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Abstract: The rise in popularity of Additive Manufacturing technologies and their increased adoption
for manufacturing have created a requirement for their fast development and maturity. However,
there is still room for improvement when compared with conventional manufacturing in terms of
the predictability, quality, and robustness. Statistical analysis has proven to be an excellent tool
for developing process knowledge and optimizing different processes efficiently and effectively.
This paper uses a novel method for printing overhanging features in Ti-6Al-4V metal parts, by varying
process parameters only within the down-facing area, and establishes a methodology for predicting
dimensional errors in flat 45◦ down-facing surfaces. Using the process parameters laser power, scan
speed, scan spacing, scan pattern, and layer thickness, a quadratic regression equation is developed
and tested. An Analysis of variance (ANOVA) analysis concluded that, within the down-facing area,
the laser power is the most significant process parameter, followed by the layer thickness and scan
speed. Comparatively, the scanning pattern is determined to be insignificant, which is explained
by the small down-facing area where the various scanning patterns play no role. This paper also
discusses the interaction effects between parameters. Some thoughts on the next steps to be taken for
further validation are discussed.
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1. Introduction

Additive Manufacturing (AM), colloquially known as 3D printing, is a rapidly evolving group
of fabrication techniques that are currently revolutionizing design and production practises across
industries [1]. They have displayed potential to disrupt and beneficially affect globally established
process chains and business models [2,3]. Their main advantages include an increased design freedom,
shortening of lead times, and reduction in material usage [4]. Additionally, combined with their ability
to print on demand, AM techniques align well with today’s industrial trends of digital manufacturing
and mass customization [5,6]. Therefore, this combination of competencies that AM offers and modern
trends has allowed AM to arrive as a unique solution for current and future demands.

Laser-based powder bed fusion (L-PBF) is one of the AM techniques that is gaining an increased
market acceptance and penetration, particularly in a wide range of industrial applications that include
automotive, aerospace, medical/dental, and robotics industries [4]. In addition to all the advantages
mentioned above, the availability of printable super-alloys, such as Ti-6Al-4V, allows metal products
with superior properties to be produced, i.e. high strength-to-weight ratio and corrosion resistance,
which were not easily obtainable using conventional manufacturing methods [7–9]. This makes AM
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techniques prime candidates for applications where low-density and excellent corrosion-resistant
materials are required, such as in the aerospace industry [10].

However, the L-PBF process still faces some technological challenges that need addressing in
order to improve the robustness and repeatability of the parts produced. In particular, when compared
to other conventional manufacturing technologies, AM, and L-PBF in particular, lags behind when it
comes to being able to predict different quality-based performance indicators of the parts produced,
such as the dimensional accuracy and surface quality.

Therefore, a significant portion of current AM research is focussed on investigating these
different aspects of precision, namely the repeatability, predictability, and robustness of the process.
Various approaches have been employed for this purpose, including investigating the design for
precision AM using topology optimization [11], computational modeling of the L-PBF process [12],
and statistical process optimization studies [13]. These methods are also complemented by studies on
improving methods for the finishing of parts [14], as well as for metrology [15].

In particular, Sinico et al. compared two topology optimization (TO) techniques—one based on
commercial software and another based on an in-house developed TO method that also compensates
for localized overheating caused during part manufacturing. This work discusses the precision
benefits that are achieved when manufacturing constraints are included within topology optimization,
rather than just purely geometric constraints [11]. Bayat et al. developed a multi-physic numerical
model of the L-PBF process, which was then used to track the formation of porosities that cause
imprecision while printing. Their results indicate that porosities are largely caused due to the improper
fusion of particles between tracks [12]. Charles et al. investigated the effects of process parameters
on the surface texture of a down-facing part and showed that the interaction and interdependency of
process parameters have the greatest effect on the surface roughness as they directly affect the degree
of dross formation due to the various levels of energy density applied to the powder [13]. Solheid et al.
investigated improving the precision of AM-produced surfaces by carrying out a subsequent laser
polishing step after printing. This early study investigated the various process parameters and
discussed their effect on the achieved surface. They were able to achieve a significant reduction in
surface roughness (Ra) by using higher values of laser power under lower values of the feed rate and
scan speed [14]. Baier et al. developed a methodology for precise measurement of the focal spot of
a Computed tomography (CT) scanner as it is one of the essential factors in determining the uncertainty
in CT dimensional measurements of AM parts. Their results showed progress towards defining the
optimal process parameters to be used for desired resolutions [15].

L-PBF, down-facing, or down-skin surfaces are present on parts that contain overhanging features
that are not printed over solid bulk material, but on lose powder (as seen in Figure 1). It is especially
difficult to print these surfaces as they normally show large dimensional errors and require support
structures, thereby necessitating extra process steps for support removal and finishing. The main cause
of these dimensional deviations is dross formation, which is seen in Figure 1 [16]. This is the result
of the melting of excess material. This excess melting is caused by the overheating of lose powder,
resulting in the formation of large dimensional deviations from the Computer-aided design (CAD)
model. The degree of dross formation is dependent on the process parameters and the effect of dross
formation on the dimensional deviation and surface topography can vary [13,17].
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powder bed fusion.

A number of studies have investigated overhangs and down-facing surfaces, as well as the
accompanying support structures required by overhangs, with the aim of improving the printability and
processability of these structures. Cacace et al. approached this issue from a mathematical point of view,
and proposed a level set-based method to create object-dependent support structures for filament-based
3D printing [18]. In a similar shape optimization study, Zhang et al. demonstrated a topology
optimization framework that considers overhangs as a constraint during topology optimization
and proposes printable designs [19]. Similarly, Driessen et al. proposed a density gradient-based
approach for determining the overhang constraint and their results showed promise for the inclusion
of build orientation into topology optimization in an effective way [20]. Mertens et al. conducted
an experimental parameter optimization study for down-facing surfaces in L-PBF and compared the
results to a thermal simulation model. Their research showed that for inclined surfaces, low powers
exhibited better surface qualities, but at an inclination angle of 60◦ to the build platform [21].

An alternative approach to improving the quality of overhangs without the use of support
structures is achieved through the use of contact-free support structures. Cooper et al. have
demonstrated and highlighted its benefits in terms of it not requiring or only requiring very little post
processing, while effectively reducing overhang distortion and deformation. Their conclusions remain
positive for the adoption of the contact-free support structures technique for industrial applications [22].
In subsequent research, Wang et al. proposed two different minimal contact supports, namely a thin wall
tooth contact and a non-contact design. They showed promising results in terms of heat dissipation and
reduced distortions [23]. Paggi et al. developed a novel contactless support structure, specifically a thin
blade parallel to the critical down-facing area, to transfer heat away from the melt pool via conduction
through the powder bed instead of through direct contact and also conducted numerical modeling in
order to understand the parameters that define the optimal distance between the down-facing area
and the support structure [24].

Fox et al. analysed the inter relationships between the laser power, scan speed, and various
overhang angles and their results indicated that certain surface texture parameters (Rpc, RSm, and Rc)
could indicate a shift between surfaces dominated by partially melted particles and surfaces dominated
by material from re-solidified melt tracks. Another conclusion from their work also indicated that
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distinct correlations between process parameters and the surface texture parameter Ra were not
conclusive; however they mentioned that further analysis on down-facing surfaces is warranted [17].

A number of researchers have employed different analytical and statistical approaches to build
predictive process models for various fields within Additive Manufacturing [25,26]. Tapia et al.
developed a Gaussian process regression formula for the prediction of porosity in L-PBF processes
and discussed the difficulty in modeling the L-PBF processes due to the low process repeatability [27].
Sun et al. used the Taguchi method for parametric optimization of the L-PBF process. They conducted
an ANOVA analysis and established a regression equation that revealed a linear relationship between
the part density, laser power, scan speed, powder thickness, and scan strategy [28]. Similarly, a popular
method for the modeling and optimization of processes is conducted through the use of artificial
neural networks (ANN). Marrey et al. used an artificial neural network to develop an ANN model
based on the results of a series of experiments and were able to draw conclusions on the effects of
different process parameters on the mechanical properties of L-PBF parts [29]. Charles et al. also
employed a similar methodology to create an ANN model for L-PBF parts to predict surface roughness
in down-facing surfaces [30]. However, a research gap does exist in correlating the L-PBF process
responses with input parameters to predict the dimensional deviation that occurs in overhangs. This is
the problem that this research starts to solve for parts made of Ti-6Al-4V metal alloys.

Therefore, this current work aims to understand the effects of process parameters on the
dimensional accuracy of printed parts, considering the stochastic effect of down-facing surfaces
on the obtainable dimensional accuracy. In particular, a statistical analysis of the L-PBF processes for
the hard-to-process 45◦ down-facing surfaces produced with a Ti-6Al-4V titanium alloy was conducted.
Then, a quadratic regression equation was formulated for the dimensional error in down-facing
areas of L-PBF parts using various scanning strategies, layer thicknesses, and down-facing process
parameters and the equation was tested by printing a number of samples in order to obtain its accuracy.
Additionally, an ANOVA analysis determined the most significant process parameters within the
down-facing area, as well as the insignificant parameters.

2. Methodology

2.1. Experimental Design

Since this paper focusses on investigating down-facing surfaces, a simple design with a 45◦

inclined down-facing surface was used as the test piece. Although the printing of surfaces below 45◦ is
generally possible, 45◦ is conventionally considered the limit for printing high-quality down-facing
surfaces without support structures [31–33]. For surfaces below 45◦, large dimensional deviations
and deteriorating surface textures are exhibited. Therefore, achieving minimal errors at an angle of
45◦ without support structures would represent an improvement compared to the state-of-the-art
approaches. The different process parameters and their levels chosen to investigate the effect on the
dimensional accuracy are listed in Table 1. All test pieces were built using a commercial laser-based
powder bed fusion system manufactured by 3DSystems, the ProX® DMP 320 (3DSystems, Rock Hill,
USA), and the Ti-6Al-4V metal powder used was also supplied by 3DSystems under the brand name
Laserform Ti Gr23(A) (3DSystems, Rock Hill, USA).

Table 1. Process parameters and levels.

Parameter Levels

Laser Power (W) 50, 90, 150, 210, 250
Scan Speed (mm/s) 200, 465, 850, 1235, 1500
Scan Spacing (µm) 50, 60, 75, 90, 100

Scan Pattern Stripes, rectangular cells, hexagonal cells
Layer Thickness (µm) 60, 90
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An inscribed central composite (CCI) experimental design was used and the Design of Experiments
(DoE) is shown in Table 2. A central composite design is a type of fractional factorial design of
an experiment where all levels and all combinations of process parameters are not tested during the
experimentation phase. Fractional factorial designs provide detailed insights into a process while still
keeping the number of trials as low as possible [34]. Such a design was therefore chosen to reduce the
number of experimental trials and expenditure of time and resources, without losing any insight into
the process.

Table 2. Design of Experiments (DoE) for experimental trials.

Experiment Nr. Laser Power (W) Scan Speed (mm/s) Scan Spacing (µm)

1 90 465 60
2 90 465 90
3 90 1235 60
4 90 1235 90
5 210 465 60
6 210 465 90
7 210 1235 60
8 210 1235 90
9 50 850 75

10 250 850 75
11 150 200 75
12 150 1500 75
13 150 850 50
14 150 850 100

15–24 150 850 75

The parameters presented in Table 2 were used to print the samples for each of the various
scan patterns (as seen in Figure 2) and layer thicknesses, resulting in six unique tables and a total of
144 test pieces for analysis. Trials 15 to 24 represent parts printed with the same parameters, while
the test pieces were arranged in the build platform following no particular order in order to improve
the randomization.
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and (c) hexagonal cells.

In the unique methodology followed within this research, the process parameters were only varied
within the down-facing area of the part (depicted with light gray in Figure 1), while the rest of the
parts were printed with the same standard printing parameters as recommended by the manufacturer
for all test pieces, as seen in the image (depicted with darker gray in Figure 1). The down-facing area
in this research is a flat surface and does not include any curvature in the surface.
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2.2. Test Piece Design

The test piece was designed to be a 10 mm by 20 mm down-facing surface area, as seen in Figure 1.
All parts were pre-processed using the 3DXpert™ (3DSystems, Rock Hill, USA) software for assigning
of the process parameters and printing strategies. All parts were also printed with teeth connecting
the part with the build platform. Such teeth are required for easy removal of the part from the build
platform after printing.

2.3. Measurements

In order to measure the dimensional error caused by the varying parameters in the down-facing
area, the thickness of the overhang was measured, and the deviation of the thickness was compared
with the CAD dimension to calculate the error. The methodology of the measurement is as follows.

Using an optical microscope, images of the side view of all test pieces were captured. An image
processing technique was developed and employed to measure the thickness of the overhanging
surface. The image processing technique first works by gray scaling the image and applying a threshold,
in order to detect the edges of the test piece. The program then scans the image both vertically and
horizontally and extrapolates a straight line though the detected edge points. As the scale of the image
is known, it is then possible to calculate the distance between the two straight lines, which gives the
thickness of the overhanging surfaces of the parts. The measured thickness was then compared to the
CAD design to determine the error in the printed part and the percentage of this error. Both sides
of the part were measured to detect any differences in thickness within the same part. As seen in
Figure 3, the dotted lines depict the detected edge of the part, which are used to measure the thickness.
The obtained measurements were validated by comparing them with Vernier Calliper measurements.
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3. Results and Discussion

3.1. Data Processing and Analysis

Data processing and statistical analysis were conducted using MATLAB (R2019a) (MathWorks,
Natick, USA). A regression equation was developed to describe the relationship between the different
process parameters and the dimensional error percentage. A number of regression formulas were
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created and tested, with the quadratic regression equation being the optimal one. A quadratic regression
method was used to fit the second-order polynomial in Equation (1) to the measured data:

y = b0 +
∑

bixi +
∑

biix2
ii +
∑

bi jxix j, (1)

Where y is the output variable which, in our case, is the dimensional error %; b0,bi, bii, and bjj are
the regression coefficients or predictors; and xi is the value of the ith factor.

The developed equation resulting from the quadratic regression formulation with a robust fit
presented 21 terms for the five process parameters that were studied in this work and the values
obtained for each coefficient are presented in Equation (2), where x1 is the laser power, x2 is the scan
speed, x3 is the scan spacing, x4 is the scan pattern, x5 is the layer thickness, and y is the dimensional
error %.

y = 6.3668+ 6.7157x1 − 5.6775x2 − 0.69749x3 + 0.12742x4 − 2.6591x5

−4.4385x1x2 − 0.73969x1x3 − 0.2506x1x4 + 0.055401x1x5

−0.55883x2x3 − 0.62242x2x4 + 1.1935x2x5 − 0.0036447x3x4

+0.07324x3x5 − 1.3799x4x5 + 1.0649x2
1 + 2.2655xx

2 + 3.2372x2
3

+0.92257x2
4

(2)

This equation was then used to generate the interaction plots, as seen in Figures 4 and 5.
The interaction effects depicted below show the estimated effects on the response from changing each
variable value while averaging the effects of the other process parameters. Based on the interaction
effects, some of the insights gained are as follows:

• As seen in Figure 4a, increasing the scan speed tends to decrease the dimensional error at all
laser powers; however, to different degrees. This can be explained as the meltpool and thus the
associated heat-affected zone caused by high speeds is expected to be smaller than that caused by
lower speeds. A smaller meltpool and heat-affected zone would reduce the seepage of molten
material into the powder bed, which would mean that the dross formation and the associated
dimensional inaccuracy would be reduced;

• As seen in Figure 4c, increasing laser powers at any scan spacing value increases the dimensional
error. This can be explained as increasing the laser power causes more energy to be absorbed by
the powder, causing greater overheating of loose powder and larger dross formations due to the
larger melt pools, and thus a larger associated heat-affected zone;

• As seen in Figure 4f, increasing the scan speed at any scan spacing value decreases the dimensional
error up to a certain point of around 80 µm, after which it begins to increase once again;

• Figure 4d, e show that with an increasing laser power, the dimensional error increases and
decreases with an increase in scan speed. The reasons for this have already been discussed in the
previous points. However, it can also be noted that the scan spacing of 75 µm always displayed
a better dimensional accuracy than 50 µm and 100 µm;

• The variation in the effect of the different scan strategies is small, as the graphs in Figure 4a–c show
that all three lines of ‘Stripes’, ‘Rectangular Cell’, and ‘Hexagonal Cell’ are quite close together
and always follow the same trend. This can be explained due to the small size of the down-facing
area. Therefore, it can be concluded that the choice of scanning strategy plays a minimal role
within the down-facing area;

• Looking at the trends in Figure 5a–c, it can be seen that the dimensional error for all scan patterns
decreases with an increase in the scan speed and increases with an increase in the laser power,
which is consistent with the trends that were seen in Figure 4;

• While looking at the effect of layer thickness in Figure 5d, it is clear that the dimensional error
% increased with an increase in laser power, while it decreased while increasing the scan speed.
However, with regards to the scan spacing in Figure 5f, the dimensional error % decreases at
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first, but at a level of around 80 µm, it increases once again. Figure 5e shows that at both layer
thicknesses, the dimensional error % decreases while increasing the scan speed.
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These observations can help us understand the effect of individual process parameters on the
dimensional error and indicate the trend that is produced while varying the process parameters.

ANOVA analysis was also conducted in order to get a deeper understanding of the significance
of the process parameters on the dimensional accuracy, as it also considers the interaction effects.
The results indicate that the laser power (P-Value = 0.00088723) is the most significant process parameter,
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followed by the layer thickness (P-Value = 0.0032135) and scan speed (P-Value = 0.0048101). The next
highest significance is given to the interaction effect of the laser power and scan speed (P-Value =

0.30819). These were the four most significant effects. It is also important to note that the scan strategy
was determined to be one of the most insignificant parameters, with a P-Value of 0.94519.

The information obtained from the ANOVA analysis and the effect plots seen in Figures 4 and 5 can
help to determine the best process parameters that must be chosen for conducting further validation
experiments and for actual optimization of the process itself.

The regression equation was then used to generate the empirical prediction slice plots, as shown
in Figure 6. The prediction slice plot shows the main effect of each process parameter and displays
the estimated dimensional error percentage. The prediction slice plot can be used to determine the
predicted dimensional error in a part at various process parameters, as well as scanning strategies and
layer thicknesses. The plot was tested against the initial experimental results and its predictions were
found to be a maximum of 5% away from the measured value. In the case of Figure 4, the equation
predicted an error percentage of 4.8%, while the actual measured error percentage for this parameter
combination was 2.02%.
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3.2. Testing of Prediction Slice Plot

The empirical prediction slice plot that was created based on the regression equation was then
tested by the printing of new samples using various process parameters. For these test prints, a strip
scanning strategy was chosen and the new samples were printed with a layer thickness of 60 µm.
The results can be seen below in Table 3.

These results indicate a high level of prediction accuracy in samples which have a lower
dimensional error and as the inherent dimensional error of the sample increases, the predicted error
percentage also increases, as seen in Table 1. In sample 1, the predicted error was 4.45% and the
measured error % was 4.08%, while in sample 5, the predicted error % was 26.04% and the measured
error % was 29.74%. The reason for this needs to be further explored, and full-scale validation will be
conducted in the next step of the research.

However, the prediction accuracy of this regression equation at this stage is considered to be good,
as the accuracy is quite high at lower dimensional deviations. This is required since the prediction
accuracy only decreases as the dimensional deviations increase and in our tests that is when the
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dross formation leads to a dimensional error % of around 20%, which realistically, would never be
an acceptable printing window anyway.

Table 3. Test results.

Laser Power
(W)

Scan Speed
(mm/s)

Scan
Spacing

(µm)

Measured
Error %

Prediction Made
by the Regression

Equation (%)

Difference in
Prediction %

Error of the
Equation

(%)

150 1500 75 4.08 4.45 0.37 8.47
140 1000 75 6.43 6.53 0.09 1.49
200 500 90 20.93 18.03 2.90 16.10
175 390 60 17.44 18.05 0.60 3.32
250 370 90 29.74 26.04 3.70 14.20

Figure 7 depicts the average measured error % of the samples with a 60 µm layer thickness and
various scanning patterns. The measured points depict an average of five measurements and it can be
seen that for most of the trials, even the average measurements display significant overlap or are close
to each other. For trial 15, which includes the repeated center point samples, it can be seen that there is
significant overlap among the different scanning patterns and the variation of the other trial points
also established the stability of the process and thus the analysis process.
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Figure 7. Average measurements of dimensional error % amongst three scan strategies for a 60 µm
layer thickness.

This can be explained as the effective area where the parameters are varied is relatively small,
since the down-facing area only extends for approximately 200 µm into the part and the three different
scanning strategies that were tested were not different enough to have a significant effect. The reason
for this is that the cells in the rectangular and hexagonal cell scanning strategies are normally much
larger than the entire down-facing area and the effective scanning strategy that was employed was thus
similar to the stripe scanning strategy, regardless of the chosen strategy. Therefore, in further studies,
the scanning strategy will not be considered as a parameter for optimization within the down-facing
area. It is important to stress that the scanning strategy does play a significant role when varied within
the bulk of the part and this has been the focus of other studies.
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Therefore, one can recommend that while choosing a scanning pattern, specifically one for within
the down-facing area, the focus can be placed on choosing the best pattern that contributes the most
towards productivity or a decreased build time. Alternatively, simply the scanning pattern that is
employed within the bulk of the part can be confidently chosen for the down-facing area. The layer
thickness plays a significant role in the productivity of the process [35] and should therefore be chosen
depending on the required build times and quality. The quadratic regression equation can be used to
make this decision as this paper also shows the effect of the layer thickness on the dimensional error of
the L-PBF part.

4. Conclusions

This paper has presented the first results of a statistical analysis of the dimensional error in L-PBF
parts. The process parameters under investigation were the laser power, scan speed, scan spacing,
scan strategy, and the layer thickness. An image processing technique was developed to measure the
thickness of printed samples. A statistical study was conducted and a quadratic regression equation
was developed. The interaction effects of the process parameters were plotted and clear trends can be
seen in their effects on the dimensional error, which have been summarized.

The ANOVA analysis showed that the laser power was the most significant process parameter in
terms of the dimensional error, which is in accordance with previous research and results. In terms of
the significance, the laser power was the most significant, followed by the layer thickness, scan speed,
and the interaction effect of the laser power and scan speed. In the context of an optimization problem,
it is also important to realize the process parameters that are insignificant for the purposes of parameter
optimization within the down-facing area of an L-PBF printed part, namely the scanning pattern.
In particular, the effects of the three different scanning strategies were similar and almost identical
at certain points. The ANOVA analysis explained this, as the expected significance of the scanning
pattern was inherently low. Therefore, any variation in the scanning pattern is only going to have
a minimal effect on the overall dimensional error % of the test piece.

This study establishes a starting point which can encourage further work in the area of the process
modeling of the L-PBF process and characterization of dross formation in unsupported down-facing
surfaces. The main inferences can be summarized as follows:

• At this stage, the experimental trial conducted under the parameters of laser power of 90 w,
scan speed of 1235, and scan spacing of 60 µm; laser power of 90 w, scan speed of 1235, and scan
spacing of 90 µm; and laser power of 150 w, scan speed of 1599, and scan spacing of 75 µm,
gave the lowest dimensional error percentages;

• The regression equation establishes a first step and when tested with new prints, gives promising
results, and validation through further data collection is required in order to improve the prediction;

• The effect of different scanning patterns within down-facing areas is negligible and any one can
be chosen based on the designers’ preference;

• This model must also consider other quality aspects of down-facing surfaces, such as the surface
topography and curvature in the surface, and is the focus of parallel current work. In this work,
the bulk area was first printed and the down-facing area (with down-facing parameters) was then
printed. There is room for incorporation of the gradual changing of process parameters between
bulk and down-facing areas such that they are scanned simultaneously. The current work can act
as a starting point for such research;

• The data-driven process analysis methodology has shown potential to provide acceptable
predictions of the dimensional performance of the L-PBF process and further work will be
done to characterize dross formation in an effective and productive manner. The authors conclude
on a positive note given the promising result obtained by modeling the L-PBF process, as this is
often plagued by a low process repeatability, especially within the down-facing area, where the
complex dross formation phenomenon further decreases the process’s stability.
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Although understanding the effect of individual process parameters will help to improve the
overall process knowledge, using the individual process parameters as such for drawing inferences
can be difficult. Therefore, it is the opinion of the authors that all proceeding work must consider
the inclusion of combined process parameters for characterizing the process. This includes the use
of parameters such as the line energy density and popular volumetric energy density. This might
be even more useful for the purposes of this study as dross formation is caused by the creation of
an overheated zone. The overheated zone results in the formation of a large meltpool, which, due to its
higher wettability property, is able to seep deeper into the powder bed, where, upon solidification,
dross is manifested. Therefore, a correlation between the energy density and dross formation can
potentially be drawn and this will be further qualitatively and quantitatively explored in a future study.
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