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Abstract: This paper addresses waste collection problems in which urban household and solid waste
are brought from waste collection points to waste disposal plants. The collection of waste from the
collection points herein is modeled as a multi-depot vehicle routing problem (MDVRP), aiming at
minimizing the total transportation distance. In this study, we propose a heuristic solution method to
address this problem. In this method, we firstly assign waste collection points to waste disposal plants
according to the nearest distance, then each plant solves the single-vehicle routing problem (VRP)
respectively, assigning customers to vehicles and planning the order in which customers are visited
by vehicles. In the latter step, we propose the sector combination optimization (SCO) algorithm to
generate multiple initial solutions, and then these initial solutions are improved using the merge-head
and drop-tail (MHDT) strategy. After a certain number of iterations, the optimal solution in the
last generation is reported. Computational experiments on benchmark instances showed that the
initial solutions obtained by the sector combination optimization algorithm were more abundant
and better than other iterative algorithms using only one solution for initialization, and the solutions
with distance gap were obtained using the merge-head and drop-tail strategy in a lower CPU time
compared to the Tabu search algorithm.

Keywords: multi-depot vehicle routing problem; sector combination optimization algorithm;
merge-head and drop-tail strategy

1. Introduction

As people’s living standards are improving increasingly, urban household and solid waste are
also increasing greatly, which puts forward higher requirements for waste collection, transportation,
and management. It also makes it difficult to collect, classify, transport and dispose of waste. Improper
disposal can affect the urban landscape, occupy the land, pollute soil, pollute groundwater resources,
affect air quality, spread diseases and affect environmental health and the health of residents. The cost
of collecting and transporting urban household waste accounts for a large proportion of the total cost
of the waste disposal system.

Our primary task is to solve waste collection problems. It is of great practical significance to
analyze and study the path optimization of automatic collection and vehicles for reducing waste
disposal costs and increasing waste disposal speed. The vehicle routing problem (VRP) has been
an open problem and the front of operational research and combinatorial optimization. As a variation
of VRP, the multi-depot vehicle routing problem (MDVRP) has also attracted more attention from
scholars. The MDVRP problem is to allocate customers with the demand to each depot under the
condition that the supply of each depot is not be exceeded and arrange the order in which customers
are visited by vehicles. The objective function is to minimize the total route length and the number
of vehicles.
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Many heuristic algorithms have been applied to MDVRP. Heuristic algorithms are grouped in
two as classical heuristics and modern metaheuristics. Since results obtained by heuristic algorithms
are good in large scale problems, metaheuristic algorithms are used mostly in literature for types of
the MDVRP.

Ant colony optimization (ACO) is a relatively new optimization method proposed by Dorigo et
al. [1]. Ant Colony Optimization algorithms, inspired by the phenomenon that ants would find the
closet route to search for food, which belongs to the class of metaheuristics, are used exhaustively in the
literature for MDVRP and its variants. ACO includes many algorithms which are many diverse variants
of the basic principle. Demirel and Yilmaz [2] proposed an approach based on ACO to solve MDVRP.
Yu et al. [3] presented a parallel improved ACO with a coarse-grain parallel strategy, ant-weight
strategy and mutation operation for MDVRP. Stodola [4] dealt with the modified MDVRP (M-MDVRP)
which altered the optimization criterion. The optimization criterion of the standard MDVRP is to
minimize the total sum of routes of all vehicles, whereas the criterion of M-MDVRP is to minimize
the longest route of all vehicles, i.e., the time traveled by the vehicle is as short as possible. For this
problem, they also developed a metaheuristic algorithm based on the Ant Colony Optimization theory
to solve the classic MDVRP instances—this has been modified and adapted for M-MDVRP. They also
proposed an additional deterministic optimization process which further enhances the original ACO
algorithm. They used Cordeau’s benchmark instances to evaluate results. Some articles [5–7] adopted
ACO to solve the variants of MDVRP, such as MDVRP with multiple objectives and MDVRP with
time windows.

The genetic algorithm also belongs to a class of metaheuristics. Ho et al. [8] developed two
hybrid genetic algorithms (HGAs). In HGA1, the initialization procedure is conducted randomly.
HGA2 incorporated the Clarke and Wright saving method and the nearest heuristic neighbor to generate
initial solutions. Based on a computational study, they compared the performance of the algorithms
with different problem sizes. It is proven that the performance of HGA2 is superior to that of HGA1
in terms of the total delivery time. Dantzig and Ramser [9] adopted a phased aggregation strategy
to solve the VRP with the homogeneous trucks. Clarke and Wright [10] considered multiple truck
capacity as a further formulation. They proposed a saving method which may be readily performed
and very fast in a computer application. This method is the famous Clarke and Wright Saving (CWS)
method mentioned earlier. Ho et al. adopted CWS to solve single VRP, however, we decomposed the
VRP into several Travelling Salesman Problems (TSPs) [11] and solved them respectively using CWS.
For the TSP, the CWS released the vehicle capacity restriction, which can be performed easily and get
near-optimal results quickly. Karakatič and Podgorelec [12] presented a survey of genetic algorithms
that are designed for solving MDVRP. Besides providing an up-to-date overview of the research
that focuses on different genetic approaches, methods, and operators used in selection, crossover,
and mutation, the results of a thorough experiment are presented and discussed, which evaluated the
efficiency of different existing genetic methods on standard benchmark problems in detail. The specific
methods, operators and settings are presented to help researchers and practitioners to optimize their
solutions in further studies.

Most of the papers adopted the local search algorithm. The local search algorithm is improved from
the hill-climbing algorithm. The local search algorithm is simply a greedy search algorithm, which selects
the best neighbor from the neighborhood of the current solution as the current solution of the next
iteration until a local optimal solution is reached. Juan et al. [13] employed two biased-randomized
processes that relied on the use of the geometric probability distribution at different stages of the
iterated local search (ILS) framework to solve MDVRP. The first process is assigning customers to depots
using a randomized priority criterion and another is improving routing solutions associated with
a “promising” allocation map. It is relatively easy to implement and can be parallelized in a very natural
way. Li et al. [14] solved the MDVRP with simultaneous deliveries and pickups (MDVRPSDP) and put
an adaptive neighborhood selection mechanism that employs a scoring rule into the improvement steps
and the perturbation steps of iterated local search, respectively. They also proposed new perturbation
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operators to diversify the search. Ahmadi [15] devised a variable neighborhood search algorithm to
solve the deterministic MDVRP model to facilitate humanitarian logistics operations. Alinaghian and
Shokouhi [16] developed a hybrid algorithm composed of an adaptive large neighborhood search
and variable neighborhood search to solve this problem in which the cargo space of each vehicle has
multiple compartments, and each compartment is dedicated to a single type of product. Ahmadi Vidal
et al. [17] combined a genetic algorithm with neighborhood selection mechanisms to manage diversity
for a large class of vehicle routing problems with time-windows.

The traditional MDVRP has often been studied mainly with a focus on economic benefits. In recent
years, the growing concern about the effects of pollutions has forced researchers to address the
socio-environmental concerns. Du et al. [18] considered minimizing the total transportation risk as
to the objective function and proposed a fuzzy bilevel programming model to solve the problem of
transporting hazardous materials from multiple depots to customers. They introduced a numerical,
integration-based fuzzy simulation method combined with four heuristic algorithms (hybrid particle
swarm optimization, genetic algorithm, ant colony algorithm, and simulated annealing algorithm) to
find the optimal solutions assigning customers to depots and determining the best paths regarding
each group of depots and customers. Illustrative examples showed the good performance of the
proposed model and the four heuristics. Oliveira et al. [19] proposed a cooperative coevolutionary
algorithm which decomposed the MDVRP into some subproblems, that is, single depot VRPs
which evolve separately. However, the quality of a solution depends on a good complete solution
formed by one solution obtained by an individual cooperated with partial solutions from other
populations. The introduced approach performed very well in parallel environments. Therefore,
they applied a variable-length genotype coupled with local search operators in a parallel evolution
strategy environment and conducted a large number of experiments to assess the performance of this
approach. The results suggest that the proposed coevolutionary algorithm in a parallel environment
can produce high-quality solutions to the MDVRP in low computational time. Jabir et al. [7] focused
on economic cost and emission cost reduction for a capacitated multi-depot green vehicle routing
problem. They formulated an integer linear programming model for solving a set of small-scale
instances using the LINGO solver and developed a computationally efficient Ant Colony Optimization
based meta-heuristic for solving both small scale and large scale problem instances in a reasonable
amount of time. The latter algorithm’s performance is improved by integrating it with a variable
neighborhood search.

Considering the future when everything is connected, product logistics routing requires faster
response times. This paper aims to get better solutions quickly to respond to changes in requirements
from customer and market demands. Compared to the existing approaches, we address single depot
VRP in parallel and inevitably gave up pursuing the best solution.

In our study, after assigning waste collection points to waste disposal plants, each depot solves
the VRP, assigning customers to vehicles and planning the order in which customers are visited by
the vehicles. This process can be parallelized. The sector combination optimization (SCO) algorithm
is used to generate multiple initial solutions, with these solutions as the initial population of genetic
algorithm or ant colony optimization algorithm, the number of iterations can be reduced to achieve fast
convergence. Additionally, because of the abundant initial solutions, the algorithm can avoid trapping
in a local optimum. Then these initial solutions are improved using the merge-head and drop-tail
(MHDT) strategy. After a certain number of iterations, the optimal solution in the last generation
is reported.

The paper is structured as follows. In Section 2, we give a detailed description of the sector
combination optimization algorithm. Section 3 explains the merge-head and drop-tail strategy.
Experimental results on the benchmark instances are reported in Section 4. Finally, conclusions and
some potential directions for future research are presented in Section 5.
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2. The Sector Combination Optimization Algorithm to Obtain Initial Solutions

The above waste collection problem can be modeled as MDVRP. MDVRP can be defined as
follows based on [20]: Let G = (V, E) denotes a graph where V represents a collection of points and
E represents a collection of edges. V can be divided into two parts: VC = {v1, v2, . . . , vN} represents
a group of customers, N is the number of customers; VD =

{
vN, vN+1, . . . , vM

}
represents a group of

depots, M is the number of depots. Each customer has a non-negative demand di; each arc belonging
to E has an associated cost ci j, and the cost in this article is distance. K denotes the number of vehicles
owned by each depot and Pk indicates the capacity of the vehicle. xi jk is the decision variable as shown
in Equation (1).

xi jk =

{
1, i and j are visited by the vehicle k
0, else

(1)

Conditions:

(1) The number of depots and customers and the location of their coordinates are predetermined.
(2) The customer’s demand and vehicle capacity are known.

Objective function:

Min
N+M∑
i=1

N+M∑
j=1

K∑
k=1

(ci jxi jk) (2)

Constraints:

(1) Each route starts and ends at the same depot.
(2) The total demand of the customers on each route does not exceed the vehicle capacity.
(3) Each customer is served by one vehicle and is served only once.

To understand the algorithm clearly, an MDVRP example shown in Figure 1 is proposed. Figure 1
is a graph with 24 points, where 22 points represent customers and two points represent depots. In the
figure, the circle represents the customer and the square represents the depot. The coordinates of the
depot and the customer are predetermined, the customer’s demand is shown above the customer
point, the first value in the brackets above the depot represents the number of vehicles and the second
value represents the vehicle capacity.
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Figure 1. An MDVRP example. 
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In the Equation (3),
i∈D∑

i
di represents the total customer demand of the depot D,

K∈D∑
K

K × pk represents

the total supply of depot D. In the constraint that the total customer demand does not exceed the total
supply in each depot, the customer will be assigned to each depot according to the nearest distance,
and the vehicle routing problem (VRP) for each depot will be solved simultaneously.

i∈D∑
i

di ≤

k∈D∑
k

k× pk (3)

Taking the MDVRP problem into consideration, the assignment result is shown in Figure 1.
The customer number assigned to the A depot is 1-2-3-4-5-6-7-8-9-10-11-12-13, and the customer
number assigned to the B depot is 14-15-16-17-18-19-20-21-22. Next, to solve the VRP in each depot.

2.1. Group the Customers

Group the customers into two parts according to the nearest distance from the depot under the

constraint (4), which is graphically like two concentric circles.
i∈inCir∑

i
di represents the total customer

demand of the inner circle of depot D, and
i∈D∑

i
di represents the total customer demand of depot D.

i∈inCir∑
i

di ≤ (
i∈D∑

i

di)/2 (4)

The constraint (4) means that the total customer demand of the inner circle does not exceed half of
the total supply of the depot D.

For depot A, the total customer demand is 205, and half of the total demand is 205/2 = 102.5.
Therefore, according to the nearest distance, under the constraint that the total demand does not exceed
102.5, the customers are allocated to the inner circle, and the remaining customers are assigned to the
outer circle. The result of the grouping is shown in Figure 2. The customers belonging to the inner
circle are: 1-3-5-7-8-10-12; the total customer demand of the inner circle is 86; the customers belonging
to the outer circle are: 2-4-6-9-11-13, the total customer demand of the outer circle is 119.
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2.2. Segment the Circle

Next, we segmented the circle forward based on the forward order of the customers’ polar
coordinates. As a result, some customers have been grouped into one sector randomly.

S = [

i∈D∑
i

di

pk
] (5)

In Equation (5), S denotes the number of sectors that we need, [] indicates rounding up. Besides,
if S = 1, there is no need to cut the circle; if S = 2, let S = 3, this ensures that the polar forward and
backward customers can be grouped. When cutting the circle, the random segmentation principle is

adopted, but the total customer demand within each sector must not exceed the vehicle capacity.
i∈Se∑

i
di

in Equation (6) denotes the total customer demand within the sector Se.

i∈Se∑
i

di ≤ pk (6)

The total customer demand of the depot A is 205 and the vehicle capacity is 80, therefore the
number of sectors for the depot A is three. According to the forward order of the customer polar
coordinate, the customers belonging to the inner and outer circle are randomly grouped into three
sectors, respectively. The total customer demand within each sector does not exceed 80. A result of the
segmentation is shown in Figure 2. The arrows in the figure indicate the direction of segmentation.
The sectors within the inner circle are: [10, 7, 1, 3], [5], [12, 8], the sectors within the outer circle sectors
are: [6], [2, 11], [4, 9, 13].

2.3. Arrange the Sectors

A sector in the inner or outer circle is randomly selected as the first sector, and its adjacent sectors
within the inner and outer circle are sorted anticlockwise by a threading-needle method. The principle
of the threading-needle method is that, except for the first sector, the remaining sectors within the inner
circles must follow after the corresponding sectors within the outer circles. Similarly, the remaining
sectors within the outer circles must follow after the corresponding sectors within the inner circles.
That is, the sectors belonging to the inner circle must be together with their corresponding sectors
belonging to the outer circle. The sector corresponding to the first sector can be arranged on the 2nd or
the end.

As shown in Figure 3, eight sectors belong to the inner or outer circle, and sector four within the
inner circle is selected as the first sector, and the corresponding sector eight belonging to the outer
circle is not selected as the second sector, it will be put at the end of the sequence. The threading-needle
method is shown in Figure 3, and the direction of the arrow is the direction of threading the needle.
One result is the first sequence in Figure 3. Similarly, sector four is selected as the first sector, and the
sector eight is selected as the second sector. Consequently, one result is the second sequence in Figure 3.
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2.4. Group the Sectors

After obtaining the sector sequence, the sectors in the sector sequence need to be grouped and
customers must be assigned to vehicles. Starting from the first sector of the obtained sector sequence,
the sectors are grouped according to customer demand. The grouping rule is: if the total demand
of customers in the current sector and its latter sector does not exceed the vehicle capacity, then the
customers in the two sectors are allocated in the same vehicle, and the next sector is grouped similarly.
Otherwise, the customer in the latter sector is added to the current sector in order; if the sum of the
demand of one customer and the total customer demand of the current sector exceeds the vehicle
capacity, skip this customer and select the next customer in the latter sector, and so on, maximizing the
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vehicle load without exceeding the vehicle capacity. The remaining customers in the latter sector are
then grouped into one sector as the current sector, continuing to group its latter sector.

As shown in Figure 4b, the total customer demand of the sector [12, 8] is 29.0, the total customer
demand of the sector [4, 9, 13] is 27.0, and the sum of two sectors is 56.0, which does not exceed the
vehicle capacity, 80.0. Therefore, the two sectors are grouped into one sector [12, 8, 4, 9, 13]. The total
customer demand of the next sector [10, 7, 1, 3], 48.0, 56.0 + 48.0 = 104.0, exceeds the vehicle capacity,
80.0, so the customers in the sector [10, 7, 1, 3] are selected to add to the sector [12, 8, 4, 9, 13] in order.
The result is that 10, 7, 1 have been added to the sector [12, 8, 4, 9, 13]; therefore, customers 12, 8, 4, 9 13,
10, 7, 1 are assigned to a vehicle and the sector [3] is left as the current sector, and so on. As a result,
as shown in Figure 4b, the customers 12, 8, 4, 9, 13, 10, 7, 1 are assigned to the first vehicle, and the
customers 3 and 6 are assigned to the second vehicle, and the customers 2, 11, 5 are assigned to the
third vehicle.

2.5. Arrange the Customers

At this point, the problem becomes a traveling salesman problem (TSP). We use the CWS method
to rearrange the order in which customers are served.

The result of the customers being serviced is shown in Figure 4c, the route of vehicle 1:
4-12-8-9-13-10-7-1, the route of vehicle 2: 3-6, and the route of vehicle 3: 2-11-5. The road map
is shown in Figure 5, the objective function value, that is, the total distance of the routes, 191.16.
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3. The Merge-Head and Drop-Tail Strategy to Improve Initial Solutions

The X initial solutions obtained are selected for further optimization. If one improved solution
is better than the initial solution, then the optimization is continued instead of the initial solution.
The flowchart of the whole procedure is shown in Figure 6.
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3.1. Pair the First and Last Customers

Select the first (head) and last (tail) customers of each route, and pair the head (tail) customers of
each vehicle with the first and last customers of other vehicles. Assuming the number of routes is R,
the number of pairs is:

P = [(R− 1)2 + (R− 1)] × 2 (7)

Then add all the pairs to the list, such as [[v1, v2], . . . [vi, v j], . . .].
In Figure 6, customers 4 and 1 of route 1, customers 3 and 6 of route 2, and customers 2 and 5 of

route 3 need to be paired. Consequently, the list is: [[4, 3], [4, 6], [4, 2], [4, 5], [1, 3], [1, 6], [1, 2], [1, 5],
[3, 2], [3, 5], [6, 2], [6, 5]], a total of [(3 − 1)ˆ2 + (3 − 1)] × 2 = 12 pairs.

3.2. Merge the Head Customer

Next, the merging operation of the nearest customer pair [vi, v j] on the list must be performed.
The merging rule is that the later customer v j in the pair is added to the route of the vehicle kd where the
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previous customer vi is located, and another customer vk of the vehicle kd paired with other customers
is recorded. Finally, the customers are rearranged with the CWS method and get the new customer
sequence visited by the vehicle kd. The order of the two customers in the pair is switched and the
merging operation on the new pair [vi, v j] is performed.

The nearest customer pair in the initial solution shown in Figure 5 is [3, 5]. Customer 5 is firstly
added to the route in which customer 3 is located, that is, the route of the vehicle 2. The tail customer
of the route is customer 6. A feasible improved solution after the CWS method is the route of the
vehicle 1: 4-12-8-9-13-10-7-1, the route of the vehicle 2: 6-3-5, the route of the vehicle 3: 2-11. It can be
easily computed that the total demand of the customers in vehicle 2 is 77.0, which does not exceed the
vehicle capacity. The total distance of the new routes is 187.11.

Then, the order of the customers in the nearest customer pair is reversed, that is, [5, 3]. Similarly,
customer 3 in the initial solution is added to the route in which customer 5 is located, that is, the route
of vehicle 3. The tail customer of the route is customer 2. The current route is re-planned with the CWS
method: the route of the vehicle 1: 4-12-8-9-13-10-7-1, the route of the vehicle 2: 6, the route of vehicle
3: 2-11-3-5.

The total demand of the customers in vehicle 3 is 87.0, which exceeds the vehicle capacity.

3.3. Drop the Tail Customers

It is judged whether the total demand of the customers in the vehicle kd to which the head
customer is added is greater than the vehicle capacity, and if it is greater than the vehicle capacity,
the customers in the current vehicle need to be dropped. The dropping rule is: judge the position of
another customer vk in the current vehicle recorded in step B in the new customer order, if it is before
1/2 of the current order (including 1/2), then starting from the first customer, drop the customers visited
by the current vehicle until the limit about the vehicle capacity cannot be met; otherwise, drop the
customers from the last customer. Record the customers that need to be dropped in turn, that is,
vh, vm, vl and put them into one sequence [vh, vm, vl].

It is judged above that the total demand of the customers in vehicle 3 is 87.0, which exceeds
7.0, compared with the vehicle capacity. Therefore, the tail customers need to be discarded, and the
position of customer 2 in the route of vehicle 3 is judged to be No.1, before the 1/2 of the customer
order, so the first customer of the vehicle 3 (still the customer 2) is selected for dropping. Customer 2
has a capacity of 28.0, which is greater than 7.0, so only dropping customer 2 is enough.

3.4. Group the Customers

Find the customer vn in the first and last customers in the vehicles except for the vehicle kd is
closest to the first customer vh in the sequence [vh, vm, vl]. Put the customer vn on the first position of
the sequence. Go back to step B, the later customers vh, vm, vl in the sequence is added to the route of
the vehicle kd

′ where the previous customer vn located, and another customer vk
′ of the vehicle kd

′

paired with other customers is recorded, and so on, for the next step. Specific steps can be seen in
Figure 7.
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Figure 7. The flowchart of the MHDT strategy.

The customer in the first and last customers in the other vehicles closest to customer 2 is 6.
A sequence [6, 2] is formed, and customer 2 is added to the route of vehicle 2 where customer 6 is
served. A new feasible and improved solution is the route of the vehicle 1: 4-12-8-9-13-10-7-1, the route
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of vehicle 2: 6-2, the route of vehicle 3: 11-3-5. The total customer demand for vehicle 2 satisfies the
limit of the vehicle capacity, and the total distance is 177.11.

3.5. Compare Two Feasible Solutions

The solution with the smaller objective function value is compared with the initial solution: if
it is smaller than the initial solution, the solution replaces the initial solution to be added to the X
initial solutions. If the number of iterations is not reached, the X initial solutions return to step A to be
optimized again; otherwise, output the solution with the minimum objective function value in the
current solutions.

The objective function value of the first improved solution is 187.11 and the second one is 177.11.
The second solution is smaller than the first solution and is better than the initial solution. Therefore,
the solution replaces the initial solution, and returns to Step A. After 30 iterations, the road map of the
final solution is shown in Figure 8.
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4. Computational Experiments

The iteration curve of depot A is shown in Figure 9. Compared with the initial solution, after 30
iterations, the objective function of the final solution is reduced by 29.5 and has converged at the 8th
iteration. The iteration curve of depot B is shown in Figure 10. After 18 iterations, the final solution
reduces the distance of 27.44 compared with the initial solution. The curve has converged at the 6th
iteration. It can be seen that the merge-head and drop-tail strategy improves the initial solution quickly,
and the number of iterations is small so that a better solution can be obtained quickly.
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Considering 23 benchmark instances proposed for the MDVRP, the performance of the sector
combination optimization algorithm and the merge-head and drop-tail optimization strategy are
shown in Table 1. The experiment was implemented in Python, on Intel(R) Core(TM) i5-4260(U) CPU
@ 1.40 GHz (manufacturer: Apple Inc., Cupertino, California, USA).

Table 1. The results on the benchmark instance.

Characteristics of Instances BKS SCO MHDT

Inst N M K P Distance Time1 Distance Gap Time2

1 50 4 4 80 576.87 641.89–897.21 1.21 602.05 4.36 2.38
2 50 4 2 160 473.53 516.18–647.25 1.98 503.26 6.28 2.65
3 75 5 3 140 641.19 712.10–985.68 1.43 672.37 4.86 2.68
4 100 2 8 100 1001.59 1139.20–1531.15 2.32 1065.28 6.35 16.36
5 100 2 5 200 750.03 875.53–1218.62 2.52 786.25 4.83 15.65
6 100 3 6 100 876.50 968.43–1452.73 2.62 912.36 4.09 14.87
7 100 4 4 100 881.97 966.54–1432.73 2.71 920.54 4.37 11.96
8 249 2 14 500 4372.78 5346.92–7528.16 9.20 4537.73 3.77 42.35
9 249 3 12 500 3858.66 4625.91–6332.92 10.22 4065.49 5.36 39.26
10 249 4 8 500 3631.11 4537.21–6615.00 14.33 3868.75 6.54 36.56
11 249 5 6 500 3546.06 4336.03–6080.49 11.83 3756.28 5.93 33.59
12 80 2 5 60 1318.95 1564.72–1947.85 1.72 1389.65 5.36 3.35
13 80 2 5 60 1318.95 1539.77–1937.83 1.70 1375.29 4.27 3.69
14 80 2 5 60 1360.12 1522.78–2055.36 1.52 1423.96 5.35 3.57
15 160 4 5 60 2505.42 3027.24–3991.91 4.04 2638.19 5.30 16.28
16 160 4 5 60 2572.23 3071.84–4009.25 4.06 2689.63 4.56 16.49
17 160 4 5 60 2709.09 3097.82–4099.69 4.07 2837.26 4.73 16.47
18 240 6 5 60 3702.85 4581.28–6179.69 14.95 3905.32 5.47 32.49
19 240 6 5 60 3827.06 4720.92–6133.65 15.44 3986.24 4.16 25.96
20 240 6 5 60 4058.07 4627.73–6069.54 15.68 4268.47 5.18 26.59
21 360 9 5 60 5474.84 6950.37–9164.10 42.58 5837.28 6.62 31.59
22 360 9 5 60 5702.16 6971.16–9299.80 43.60 5996.25 5.15 32.56
23 360 9 5 60 6078.75 6968.65–9201.63 40.10 6356.65 4.57 28.16

In Table 1, for each instance, the meaning of the notation is provided at the end of this paper.
In Table 1, for each instance, the parameters in Table 2 are used. Taking the instance 1 as an example,

it has 50 customers and four depots, and each depot has four vehicles with a capacity of 80. We adopt
the SCO algorithm to get 30 initial solutions and improve these 30 solutions by the MHDT algorithm
until the ending criterion, namely 20 iterations, is met.
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Table 2. The parameters for initialization on the benchmark instance.

Instance N M K P Number of Initial Solutions Number of Iterations
(the Ending Criterion)

1 50 4 4 80 30 20
2 50 4 2 160 30 20
3 75 5 3 140 30 20
4 100 2 8 100 50 50
5 100 2 5 200 50 50
6 100 3 6 100 50 50
7 100 4 4 100 50 50
8 249 2 14 500 150 100
9 249 3 12 500 150 100

10 249 4 8 500 150 100
11 249 5 6 500 150 100
12 80 2 5 60 50 30
13 80 2 5 60 50 30
14 80 2 5 60 50 30
15 160 4 5 60 100 50
16 160 4 5 60 100 50
17 160 4 5 60 100 50
18 240 6 5 60 150 100
19 240 6 5 60 150 100
20 240 6 5 60 150 100
21 360 9 5 60 300 150
22 360 9 5 60 300 150
23 360 9 5 60 300 150

The sector combination optimization algorithm makes the initial solutions more abundant and
better, compared with other iterative algorithms only using one initial solution such as the genetic
algorithm adopted by Ho et al. [8] and granular Tabu search algorithm adopted by Escobar et al. [21].
Ho et al. adopted the CWS method to get a solution for initialization. For the small problem with 13
customers, the objective function value of the solution obtained by CWS is 221.66, and the objective
function values of 50 initial solutions obtained by the sector combination optimization algorithm
fluctuate between 150 and 250, of which 82% is below 221.66, as shown in Figure 11. For the two
depots with 249 customers of the instance 8, as shown in Table 1, the objective function value of the
solution obtained by CWS is 4671.2, and the objective function values of 50 initial solutions obtained
by the sector combination optimization algorithm fluctuate between 2500 and 3500, of which 100% are
below 4671.2. It can be seen that the initial solution obtained by the sector combination optimization
algorithm is better. With these solutions as the initial population of the genetic algorithm and ant
colony algorithm, the number of iterations can be reduced to achieve fast convergence. Additionally,
because of the abundant initial solutions, the algorithm can avoid trapping in a local optimum.

Escobar et al. proposed a hybrid granular Tabu search (GTS) algorithm for the MDVRP based on
a cluster approach like our algorithm while they aimed to find the best solutions. The initial MDVRP
solution is obtained by using a hybrid initial procedure (GTS1) and improved by the granular Tabu
search procedure (GTS2). We illustrate the performance of the two algorithms in terms of CPU time
and distance for comparisons. Combing Figure 12 with Figure 13, we conclude that the CPU time
consumed by our algorithm is obviously lower than theirs while the distance Gap of our results is less
than seven in all instances.
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5. Conclusions

The main findings can be summarized as follows. The results discussed in Section 4 show that the
initial solutions obtained by the sector combination optimization algorithm are more abundant and
better than CWS method. The desirable solution with distance Gap less than seven in all instances can
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be obtained using the merge-head and drop-tail strategy in lower CPU time compared to the hybrid
granular Tabu search (GTS) algorithm proposed by Escobar et al. Our direction for the future research
is fuzzily assigning customers to the depots with machine learning algorithms, such as the support
vector machine method in the upper layer, and the support vector machine method can be used to
assign customers to the depots.
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12. Karakatič, S.; Podgorelec, V. A survey of genetic algorithms for solving multi depot vehicle routing problem.

Appl. Soft Comput. J. 2015, 27, 519–532. [CrossRef]
13. Juan, A.A.; Pascual, I.; Guimarans, D.; Barrios, B. Combining Biased Randomization with Iterated Local

Search for Solving the Multi-Depot Vehicle Routing Problem. Int. Trans. Oper. Res. 2014, 22, 647–667.
[CrossRef]

http://dx.doi.org/10.1109/3477.484436
http://www.ncbi.nlm.nih.gov/pubmed/18263004
http://dx.doi.org/10.1057/jors.2009.161
http://dx.doi.org/10.3390/a11050074
http://dx.doi.org/10.1016/j.jclepro.2019.03.185
http://dx.doi.org/10.1016/j.trd.2017.09.003
http://dx.doi.org/10.1016/j.engappai.2007.06.001
http://dx.doi.org/10.1287/mnsc.6.1.80
http://dx.doi.org/10.1287/opre.12.4.568
http://dx.doi.org/10.1016/j.asoc.2014.11.005
http://dx.doi.org/10.1111/itor.12101


Appl. Sci. 2020, 10, 2403 17 of 17

14. Li, J.; Pardalos, P.M.; Sun, H.; Pei, J.; Zhang, Y. Iterated local search embedded adaptive neighborhood
selection approach for the multi-depot vehicle routing problem with simultaneous deliveries and pickups.
Expert Syst. Appl. 2015, 42, 3551–3561. [CrossRef]

15. Ahmadi, M.; Seifi, A.; Tootooni, B. A humanitarian logistics model for disaster relief operation considering
network failure and standard relief time: A case study on San Francisco district. Transp. Res. Part E Logist.
Transp. Rev. 2015, 75, 145–163. [CrossRef]

16. Alinaghian, M.; Shokouhi, N. Multi-Depot Multi-Compartment Vehicle Routing Problem, Solved By A
Hybrid Adaptive Large Neighborhood Search. Omega 2018, 76, 85–99. [CrossRef]

17. Vidal, T.; Crainic, T.G.; Gendreau, M.; Prins, C. A hybrid genetic algorithm with adaptive diversity
management for a large class of vehicle routing problems with time-windows. Comput. Oper. Res. 2013, 40,
475–489. [CrossRef]

18. Du, J.; Li, X.; Yu, L.; Dan, R.; Zhou, J. Multi-depot vehicle routing problem for hazardous materials
transportation: A fuzzy bilevel programming. Inf. Sci. 2017, 399, 201–218. [CrossRef]

19. De Oliveira, F.B.; Enayatifar, R.; Sadaei, H.J.; Guimarães, F.G.; Potvin, J.-Y. A Cooperative Coevolutionary
Algorithm for the Multi-Depot Vehicle Routing Problem. Expert Syst. Appl. 2015, 43, 117–130. [CrossRef]

20. Montoya-Torres, J.R.; Franco, J.L.; Isaza, S.N.; Jimenez, H.A.F.; Herazo-Padilla, N. A literature review on the
vehicle routing problem with multiple depots. Comput. Ind. Eng. 2014, 79, 115–129. [CrossRef]

21. Escobar, J.W.; Linfati, R.; Toth, P.; Baldoquin, M.G. A hybrid Granular Tabu Search algorithm for the
Multi-Depot Vehicle Routing Problem. J. Heuristics 2014, 20, 483–509. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.eswa.2014.12.004
http://dx.doi.org/10.1016/j.tre.2015.01.008
http://dx.doi.org/10.1016/j.omega.2017.05.002
http://dx.doi.org/10.1016/j.cor.2012.07.018
http://dx.doi.org/10.1016/j.ins.2017.02.011
http://dx.doi.org/10.1016/j.eswa.2015.08.030
http://dx.doi.org/10.1016/j.cie.2014.10.029
http://dx.doi.org/10.1007/s10732-014-9247-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Sector Combination Optimization Algorithm to Obtain Initial Solutions 
	Group the Customers 
	Segment the Circle 
	Arrange the Sectors 
	Group the Sectors 
	Arrange the Customers 

	The Merge-Head and Drop-Tail Strategy to Improve Initial Solutions 
	Pair the First and Last Customers 
	Merge the Head Customer 
	Drop the Tail Customers 
	Group the Customers 
	Compare Two Feasible Solutions 

	Computational Experiments 
	Conclusions 
	References

