2

→
r ·
→
r

)
dt (22)

.
→
r =

→
v

→
r (t1) =

→
r 1,

→
r (t2) =

→
r 2

t1, t2 given

4. Optimal Control Approach to Gibbs’ Method

4.1. Gibbs’ Method

The energy-specified Lambert’s problem can be used in orbit design, which connects two positions
with elliptical, parabolic, and hyperbolic orbits with various energy levels. Gibbs’ method calculates
the velocity at the second observed position using three observed position vectors

→
r 1,
→
r 2 and

→
r 3 at

three successive times t1, t2 and t3 (t3 > t2 > t1), assuming that the object is in a two-body orbit. Note
that the three position vectors are supposed to be coplanar. Gibbs’ solutions are rarely found in the
literature and all of them are purely geometric-based approaches [6,7].

In this section, a novel Gibbs’ solution is presented, using the proposed energy-specified Lambert’s
problem. Gibbs’ method is formulated as follows:

d2→r
dt2 +

µ(√
→
r ·
→
r
)3
→
r =

→

0 (23)

→
r (t1) =

→
r 1,

→
r (t2) =

→
r 2,

→
r (t3) =

→
r 3
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t1 given, t2, t3 f ree

A mathematically equivalent energy-specified Lambert’s problem to Equation (23) can be given as:

arg min
→
v
Esett2 +

∫ t2

t1

1
2
→
v ·
→
v +

µ√
→
r ·
→
r

dt (24)

.
→
r =

→
v

→
r (t1) =

→
r 1,

→
r (t2) =

→
r 2

t1 given, t2 f ree, Eset given

where
→
r (t1),

→
r (t2) may be replaced by any two position vectors of the three given position vectors.

To solve this problem, the orbital energy Eset corresponding to the three given position vectors must be
determined. In the next subsection, a novel orbital energy computation algorithm is presented for
this purpose.

4.2. Orbital Energy Computation

To find the orbital energy as a function of the given three position vectors, we start with orbit
equations, as follows:

r1 =
p

1 + e cosθ1
(25)

r2 =
p

1 + e cos(θ1 + ∆θ12)
(26)

r3 =
p

1 + e cos(θ1 + ∆θ13)
(27)

where e is the eccentricity, p is the semi-latus rectum, θ1 is the true anomaly of position vector
→
r 1, and

the changes in the true anomalies ∆θ12 and ∆θ13 are calculated as illustrated in Figure 1 by:

∆θ12 = cos−1
→
r 1 ·

→
r 2

r1r2
(28)

∆θ13 = cos−1
→
r 1 ·

→
r 3

r1r3
(29)

where

r1 =

√
→
r 1 ·

→
r 1, r2 =

√
→
r 2 ·

→
r 2, r3 =

√
→
r 3 ·

→
r 3

and ∆θ23 = ∆θ13 − ∆θ12.
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Making use of the trig relationships and substituting Equation (25) into Equations (26) and (27) yield:

p
r2

= 1 +
(

p
r1
− 1

)
cos ∆θ12 − e sinθ1sin ∆θ12 (30)
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p
r3

= 1 +
(

p
r1
− 1

)
cos ∆θ13 − e sinθ1sin ∆θ13 (31)

Using these equations, p can be found as:

p =
sin ∆θ13 − sin ∆θ12 − sin ∆θ23( sin ∆θ13

r2
−

sin ∆θ12
r3

−
sin ∆θ23

r1

) (32)

From Equations (26), (30), and (32), the true anomaly can be calculated as follows:

θ1 = tan−1
(

e sin θ1

e cos θ1

)
(33)

Now, with the knowledge of p and θ1, the eccentricity becomes:

e =
p
r1
− 1

cos θ1
(34)

Finally, the orbital energy can be computed by the following equation:

Eset = −
µ
(
1− e2

)
2p

. (35)

The proposed orbital energy computation algorithm for the given three position vectors is
summarized in Table 1.

Table 1. Orbital energy computation algorithm.

Eset ← EnergyCompute
(
→
r 1,

→
r 2,

→
r 3

)
1 r1 =

√
→
r 1 ·

→
r 1, r2 =

√
→
r 2 ·

→
r 2, r3 =

√
→
r 3 ·

→
r 3

2 ∆θ12 = cos−1 r1·r2
r1r2

, ∆θ13 = cos−1 r1·r3
r1r3

, ∆θ23 = ∆θ13 − ∆θ12

3
p = sin∆θ13−sin∆θ12−sin∆θ23(

sin∆θ13
r2
−

sin∆θ12
r3
−

sin∆θ23
r1

)
4 e sinθ1 =

1+
(

p
r1
−1

)
cos∆θ12−

p
r2

sin∆θ12

5 e cosθ1 =
p
r1
− 1

6 θ1 = tan−1
(

esinθ1
ecosθ1

)
7 e =

p
r1
−1

cosθ1

8 Eset = −
µ(1−e2)

2p

5. Numerical Simulations

5.1. Lobatto Pseudospectral Method

Generally, optimal control problems are very difficult to find an analytical solution for and,
thus, numerical methods are widely used. Many different numerical methods can be found in
literature [11,12] and, typically, pseudospectral methods are preferred for their computational efficiency
and accuracy. In this paper, LPM is used because LPM can calculate the control values at both end
points, which is a required property in Lambert’s problem solutions.

In LPM, the continuous-time optimal control problem is transformed to a nonlinear programming
(NLP) problem by discretizing the state and control variables of the dynamic equations at
Legendre–Gauss–Lobatto (LGL) points; the cost function is approximated using a Gauss quadrature.
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Since a detailed explanation of LPM can be found easily in literature [11,12], the final results are
summarized here as follows.

First, the original time interval where t ∈ [t1, t2] is transformed to the time interval where τ ∈ [−1, 1]
by the following equation:

τ =
2t

t2 − t1
−

t2 + t1

t2 − t1
. (36)

The state and control variables of Equation (2) are approximated in terms of N Lagrange
interpolating polynomials as:

→
r (τ) ≈ R(τ) =

N∑
i=1

RiLi(τ) (37)

→
v (τ) ≈ V(τ) =

N∑
i=1

ViLi(τ)

where Ri = R(τi), Vi = V(τi), and Li(τ) is defined as:

Li(τ) =
N∑

k = 1
k , i

τ− τk
τi − τk

(38)

Next, the dynamic Equation (2) is discretized at the LGL points as:

N∑
i=1

D jiRi =
t2 − t1

2
V j, j = 1, . . . , N (39)

where D ji =
.
Li

(
τ j

)
is an element of the Lobatto pseudospectral differential matrix. The cost function of

Equation (5) is approximated using a Gauss quadrature as:

J = φ(RN, t2) +
t2 − t1

2

N∑
i=1

wi

VT
i Vi

2
+

µ√
RT

i Ri

 (40)

where wi are the LGL weights. Finally, the discretized constraints of Equation (6) are also expressed,
as follows:

ψ(R1, t1, RN, t2) = 0 (41)

The cost function of Equation (40), along with the algebraic constraints of Equations (39) and (41),
formulates the converted NLP problem; the solution of this NLP is the approximate solution to the
original optimal control problem.

5.2. Extended Lambert’s Problem

A numerical simulation was performed to demonstrate the validity of the proposed optimal
control approach to the extended Lambert’s problem. The data used in this simulation were taken
from [6]. In the first simulation, the energy-specified Lambert’s problem was considered. The initial
position of an Earth satellite was determined to be:

→
r (t1) = 5000 ι̂1 + 10,000 ι̂2 + 2100 ι̂3 (km) (42)

and after some time, the final position vector was determined to be:
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→
r (t2) m) 10,000n earth satellite is determined to be , and after one hour the position vector is

= −14,600 ι̂1 + 2500 ι̂2 + 7000 ι̂3 (km)
(43)

where ι̂1, ι̂2, ι̂3 are the unit direction vectors of the ECI frame. The orbital energy was kept as:

Eset = −9.963549 km2/s2

which corresponds to an elliptical orbit. The exact time of flight was determined as:

∆t = t2 − t1 = 3600 sec

and the exact initial velocity was determined as:

→
v (t1) = −5.992495 ι̂1 + 1.925364 ι̂2 + 3.245637 ι̂3 (km/s) (44)

This extended Lambert’s problem was solved by the optimal control approach using LPM with
the NLP solver ‘fmincon’ in Matlab with 12 LGL points. The time of flight was calculated as:

∆t̂ = 3600.00023 sec

and the average orbital energy was calculated as:

Êave = −9.963598 km2/s2

which shows that the proposed optimal control approach calculates the time of flight and the
orbital energy very accurately. Figure 2 shows the time history of the orbital energy estimate error,
eE = Eset − Ê(t).
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Figure 2. Time history of the orbital energy estimate error.

The initial velocity was calculated as:

→̂
v (t1) = −5.992494 ι̂1 + 1.925376 ι̂2 + 3.245451 ι̂3 (km/s)

and the error was ev = |
→
v (t1) −

→̂
v (t1)| = 1.857× 10−4 (km/s) which shows that the proposed optimal

control approach accurately produces the Lambert’s solution.
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Other simulations were performed with the same initial and final positions, but with different
energy levels, such as Eset = 0 km2/s2 and Eset = +9.96355 km2/s2, which correspond to parabolic
and hyperbolic orbits, respectively. In the case of a parabolic orbit, the time of flight was calculated as
∆t = 2761.3743 sec, while for a hyperbolic orbit, it was ∆t = 2357.0746 sec. Simulation results are
presented in Figure 3, which shows elliptical, parabolic, and hyperbolic orbits in the ECI frame with
the same initial and final position, respectively.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 13 
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These simulation results show that the energy-specified Lambert’s problem can provide an
alternative orbit design tool in which the orbit connects two points with a specified orbital energy level
or a specified orbit shape.

In the next simulation, the velocity-specified Lambert’s problem was solved. In this simulation,
the initial position of an Earth satellite was determined to be:

→
r (t1) = 5000 ι̂1 + 10,000 ι̂2 + 2100 ι̂3 (km)

and after one hour the velocity vector was determined to be:

→
v (t2) m) 10,000n earth satellite is determined to be , and after one hour the position vector is

= −3.312460 ι̂1 − 4.196617 ι̂2 − 0.385288 ι̂3 (km/s)

The exact finial position was given by:

→
r (t2) m) 10,000n earth satellite is determined to be , and after one hour the position vector is

= −14,600 ι̂1 + 2500 ι̂2 + 7000 ι̂3 (km).

This problem was also solved by the optimal control approach using LPM with 12 LGL points.
The final position was calculated as:

→̂
r (t2) = −14599.997136 ι̂1 + 2500.001750 ι̂2 + 7000.004689 ι̂3(km)
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and the error was ep = |
→
r (t2) −

→̂
r (t2)| = 5.766× 10−3 (km). The final velocity was calculated as:

→̂
v (t2) = −3.312465 ι̂1 − 4.196625 ι̂2 − 0.385275 ι̂3 (km/s)

and the error was ev = |
→
v (t2) −

→̂
v (t2)| = 1.546× 10−5 (km/s) Therefore, this simulation result shows

again that the proposed optimal control approach accurately produces Lambert’s solutions.
Finally, the >Lambert’s problem under J2 perturbation was considered. The simulation was

performed with the same initial and final positions given in Equations (42) and (43), with the flight
time of one hour, but with J2 perturbation. Using the shooting method, the corrected initial velocity
was calculated as:

→
v c(t1) = −5.992105 ι̂1 + 1.925528 ι̂2 + 3.247763 ι̂3 (km/s)

which yields the final position error of 9.993 cm compared with
→
r (t2) in Equation (43). This perturbed

Lambert’s problem was solved by the optimal control approach using LPM with 12 LGL points.
The initial velocity was calculated as:

→̂
v c(t1) = −5.992078 ι̂1 + 1.925523 ι̂2 + 3.247772 ι̂3 (km/s)

and the error was ev = |
→
v c(t1) −

→̂
v c(t1)| = 2.871 × 10−5 (km/s), which shows that the proposed

optimal control approach is a very powerful framework even when solving Lambert’s problem under
J2 perturbation.

5.3. Gibbs’ Method

A numerical simulation was performed to demonstrate the validity of the proposed optimal
control approach to Gibbs’ method. The data used in the simulation were also taken from [6]. The three
position vectors at three successive times are:

→
r 1 m) 10,000n earth satellite is determined to be , and after one hour the position vector is

= −294.3229 ι̂1 + 4265.0522 ι̂2 + 5986.6720 ι̂3 (km)

→
r 2 m) 10,000n earth satellite is determined to be , and after one hour the position vector is

= −1365.4618 ι̂1 + 3637.6479 ι̂2 + 6346.7571 ι̂3 (km)

→
r 3 m) 10,000n earth satellite is determined to be , and after one hour the position vector is

= −2940.2717ι̂1 + 2473.7481ι̂2 + 6555.7624ι̂3 (km)

The exact velocity at the second observed position was determined as:

→
v 2 = −6.217052 ι̂1 − 4.011651 ι̂2 + 1.598927 ι̂3 (km/s)

The exact orbital energy was computed to be:

Eset = −24.912500
(
km2/s2

)
.

Using three position vectors
→
r 1,

→
r 2 and

→
r 3, the proposed orbital energy computation algorithm

yielded some of the orbital elements:

p = 7920 (km), e = 0.1, θ1 = 40
◦

and the orbital energy:
E = −24.912500

(
km2/s2

)
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which are perfectly matched to the exact values, respectively. This problem was solved using the
proposed energy specified in Lambert’s problem with five LGL points. The velocity at the second
observed position was calculated as:

→̂
v (t2) = −6.217053 ι̂1 − 4.011645 ι̂2 + 1.598925 ι̂3 (km/s)

and the error was ev = 6.622× 10−6 (km/s), which shows that the proposed optimal control approach
very accurately produces a Gibbs’ solution. Figure 4 shows the corresponding orbit.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 13 
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6. Conclusions

The optimal control approach to solving both Lambert’s problem and Gibbs’ method for orbit
determination was presented in this paper. Lambert’s problem is reinterpreted with Hamilton’s principle and
is converted to an optimal control problem. Various extended Lambert’s problems are also formulated
by modifying the weighting and constraint settings, which include the orbit determination methods with
elliptical, parabolic, and hyperbolic orbits and the initial-position-and-final-velocity-specified orbits.

Furthermore, it is shown that the proposed optimal control approach is a powerful framework
even when solving a Lambert’s problem under J2 perturbation by simply modifying the potential
energy term. Gibbs’ method is also converted to an extended Lambert’s problem using two position
vectors and one orbital energy with the help of the proposed orbital energy computation algorithm,
which results in a non-geometric-based Gibbs’ solution.

The proposed extended Lambert’s problem and Gibbs’ method were numerically solved with the
Lobatto pseudospectral method, and their accuracies were verified by numerical simulations.
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