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Featured Application: The tool presented in this paper is useful in improving the effectiveness
of common web search engines like Google Images. The tool is also useful for searching private
repositories in an organization, when metadata are not available. The development of a UML-
oriented information retrieval tool can easily be expanded to applications in different domains.

Abstract: Our purpose in this research is to develop a method to automatically and efficiently classify
web images as Unified Modeling Language (UML) static diagrams, and to produce a computer tool
that implements this function. The tool receives a bitmap file (in different formats) as an input and
communicates whether the image corresponds to a diagram. For pragmatic reasons, we restricted
ourselves to the simplest kinds of diagrams that are more useful for automated software reuse:
computer-edited 2D representations of static diagrams. The tool does not require that the images are
explicitly or implicitly tagged as UML diagrams. The tool extracts graphical characteristics from each
image (such as grayscale histogram, color histogram and elementary geometric forms) and uses a
combination of rules to classify it. The rules are obtained with machine learning techniques (rule
induction) from a sample of 19,000 web images manually classified by experts. In this work, we
do not consider the textual contents of the images. Our tool reaches nearly 95% of agreement with
manually classified instances, improving the effectiveness of related research works. Moreover, using
a training dataset 15 times bigger, the time required to process each image and extract its graphical
features (0.680 s) is seven times lower.

Keywords: UML diagram recognition; image processing; image classification; rule induction;
classification tool

1. Introduction

The Unified Modeling Language (UML) was born in the early 1990s with the intent of merging
various traditions of software modeling into a single graphical, general-purpose language. As its three
original authors posed it, the purpose of the UML was to provide a standard way to specify, visualize,
document, modify and construct the design of a (software) system [1]. The Object Management
Group (OMG) soon started a standardization process that produced the first versions of the language
specification in the late 1990s (UML 1.1 in 1997). After several minor revisions, UML 1.x was replaced
by UML 2.x in 2005; the latest versions are UML 2.5 (released in May 2015) and 2.5.1 (released in
December 2017 [2]). During the past two decades, the UML has been progressively adopted by the
software industry, so that it has become a de facto standard, usually taught in undergraduate university
courses in software engineering, and with a plethora of scientific journals and conferences around it.
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Model Driven Engineering (MDE) (also called Model Driven Development, MDD) was a
subsequent OMG initiative, whose central idea was to shift the emphasis in the software development
process from source code to software models [3,4]: planning, estimating, reuse, maintenance, production,
simulation and so on. This initiative is of great importance for a software development process based
on model transformations to be truly iterative: integration and coherence of all phases of development,
models synchronized at all levels, etc. The application of MDE is growing in the development of
software systems (or hardware–software combinations), as long as new methodologies and tools are
available to manipulate software models. In particular, MDE has also moved the center of interest
in the area of software reuse towards models and associated modeling artifacts, instead of sheer
code. However, a practical adoption of fruitful reuse practices demands specific tools to classify and
retrieve software models, which is not a simple task, due to the fact that models and diagrams are not
sequential text-structures, but multidimensional artifacts made of a combination of text and logical
relationships [5,6].

UML defines a variety of diagram types that inherit and develop different notations that have
existed for years, such as entity–relationship diagrams and statecharts. Diagrams are graphs made
up of nodes of various forms (rectangles, ellipses, etc.), typically with some structured text inside,
and labeled arcs with terminators such as arrowheads. Diagrams may be static or dynamic (with
several subtypes each), representing different aspects or views of a software system. Essentially, static
diagrams represent the structure of the system and its parts, and dynamic diagrams represent its
temporal evolution and behavior. There are different kinds of models in software engineering: analysis
and design models, structural and behavioral models and others, so it is of major importance to
understand the meaning of each kind of model, how they are related and how they evolve [7]. A
system’s model is usually represented by a combination of various diagram types that provide different
architectural views to achieve a comprehensive understanding of the system. The most widely used
diagram type in software development is the class diagram, which is a kind of static diagram. It is
typically used at different levels of abstraction to represent, for example, the information model or
logical view of the system (high level) or the structure of the implementation code (low level).

UML diagrams can be produced through a variety of means, from simple drawing tools to
fully developed computer assisted software engineering (CASE) tools that can check the syntax and
coherence between diagrams, and even produce executable code. Models can then be stored in
public or proprietary repositories that are conformant to the UML metamodel and can offer their own
classification and retrieval facilities to manage them and, in particular, reuse their contents. These
repositories are useful both for academic research and for industrial developments. However, even
if there exists an OMG standard format to store models (XMI, XML Metadata Interchange [8]), the
compatibility of many commercial tools is not assured. Moreover, it is very common to insert the
diagrams in software documentation in a purely graphical format (bitmap images), where explicit
compliance with the UML metamodel is lost. The large amount of these kinds of images on the
web makes the possibility to retrieve their modeling information for reuse purposes very interesting.
However, this task presents notable difficulties broadly pertaining to these two categories:

• Image retrieval. In order to achieve an effective retrieval, images should be conveniently tagged so
that web crawlers can classify and index them, but this rarely happens. Therefore, images must
be located based on their surrounding text, which can refer (or not refer) to the image contents,
and can provide (or not provide) the necessary or desired search arguments. This implies that a
lot of noise (lack of precision) or a lot of silence (lack of recall) is usually obtained.

• Information extraction. Once the bitmap image is retrieved, it must be converted to a UML-compliant
format in order to extract its modeling information. This task requires the use of artificial vision
techniques, whose effectiveness is highly dependent on the quality of the image and embedded
text, its level of compliance to the UML specification (very often informally followed), and so on.
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In this work we focus on the first category of problems, leaving the second category for future
research. Our approach to improve the precision and recall of the retrieval of images representing
UML diagrams is based on well-known machine learning techniques, as explained later: we had a
computer tool learn from a previous human-made classification of images. Therefore, our work’s
intent is not to improve machine learning techniques, but rather to devise a novel application to the
field of web image retrieval, with huge potential for software reuse.

The rest of the paper is structured as follows. Section 2 further develops the motivation and
expected benefits from this research, and gives an outline of the method we have developed. Section 3
reviews the related work on automatic recognition of UML diagrams, either using machine learning
techniques or not. Section 4 reports the main graphical characteristics of images that can be effectively
used to classify them as diagrams, and describes our method to identify straight lines and rectangles,
which is key to obtain results with computational efficiency. Section 5 shows that a simple combination
of metrics is insufficient to discriminate between diagrams and non-diagrams, thus justifying the
use of machine learning techniques to build an easily computable discrimination function. Section 6
explains the construction of the automatic rule-based classifier that solves the problem of computing
the concrete intervals for each metric and the combination of metrics, using well-known machine
learning techniques (rule induction). Section 7 describes the experiments and results we obtained
in precision, recall and accuracy, also showing some examples of individual rules that build up the
automatic classifier. Section 8 presents the i2m classification tool and how we plan to develop it in the
future. Finally, Section 9 offers some concluding remarks.

This paper is an extended version of a previous paper presented at the 4th Spanish Conference in
Information Retrieval [9]. That version was constrained due to its rather short length, and the authors
could not explain in sufficient detail the grounds of our contribution. In this version, we display a
richer context about UML, MDD, class diagrams and model repositories (Section 1), as well as a much
more thorough exposition of the results of previous works from other researchers (Section 3). We
also give a new in-depth explanation of the principles of rectangle identification (Section 4) and an
explanation of classification functions in a hyperspace of features that justifies the reasonableness of the
rule induction approach (Section 5). The description of the rule induction process was enriched with
the mathematical formulation of the problem in terms of search-based software engineering, and with a
fully detailed textual and graphical explanation of the two stages of the process, namely rule inference
and rule application (Section 6). Finally, a comparison with previous research was completed with
detailed numerical data that support our claim about the better performance of our work (Section 9).

2. Motivation and Outline of Method

Our purpose in this research is to develop a method for the automatic and efficient classification
of web images as UML static diagrams, and to produce a computer tool that implements this function.
The tool receives a bitmap file (in different formats) as an input and indicates whether the image
corresponds to a diagram.

This tool is useful as long as it improves the effectiveness of common image search engines
(measured as accuracy, i.e., percentage of agreement between automatic and manual classification).
For example, Google currently offers the possibility of an advanced search of images with a filter set to
“line drawing”. Using this filter, a generic search argument such as “control system” provides nearly
no results that can be recognized as software engineering diagrams. Simply adding “uml” to the search
argument dramatically increases the success of the search in the first obtained results with Google
Images (nearly 100%), but after the first dozens of results the precision drops to around 90%. This is
not that bad, but we can improve it. In fact, adding “uml” to the search argument is a lot more relevant
to the results than using the line drawing filter.

However, adding “uml” (or a similar term) to the search argument will detect only those images
that either have been manually labeled with this tag, or that are surrounded by text that contains it.
Our tool, instead, does not require that the images are explicitly or implicitly tagged as UML diagrams,
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therefore offering the additional advantage that the search argument can be more specific of the
problem at hand; a search argument like “control system”, without “uml” or similar tags, will produce
results where images that are not UML diagrams are filtered out, with a higher degree of precision.

The tool can be used, then, in several ways. First, it can be connected to the output of a generic
search engine (such as Google), without using the line “drawing filter” or the “uml” tag. The initial
result set is provided by the search engine, therefore using the tool will not improve its recall; however,
the precision of the results will improve (as our experiments show), since more false positives will be
discarded. In other words, using this tool will avoid noise (higher precision), but avoiding silence will
still depend on the search engine used (equal recall).

Second, the tool can be integrated in a specific UML-oriented search engine. In fact, we are
developing such a search engine, including a web crawler that indexes UML diagrams with the
potential to improve not only precision, but also recall. In this paper we present the classification tool
in isolation, but it is, in fact, part of a larger information retrieval project whose developments will be
published in the future.

The tool is also useful when employed to search private repositories in an organization. In general,
the utility of such a tool is manifested in a context of software reuse, where the capability to correctly
identify software engineering artifacts such as analysis or design diagrams is most beneficial. Once the
artifact is located, the next step in a reuse context would be extracting the information it contains in a
format that is directly conformant to the UML metamodel, so that the output can be further processed
to develop new software. Moreover, other related artifacts that are linked to the identified diagram
through traceability links in the private repository (such as code implementations) can also be retrieved
and reused. However, in this paper, we consider neither the problem of information extraction from
the diagram, nor that of retrieving related artifacts, focusing only on the correct classification of images
as diagrams. Of course, if the local repository were made up with files produced with modeling CASE
tools, the classification, retrieval and extraction of relevant information would be a lot easier, and a tool
to classify images and extract information from them would not be necessary. However, we believe
that the local repository could also include bitmap images, or even diagrams produced with general
drawing tools (perhaps prior to the adoption of a specific CASE tool by the organization). It could
be the case, also, that the organization’s policy for information dissemination among its departments
does not consider the automatic sharing of information, but only considers sharing documents in
generic human readable formats such as PDF or HTML; in those cases metadata will not be enough for
effective retrieval and our tool will be most useful.

Our work is limited to bitmap images (or, more specifically, pixmap images, i.e., spatially mapped
arrays of colored pixels), either uncompressed bitmaps such as BMP or compressed formats such as
GIF, JPG/JPEG, PNG or TIFF, with a typical resolution for web images of 72–96 dots per inch. We
do not consider, instead, vector graphics. The work is also limited to UML static diagrams (classes,
components) which are mainly made of straight lines and rectangles, leaving diagrams that use
rounded forms (such as use case diagrams, activity diagrams and statecharts) for future research and
development. Since the tool is tuned to detect static diagrams, other diagrams that use mainly straight
lines and rectangles (such as sequence diagrams) will produce a certain number of false positives.

More specifically, our hypothesis is that an automatic rule-based classifier obtained through
machine learning algorithms can emulate the experts’ classification of images as static UML diagrams.
The method we have followed can be roughly described as follows. First, we obtained a sample of
nearly 19,000 images from the web (exactly 18,899 items) that resulted from queries in Google Images
involving the terms “uml diagram”; then a team of experts manually classified the images as UML
static diagrams (Yes/No). The reader is referred to our previous conference paper [9] for the details
regarding the criteria followed in this manual classification. Second, we analyzed the main graphical
characteristics of images that represent diagrams, such as grayscale histogram, color histogram,
elementary geometric forms detected with image recognition techniques (especially rectangles), and
so on. Third, using machine learning techniques (rule induction), we selected a combination of
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characteristics that maximize the effectiveness of the automatic classification. Fourth, we implemented
the rules in a tool that is freely available for the public and that can be used to classify new images.
The rest of this article explains these steps in detail.

3. Related Work

As we have argued, the existence of large public model repositories would greatly ease model
reuse. However, to this day, there are few such repositories available [10]. Some tool vendors (such as
Sparx Enterprise Architect and Visual Paradigm) offer their own private repositories on a commercial
basis, with two main drawbacks: these repositories only support the native file format of their own
CASE tools, and there is no open access for models created by others tools. On the public side, a
pioneering repository for model-driven development, called ReMoDD, was proposed and developed
by France et al. [11,12]. However, those models are stored as files that have to be downloaded and
opened with a compatible CASE tool, or else they are pure PDF files. Consequently, those models are
not easily retrievable; users have to search manually for UML diagrams among hundreds of files, with
limited search capabilities. In general, there are few examples of good online model repositories that
people can consult, and efforts toward repositories of such models have achieved limited success [13].
Therefore, even though several initiatives have been promoted to support the adoption of model
repositories in MDE, we are still far from a concrete adoption of them [14].

Keyword-based and content-based retrieval of models from repositories was studied by
Bislimovska et al. [15,16]. This is a good testimony of the importance of repositories and retrieval
techniques in model-driven engineering. However, this same research is focused only on textual
elements of models, i.e., it requires that models are stored in various textual formats, basically XML or
its derivations (such as XMI). They do not consider the interpretation of models stored as images.

A recent and extensive study of models stored in various formats in GitHub, combining automatic
processing and a lot of manual work, identified 93,596 UML models from 24,717 different repositories,
of which 57,822 (61.8%) are images, the rest being files with extensions .xmi or .uml [17]. This confirms
the existence of potentially useful and interesting information in repositories that is still difficult to
access and reuse; and it also confirms that a large proportion of models is stored as images.

The interest in automatic UML diagram recognition in repositories goes back to the times of
appearance of the UML, with an initial emphasis on sketch recognition early in the software design
cycle, in order to make the information they contain available to CASE tools [18]. The need of the
MDE/MDD community to manage large repositories supporting the effective reuse of modeling artifacts
has increased the need for the recognition of tool-made diagrams [14]. However, to our knowledge,
the research in this field has been rather scarce up to now, even less using machine learning techniques.
Most of the approaches use image processing and pattern recognition methods adapted to particular
domains, such as architectural diagrams [19] or finite state automata diagrams [20].

In the domain of UML diagrams, Karasneh and Chaudron have published research on the same
problem [21], although they do not use an automatic learning approach, but a fixed set of classification
criteria. Their Img2UML tool [22] uses the Aforge.NET framework (an open source C# framework
designed for developers and researchers in the fields of computer vision and artificial intelligence,
including image processing, neural networks, genetic algorithms, fuzzy logic, machine learning,
robotics, etc.). The tool extracts UML class models from pixmap images and exports them into XMI
files that can be read by a commercial CASE tool (StarUML). They created a private repository with
images collected from the internet together with their corresponding XMI extraction [23]. In this sense,
their work covers nearly all the steps we envision for future versions of our tool. However, their
tool does not currently solve all the problems they have identified (in particular, OCR recognition
of text, recognition of relationships and lack of XMI standardization in tools). Moreover, they use a
small number of images to validate the tool (respectively 10 and 200 images in [21] and [22]), reaching
89% accuracy.
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A machine learning approach is introduced in the work of Hjaltason and Samúelsson [24], who
use 23 image features to train an automatic classifier of class diagrams (CD) using the Support Vector
Machine (SVM) algorithm, in this case based on computer vision techniques implemented with aid
of the open source image-processing libraries OpenCV and Magick++. They use a training set of
1,300 images downloaded from various online sources, equally divided in CD and non-CD, with an
average time of 10 s to process each image and extract the graphical features used by the classification
algorithm, reaching a 91.2% accuracy of correct classifications.

The previous two works were continued in Ho-Quang et al. [25], who further investigated image
features that can be effectively used to classify images as class diagrams and to train an automatic
classifier. They were able to reduce the number of image features from 23 to 19, and the processing
time from 10 to 5.84 s, using six different learning algorithms with the same training set of 1,300 images.
Each algorithm reaches slightly different results, ranging from 90.7% to 93.2% in accuracy. However,
the authors consider specificity followed by sensitivity as the most important measures of effectiveness,
thus they point to Logistic Regression and Random Forest as their best candidates.

Finally, Hebig et al. [26] use the same automatic tool developed by [25] with a new set of 19,506
images collected from GitHub and manually classified as CD and non-CD. They do not train the tool
again, but they use it as-is to automatically classify the new set of images and compare the accuracy
obtained with previous results. Among the six learning algorithms developed by [25] they choose
Random Forest because of its best performance. The authors report 98.6% precision and 86.6% recall in
positive detections, but from these data alone accuracy cannot be computed (they do not explicitly
give the count of true and false positives/negatives). Moreover, these two values are too unbalanced to
be considered a good result. They also report 26.5 h of automatic processing time for the 19,506 images,
which equates 4.89 s per image. All of these aspects essentially confirm the results obtained by [25].

Table 1 summarizes the results of the examined related works, and Table 2 gives more details
about the different algorithms experimented in [25]. As we will show in Section 7, our approach
improves these results: we reach a better accuracy (average 94.4%), using less graphical features to
automatically classify images (8 features), and with a much lower processing time (less than 1 s per
image).

Table 1. Comparison of the examined methods to classify images as Unified Modeling Language
(UML) static diagrams: number of image attributes used in the classification, number of images used to
train/validate the classifier, average time required to process each image, and accuracy (percentage of
agreement with the manual classification).

Research Number of
Attributes

Number
of Images

Processing
Time/Img. Accuracy

Karasneh and
Chaudron [22]
(not a machine

learning approach)

N/A 200 N/A 89.0%

Hjaltason and Samúelsson [24] 23 1,300 10 s 91.2%

Ho-Quang
et al. [25] 19 1,300 5.84 s 90.7%–93.2%

Hebig et al., 2016 [26]
(same classifier as [25]) 19 19,506 4.89 s N/A
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Table 2. Results obtained by Ho-Quang et al. [25] with six different algorithms: precision, recall and
accuracy in classifying images as UML static diagrams1. Their best results in boldface. The authors
report only sensitivity and specificity (in italics). We backward-computed the rest of values to better
compare with our own results.

Algorithm Precision for
Positives

Recall for Positives
(Sensitivity)

Precision for
Negatives

Recall for Negatives
(Specificity) Accuracy

Support Vector
Machine 0.894 0.924 0.921 0.890 90.7%

Random Forest 0.909 0.959 0.957 0.904 93.2%

J48 Decision
Tree 0.903 0.925 0.923 0.901 91.3%

Logistic
Regression 0.913 0.902 0.903 0.914 90.8%

REP-Tree 0.903 0.920 0.918 0.901 91.1%

Decision Table 0.897 0.919 0.917 0.895 90.7%
1Reminder: Precision for positives is the ratio of true positive detections to all positive detections (the complement
is the ratio of false positive detections). Recall is the ratio of true positive detections to all existing positives in the
dataset (the complement is the ratio of false negative detections). The corresponding calculations can be performed
also on the ratio of true negative detections, as shown in the table. Sensitivity is the recall of positives and Specificity
is the recall of negatives. Accuracy (or percentage of agreement) is the ratio of true positives plus true negatives to
all existing instances.

4. Analysis of Graphical Characteristics of Diagrammatic Images

UML diagrams always contain textual information that is most relevant for their interpretation.
However, analyzing the textual content of an image is computationally very time-consuming, especially
when compared with graphical features that are a lot easier to compute and provide enough information
to classify the image as a diagram. Therefore, in this work we do not consider the textual contents of
the images.

In our previous conference paper [9], we explained with many examples how a small set of simple
graphical features that are very easy to compute can be effectively and efficiently used to classify a given
image as a diagram, so that we can avoid the more time consuming identification of other features,
such as text or complex geometrical forms. These simple features include the number of different gray
tones and colors (histograms), as well as the number of vertical and horizontal straight polylines (solid
or dashed), a special case of which is the rectangle, by far the most common geometrical form in UML
diagrams. However, the concrete values and combination of rules involving these features, that should
be used to discriminate diagrams, is not so easily found by intuition. Therefore we used machine
learning techniques to find an optimal combination, as explained in Section 6.

Among the various traditional techniques used in artificial vision to identify straight lines, the
most important ones are the following:

• Radon transform, introduced in 1917 by Johann Radon [27], and widely applicable to tomography.
• Hough transform, patented by Paul Hough in 1962 and universally used today for identification

of lines and other shapes in image analysis in the form that was generalized by Richard Duda and
Peter Hart in 1972 [28].

• Random Sample Consensus (RANSAC) method, published by Fischler and Bolles in 1981 [29],
which is an iterative method able to fit a line to a set of points in the presence of noise.

• Accumulation method and Shift Detection by Restoration (SDR) method by Voss, Suesse and
Ortmann [30]. Inspired by the Hough transform, it combines the advantages of Radon and
RANSAC methods.

Voss et al. [30] demonstrate that their method improves the computational cost of the previous
methods, while retaining the good properties of the Hough transform, such as noise resistance, the
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ability to detect occluded shapes and the ease of representing a figure with a one-pixel thick edge. N
being the number of points (i.e., black or significant pixels) in the image, this method has an order
of complexity O(N2) when N random pairs of pixels are searched for straight lines, and an order of
complexity O(N3) when all possible pairs are exhaustively searched for.

Our own algorithm takes advantage of the fact that UML class diagrams contain a majority of
vertical and horizontal lines. This enables us to achieve a linear order of complexity O(N), which
is manifested in the fact that our average processing time is seven times lower than other methods
that use standard libraries such as OpenCV and Magick++ (see Section 9), which are based on the
Hough transform.

In the rest of this section, we explain in detail the procedure to identify straight lines and rectangles
in a computationally efficient way. The first step is to identify the pixels that belong to a vertical or
horizontal straight line (a ‘segment’) that is part of a relationship polyline or a rectangle border. The
basic image processing procedure is described with greater detail by Moreno et al. [31]. We then
identify segments consisting of series of horizontally or vertically contiguous black pixels, allowing for
short discontinuities in dashed lines. Each detected segment receives a unique identifier within the
diagram. Four cyclically connected segments form a rectangle, which also receives a unique identifier.

4.1. Detection of Line Pixels Against the Background

A pixel belongs to a line if it has a horizontally or vertically adjacent pixel with a gray intensity at
least 80 levels above, in a scale from 0 (black) to 255 (white), and diagonal lines are not considered for
efficiency [31]. Note that this rule does not classify pixels into two categories: there is not a unique
threshold for the whole image that distinguishes black/white pixels. Instead, it only identifies line
pixels by comparison with their immediate environment. That means that a given gray level could be
interpreted as a ‘line pixel’ in a certain area of the image, and as a ‘background pixel’ in a different area.
In this context, ‘background’ means light pixels either outside or inside the UML shapes.

Let us consider the example in Figure 1. It contains a fragment of a rectangle border in dark gray
(four pixels wide), surrounded by background in light gray, with a difference of more than 80 gray
levels between dark and light gray. The leftmost dark pixels are identified as border pixels because
they have adjacent light pixels on the left. This is the same for the uppermost dark pixels, and also for
the pixels belonging to the inner border. On the contrary, those dark pixels inside the dark gray area
are not identified as border pixels because they do not have light adjacent pixels, that is, a dark line
that is wide enough (more than two pixels wide) can produce more than one line of border pixels. We
will observe what happens with the “inner borders” later in Section 4.3.
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Figure 1. Detection of border pixels by comparison with their immediate environment.

Our work presents a novel approach, with respect to the traditional way, of identifying thresholds
and borders, which are not identified in two separate steps (see Section 4.2), but simultaneously in a
single processing of the image in order to improve efficiency. Therefore, we do not use a fixed threshold
for the whole image, but a dynamic comparison depending on the environment of each pixel. After
analyzing the gray histograms in the set of images, a heuristic value of 80 levels was chosen as a good
discriminator; adjacent pixels with a difference less than 80 belong to the same area, otherwise, the
darker pixel is identified as a line pixel.
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4.2. Vertical and Horizontal Segment Identification

The next step is the identification of vertical and horizontal segments that are candidates to be
either edges of UML shapes (rectangles) or else relationships between shapes, such as associations or
generalizations (remember that we disregard oblique lines for the sake of computational efficiency).
Here, we consider only the pixels that have passed the ‘line pixel’ detection filter in the previous step.
As mentioned, the detection of line pixels and the identification of segments is actually performed in
a single pass on the image to improve efficiency, even if we explain them as two consecutive steps
for clarity.

The method consists of scanning the image pixel-by-pixel, downwards and rightwards. When a
line pixel is found, the scanning continues first downwards to check whether it belongs to a vertical
segment, and then rightwards to check for a horizontal segment. The scanning of a segment stops
when it reaches the limits of the image or when more than five consecutive background pixels are
found, that is, gaps up to five pixels (a heuristic value) are allowed in order to identify dashed lines
and small defects in continuous lines. When an end-pixel is found to belong simultaneously to a
vertical and a horizontal segment (with either ‘L’ or ‘T’ connection), then the connection between both
segments is identified. Two segment ends that are close enough (less than five pixels apart, heuristic
value) are considered as connected, too, in order to avoid false negatives in images with defects and
other special cases (see the two inner segments in Figure 1).

Moreover, each segment is stored with the following attributes that will be useful for later
processing:

• Unique sequential ID within the image. The comparison of identifiers of two segments provides
information about their relative position within the image. For two vertical segments, the one
with lower ID must be to the left of the other, or above. For two horizontal segments, the one with
lower ID must be above, or to the left of the other.

• Position. Cartesian coordinates of the two ends of the segment. The length and orientation
(vertical/horizontal) are derived attributes.

• Density. It is the ratio between the number of line pixels and the total number of pixels. A density
of pixels lower than 80% tells the segment is discontinuous.

• Connected segments. When one of the two end pixels of a segment simultaneously belongs to
another segment, then those two segments are connected. This does not include crossing segments,
but it does include ‘T’ connections (see Figure 6 at the end of this section).

Figure 2 illustrates four segments that form a rectangle. Since the scanning of pixels is first
undertaken downwards and then rightwards, the first segment identified is the left one, then the upper
one, then the right one, then the lower one; IDs are assigned accordingly.
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4.3. Rectangle Identification

Rectangles are used to represent classes and objects in UML static diagrams, in addition to being
part of other more complex shapes such as packages, components and so on. The identification
of rectangles is achieved using the vertical and horizontal segments identified according to the
previous subsection. The objective is to find four cyclically connected segments whose identifiers go in
ascending order (possibly with gaps among them). This last restriction is aimed at obtaining a unique
representation of each rectangle as a sequence of its edges, starting with a vertical one. In addition, it is
required that the segments are not discontinuous and have a minimum length of 10 pixels (another
heuristic value; shorter segments usually are false positives).

A programmed automaton Ap = (Q, I, O, M, δ, q0) [32,33] is used to recognize those sequences of
segments that satisfy the mentioned restrictions, where:

Q The set of states.
I Input, the sequence of vertical and horizontal segments detected.
O Output, the sequence of vertical and horizontal segments forming a rectangle.
M Adjacency lists (segment connections) and other segment attributes.
δ Q × I × Π→ Q × O: transition function.
Π AI ∪ AM→ {TRUE, FALSE}: transition predicate.
AI Set of attributes of I.
AM Set of attributes of M.
q0 ∈ Q initial state.

Figure 3 represents the programmed automaton, where qi is the state where i consecutive segments
are recognized as potential edges of a rectangle, qb is the break state (i.e., the sequence of segments
does not complete a rectangle) and Boolean expressions a, b and c are computed on the successive
input segments as follows:

a = currentSegment.continuous

AND (currentSegment.length ≥ 10)
If current segment is continuous and long enough,
then jump to q1, else qb.
Left vertical edge.

b = a

AND (previousSegment.id < currentSegment.id)
AND currentSegment.connected(previousSegment)
If current segment is continuous, long and connected to the previous one,
then q2 (or q3) else qb.
Upper horizontal edge and right vertical edge.

c = b

AND currentSegment.connected(firstSegment)
If current segment is continuous, long, connected to the previous one, and to the first one,
then q4 else qb.
Lower horizontal edge, completing the four required edges to form a rectangle.
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Figure 4 illustrates the process of rectangle recognition with the defined automaton, with an
example. In state q1, the automaton found a continuous vertical segment. In state q2, the automaton
found a continuous horizontal segment, connected to the first segment and with a greater ID. In state
q3, the automaton found a continuous vertical segment, connected to the second segment and with a
greater ID. In state q4, the automaton found a continuous horizontal segment, connected to the third
segment and with a greater ID, and connected to the first segment.
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Figure 4. Example of recognition of a rectangle with the programmed automaton.

Once all rectangles present in the image are recognized, we distinguish primary and secondary
rectangles. Primary rectangles are not contained by other rectangles; secondary rectangles are contained
within other (primary or secondary) rectangles, i.e., their four vertices are enclosed within the limits of
another rectangle.

This process is efficient thanks to the way segments are assigned their IDs. A typical UML class
symbol contains three compartments (see Figure 5); however, the combination of segments can produce
up to five different contained rectangles. The rule, used to assign segment IDs, automatically discards
three of them without the need of checking containment (see Figure 6), so that the distinction between
primary and secondary rectangles is more efficient.
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Figure 5. Identification of primary and secondary (contained) rectangles: two secondary rectangles
are discarded.

Figure 6 shows three contained rectangles that are automatically discarded by the automaton,
since their third edge belongs to a segment whose ID (No. 3) is lower than its preceding upper segment
(respectively No. 4, 5 and 4). This simplification in the number of cases of included rectangles to
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be examined improves the efficiency in the identification of primary rectangles. This also solves the
problem of spurious or duplicate rectangles that can result of the “inner borders” problem (examined
in Section 4.1) in a reduced computational time.
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rule for growing IDs of their segments, therefore they are discarded by the automaton.

Summing up, the feature extraction stage described in this section assumes the following heuristic
values for the parameters:

1. Gray difference between line pixels and surrounding pixels: 80 gray levels. Adjacent pixels
with a difference less than 80 belong to the same area, otherwise the darker pixel is identified as a
line pixel. In other words, a pixel belongs to a line if it has a horizontally or vertically adjacent
pixel with a gray intensity at least 80 levels above, in a scale from 0 (black) to 255 (white).

2. Gaps in dashed lines: five pixels. Gaps up to five pixels are allowed in order to identify dashed
lines and small defects in continuous lines. Equally, when two segment ends are less than
five pixels apart, then these two segments are considered as connected, in order to avoid false
negatives in images with defects and other special cases.

3. Density of line pixels in continuous segments: at least 80%. A density of pixels lower than
80% tells the segment is discontinuous. Rectangles identified by the automaton must have all
segments continuous.

4. Minimum length for rectangle segments: 10 pixels. In addition to being continuous, it is
required by the automaton that the segments belonging to a rectangle have a minimum length of
10 pixels.

5. Minimum length for vertical/horizontal segments: 30 pixels. This parameter is not used in the
feature extraction stage, but in the learning algorithm (see Section 6), which distinguishes short
and long segments present in the image.

These values are grounded in previous research about image processing in traffic signals [31]. We
considered that they are sufficiently well established and that is why we did not include them within
the learning approach. On the other hand, allowing the algorithm to learn these values together with
the classification rules would make the learning process computationally inefficient. We do not think
that the robustness of the system is compromised, as our experimental results show.

5. Classification Functions in the Hyperspace of Graphical Characteristics

Suppose we classify images by their graphical characteristics based on a single variable or metric,
for example the number straight lines (NSL) present in the image. We can then formulate a simple
rule to transform the metric into a classification, such as “if NSL ≤ 10 then Negative, else Positive”.
The rule can be easily refined to account for more classifications, using more intervals in the value
of the metric, such as “if NSL ≤ 10 then Negative, else if NSL ≤ 16 then Dubious, else Positive” (see
Figure 7). For simplicity, since the argument is easily generalizable to any number of classifications, we
will assume in the rest of the paper that the number of levels is only two: Negative or Positive.
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number of rectangles (NR) and number of gray tones (NG). We can represent both variables on the 
X–Y plane, where each point is an image and the point color is the classification. The simplest way to 
classify the cloud of points is by a linear combination of the variables, i.e., the traditional method of 
weighted average of metrics: “if (a*NR + b*NG) ≤ L, then Negative, else Positive”, where a, b and L 
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Figure 7. A simple rule to transform a metric such as the number of straight lines (NSL) into an image
classification as static diagram.

Now, suppose we want to combine two different metrics to assign a classification, such as number
of rectangles (NR) and number of gray tones (NG). We can represent both variables on the X–Y
plane, where each point is an image and the point color is the classification. The simplest way to
classify the cloud of points is by a linear combination of the variables, i.e., the traditional method of
weighted average of metrics: “if (a*NR + b*NG) ≤ L, then Negative, else Positive”, where a, b and
L are convenient values. When the cloud of points is naturally split into two regions separated by a
straight line, the values of a, b and L can be easily obtained with simple mathematical methods (see
Figure 8). The method generalizes to any number of dimensions (metrics) that define a hyperspace of
graphical characteristics split in two regions by a hyperplane.
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Figure 8. Combination of two arbitrary metrics using a straight line to discriminate an image in the
simplest case (white: Positive, black: Negative).

However, this simplicity is not usually found when the variables present a more complex
relationship with the classification, which can be very difficult to estimate a priori (see Figure 9). In
these situations, a more convenient yet simple way to combine the metrics is by means of a rectangular
region: the classification is Positive inside the region, otherwise it is Negative (or vice versa). Note
that the region could be open in one or more sides: “if NR between [10, –] and NG between [2, 40]
then Positive, else Negative”. The method is also rather simple and generalizes to hyper-rectangular
regions in the hyperspace of graphical characteristics.

The most common case in the combination of metrics, however, is not so simple, and the cloud
of points is not easily discriminated by a single (hyper-) rectangle. In these situations, we can still
generalize the procedure to a combination of regions that can be better adjusted to the cloud of points
(see Figure 10), such as: “if NR between [10, 20] and NG between [2, 40] then Positive, else if NR
between [20, –] and NG between [2, 15] then Positive, else Negative”. Note, the regions could be
overlapping (requiring that they do not overlap could produce a worse adjustment of the rule, or a
more complex rule with more rectangles).
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Summing up, the discrimination of regions by means of hyperplanes (Figure 8) is generally
very inadequate, and the use of simple rectangular regions (Figure 9) is still insufficient. Instead,
a combination of rectangular regions (Figure 10) is a versatile method when the different metrics
employed present complex relationships manifested in the clustering of points. The higher the number
of regions, the better the adjustment of the discriminating rule to the dataset (avoiding of course an
excessive number of regions, which would compromise generality). However, computing the concrete
intervals for each metric becomes a difficult problem. This is where machine learning techniques prove
particularly useful to generate the rules.

6. Selection of Graphical Characteristics and Rule Induction by Machine Learning Techniques

The discrimination of images representing UML static diagrams is achieved in this project by
an automatic classifier that uses data mining techniques of supervised learning. Machine learning
techniques are mechanisms used to obtain patterns through the analysis of data. This is a well-known
subfield of computer science that evolved from the study of pattern recognition and computational
learning theory in artificial intelligence, therefore we provide only a brief explanation. Machine
learning explores the construction and study of algorithms that can learn from data, by building a
model from example inputs in order to make data-driven predictions or decisions, rather than following
strictly static program instructions [34]. On the other hand, Search-Based Software Engineering is
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an approach in which search-based optimization is applied to software engineering [35]. Machine
learning, then, is one of the techniques that can be used to perform search-based software engineering.

Machine learning techniques can be supervised or unsupervised [36,37]:

• Supervised learning: the algorithm is presented with example inputs and their desired outputs, and
the goal is to learn a general function that maps inputs to outputs.

• Unsupervised learning: the inputs to the learning algorithm are given no output labels, leaving the
algorithm on its own to find structure in the inputs.

More specifically, supervised learning is the task of inferring a function from labeled training data,
where each input is described by a vector of common attributes (see Figure 11).Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 23 
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The training data consist of a set of training examples, each example consisting of an input object
(in our case, the vector of graphical characteristics obtained from an image downloaded from the web)
and a desired output value (in our case, the manual classification as a UML static diagram, or not,
judged by the expert). The input attributes we have used in this project are:

(1) Number of gray tones.
(2) Number of color hues.
(3) Number of vertical/horizontal segments.
(4) Number of vertical/horizontal segments at least 30 pixels long.
(5) Number of horizontal segments at least 30 pixels long.
(6) Number of vertical segments at least 30 pixels long.
(7) Number of rectangles.
(8) Number of main rectangles (not included in other rectangles).

Note, we use the number of vertical/horizontal segments in four different ways, in order to
increase their discriminatory power.

A supervised learning algorithm analyzes the training data and infers a generalized function,
which can be used for classifying new inputs. The effectiveness of the automatic classifier obtained is
then measured against the testing set, which was previously segregated from the initial data, so that
training and testing are performed with different datasets.

In terms of search-based software engineering, the optimization problem consists in finding a
function of the graphical characteristics (a piecewise function defined by a set of rules), such that it
minimizes the distance with the experts’ classification over the set of all images. This can receive the
following mathematical formulation:

• Let P be a set of images, or pictures, P =
{
p1, . . . , pn

}
.

• Let C be the classifications over the set of pictures, C = {c1, . . . , cn} such that ci ∈ {0, 1} is the class
provided by the experts to picture pi, where 0 represents “not a static diagram” and 1 represents
“a static diagram”.

• Let G be a set of graphical characteristics obtained from pictures, G =
{
g1, . . . , gk

}
, such that

gj : P→ R (1 ≤ j ≤ k) .

Goal:
Find a function f : Rk

→ {0, 1} such that it minimizes
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n∑
i=1

| f (g1(pi), . . . , gk(pi)) − ci|

There are several kinds of machine learning techniques. Among them, neural networks are the
most widely used today as a de facto standard tool in computer vision. However, as is well known,
one of the main drawbacks of neural networks is that they provide black boxes whose only justification
for the functions obtained is the effectiveness they reach. Therefore, we selected a different machine
learning technique, namely rule induction, because it provides a human-readable decision algorithm
that improves the explainability and modifiability of the classification model obtained by a good
amount. Even if the neural networks approach could reach better effectiveness, it would be at the price
of losing all expressiveness and interpretability of the classification model. In any case, we provide a
comparison of experimental results obtained with both approaches in the next section.

Rule induction (or rule inference) techniques are a kind of supervised learning that process input
training data and produce a set of IF-THEN rules used to classify the new examples [38,39]. Two main
strategies are commonly used:

• Produce a decision tree and then extract its rules.
• Generate the rules covering all the examples in a given class, exclude the covered examples and

proceed with the next given class, until all classes are covered.

The first strategy is implemented in the C4.5 system [40], which extends the previous ID3 [41].
Other algorithms such as PRISM [42] are based only on covering, whilst PART [43] combines both
strategies. These strategies present the following advantages to minimize the impact of unintentional
errors in the expert’s classification of the images used as training examples:

• Robustness against noise due to errors, omissions or insufficient data.
• Identification of irrelevant attributes.
• Detection of absent attributes or knowledge gaps.
• Extraction of expressive and easy to understand rules.
• Possibility to interpret or modify the produced rules with aid of expert knowledge, or even to

incorporate new rules inferred by the experts themselves [44].

In order to improve the effectiveness of the individual classifiers obtained by means of rule
induction, ensemble methods construct a set of classifiers and then classify new instances by taking a
vote of their decisions (it can be a weighted vote, the mode of the votes, etc.) [45]. The technique has
two main variants:

• Homogeneous classifiers are generated with the same learning algorithm [46]. The main methods
are Bagging [47] and Boosting [48].

• Heterogeneous classifiers, instead, are generated with different learning algorithms. The most used
method is Stacking (Stacked Generalization) [49].

We finally chose the Bagging method of homogeneous classifiers on the basis of the rule induction
PART algorithm [43] to perform the experiments and obtain the classifiers. We explain the experiments
in detail in the next section.

The whole process consists of two main stages: rule inference and rule application. The inference
stage can be summarized in the following steps (see Figure 12):

1. Obtain the initial set of images downloaded from the web.
2. Classify the images according to the criteria explained in our previous conference paper [9] (done

by human experts).
3. Extract the graphical features described in Section 4 (number of gray and color tones, and number

of straight lines and rectangles) (done by the i2m tool extractor).
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4. Build the training and testing data for the supervised machine learning algorithm, combining
the two previous outputs: each image is represented as a vector of graphical features and
human-assigned classification.

5. Launch the rule inference learning algorithm (in our case, run in the Weka tool) to obtain as
output the automatic classifier, i.e., the function made of rules that classifies images as UML static
diagrams or otherwise, thus emulating the human experts.
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Once we have built a validated rule-based classifier, we implement the rules in our tool (see
Section 8) and use it in the application stage to automatically classify new images as the emulated
human experts would do (see Figure 13):
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7. Experiments and Results Obtained

As explained, we applied the rule induction PART algorithm combined with the Bagging approach
of homogeneous classifiers. The experiments were implemented in the popular Weka suite [50],
keeping its standard default parameter configuration. We used the set of 18,899 images downloaded
from the web as training examples, manually classified by the experts as explained in our previous
conference paper [9]. From this initial dataset, a combination of rules was extracted with the PART
algorithm that can be extrapolated to classify new images.

Some examples of the individual rules automatically obtained are:
IF (number-of-primary-rectangles ≤ 0) AND (number-of-segments ≤ 11)
THEN Negative (it is not a diagram)
This rule classified 9,445 of our 18,899 examples as non-diagrams,
with 55 false negatives (0.6%).
IF (number-of-primary-rectangles > 2) AND (number-of-hues ≤ 6)
THEN Positive (it is a diagram)
This rule classified 176 examples out of 18,899 as diagrams,
with 7 false positives (4%).
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As explained, the algorithm provides not only individual rules, but also a function that combines
the rules and maximizes the overall results. We performed 10 experiments with the available dataset.
In each experiment we used the 794 positive instances (manually classified as UML static diagrams, see
our previous conference paper [9]) together with other 794 negative instances (other non-UML static
diagrams and non-diagrammatic pictures), randomly chosen, without replacement, from the total set
of negative instances. We performed the usual 10-fold cross validation [51], obtaining the classifiers
shown in Table 3.

Table 3. Summary of the results of the classifiers obtained with the 10 experiments: precision, recall
and percentage of agreement in classifying images as UML static diagrams.

Experiment Precision for
Positives

Recall for
Positives

Precision for
Negatives

Recall for
Negatives

Percentage of
Agreement

1 0.956 0.928 0.930 0.957 94.3%

2 0.950 0.933 0.934 0.951 94.2%

3 0.945 0.943 0.943 0.945 94.4%

4 0.965 0.936 0.938 0.966 95.1%

5 0.963 0.942 0.943 0.963 95.3%

6 0.956 0.931 0.933 0.957 94.4%

7 0.936 0.923 0.924 0.937 93.0%

8 0.955 0.940 0.941 0.956 94.8%

9 0.952 0.923 0.925 0.953 93.8%

10 0.953 0.929 0.931 0.955 94.2%

Average 0.953 0.933 0.934 0.954 94.4%

For the purpose of comparison, we repeated the experiments with the neural networks approach,
i.e., using the same Bagging method of homogeneous classifiers, this time on a multilayer perceptron
(the Weka tool has default options to automatically build the network). The results are shown in
Table 4. As can be observed, there is no statistically significant difference between both approaches,
that is, both methods are completely equivalent regarding the effectiveness of the classification.

Table 4. Results of the classifiers obtained with a multilayer perceptron.

Experiment Precision for
Positives

Recall for
Positives

Precision for
Negatives

Recall for
Negatives

Percentage of
Agreement

1 0.953 0.927 0.929 0.955 94.1%

2 0.956 0.927 0.929 0.957 94.2%

3 0.960 0.941 0.942 0.961 95.1%

4 0.961 0.923 0.926 0.962 94.3%

5 0.967 0.931 0.933 0.969 95.0%

6 0.965 0.928 0.931 0.966 94.7%

7 0.937 0.924 0.925 0.938 93.1%

8 0.962 0.935 0.936 0.963 94.9%

9 0.951 0.928 0.930 0.952 94.0%

10 0.960 0.932 0.934 0.961 94.6%

Average 0.957 0.930 0.932 0.958 94.4%

8. The i2m Classification Tool

We developed the experimental i2m (image-to-model) tool according to the principles exposed
in this research (see Figure 14). The current version of the tool (i2m v1.0, image-to-model tool:
http://i2m.kr.inf.uc3m.es) accepts a bitmap file (in different formats) as the input and deduces whether

http://i2m.kr.inf.uc3m.es
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the image corresponds to a UML static diagram in less than 1 s. More precisely, according to the data
of four years working, the average time to extract the graphical features is 715 milliseconds, whilst the
time to automatically classify the image is only a few milliseconds, which is negligible by comparison.
The tool is freely accessible on the web.

1 

 

 

Figure 14. The i2m (image-to-model) tool.
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9. Conclusions and Future Work

Even though the usage of machine learning techniques for the emulation of human judgment have
been numerous in widely differing contexts, there are scarce references in literature, to our knowledge,
that describe their application for image classification as diagrams in the field of software engineering,
which is why we consider our research to be a manifestation of a high degree of novelty.

We developed a method and a tool (i2m, image-to-model v1.0, http://i2m.kr.inf.uc3m.es) to classify
web images in different formats (BMP, GIF, JPEG, PNG and TIFF) as UML static diagrams, without
requiring the images to be explicitly or implicitly tagged as UML diagrams. The tool uses a combination
of rules acquired through machine learning techniques on a dataset of nearly 19,000 instances; the rules
consider graphical characteristics of images, such as grayscale histogram, color histogram, number of
straight lines and rectangles and so on.

Table 5 repeats the information in Table 1 and compares it with our own results. We can observe
that our method produces better results in all the items considered:

• It uses less than half of the graphical attributes to classify diagrams.
• The training dataset is nearly 15 times bigger (remember, [26] does not use a new dataset to train

their classifier, but only to validate the one they borrow from [25]).
• Accuracy (the percentage of agreement with the manual classification) is higher.
• Very notably, the time required to process each image and extract its graphical features is seven

times lower, due to the fact that we use ad-hoc instead of standard computer vision techniques
and libraries.

Table 5. Comparison of the results of our method with those of related work.

Research Number of
Attributes

Number of
Images

Processing
Time/Img. Accuracy

Karasneh and
Chaudron [22]
(not a machine

learning approach)

N/A 200 N/A 89.0%

Hjaltason and Samúelsson [24] 23 1,300 10 s 91.2%

Ho-Quang
et al. [25] 19 1,300 5.84 s 90.7%–93.2%

Hebig et al., 2016 [26]
(same classifier as [25]) 19 19,506 4.89 s N/A

This research 8 18,899 0.68 s 94.4%

In Table 6 we compare our average performance with the results of the six algorithms of
Ho-Quang et al. already shown in Table 2. We can observe again that our results are generally better
in the five metrics exposed. If we compare our results with their best algorithm from the points of
view of accuracy or sensitivity, Random Forest, we are still around 5% better in two items (precision
for positives, recall for negatives), even if they are 2% better in other two items (recall for positives,
precision for negatives). Considered as a single measure, our accuracy is 1% better than theirs, which is
not too significant, but nevertheless better. Compared with their favorite algorithm, Logistic Regression
(because its highest specificity), we are better in the five metrics, including specificity.

http://i2m.kr.inf.uc3m.es
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Table 6. Comparison of the results of our method with those of Ho-Quang et al. [25].

Algorithm Precision for
Positives

Recall for Positives
(Sensitivity)

Precision for
Negatives

Recall for Negatives
(Specificity) Accuracy

Support Vector Machine 0.894 0.924 0.921 0.890 90.7%

Random Forest 0.909 0.959 0.957 0.904 93.2%

J48 Decision Tree 0.903 0.925 0.923 0.901 91.3%

Logistic Regression 0.913 0.902 0.903 0.914 90.8%

REP-Tree 0.903 0.920 0.918 0.901 91.1%

Decision Table 0.897 0.919 0.917 0.895 90.7%

This research 0.953 0.933 0.934 0.954 94.4%

Moreover, we compared the effectiveness achieved by our machine learning approach (rule
induction) with a neural network approach (multilayer perceptron) used as a baseline, finding that
there is no statistically significant difference (see Table 4 in Section 7). In other words, our approach
improves explainability and processing time without losing effectiveness.

With nearly 95% accuracy (percentage of agreement with manually classified instances), this tool
is useful for the improvement of the effectiveness of common web image search engines like Google
Images. The tool is useful also for searching private repositories in an organization, when metadata
are not available.

This research project is focused on the development of a UML-oriented information retrieval tool.
However, once the technology has been fully developed, it could easily be expanded to be applied in
different and promising domains, such as building plans, electrical circuitry and so on.

We plan to develop future versions of the tool that will implement the following features:

• Classify a set of images, instead of one-by-one images.
• Classify other kinds of diagrams (use case diagrams, state transition diagrams and so on).
• Desktop version with the capability to explore private repositories.
• Use the output of a generic search engine (such as Google) as an input to the tool, so that the tool

is used to further filter the output of the generic search engine and improve its precision.
• Integrate the image classification tool in a specific UML-oriented search engine, including a

web crawler that indexes UML diagrams, with the potential to improve not only precision, but
also recall.

• Extract textual information from the diagram with the aid of OCR technologies. Combine with
the previous feature to search the web for specific diagrams containing a given text.

• Interpret the diagram according to the UML metamodel, producing its output as a model in
XMI format.

• Generate a graphical UML representation of the extracted model.

All these ongoing developments, each one with different degree of completion, form part of a
larger UML-oriented information retrieval project.
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