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Abstract: The fault diagnosis of analog circuits faces problems, such as inefficient feature extraction 
and fault identification. To solve the problems, this paper combines the circle model and the extreme 
learning machine (ELM) into a fault diagnosis method for the linear analog circuit. Firstly, a circle 
model for the voltage features of fault elements was established in the complex domain, according 
to the relationship between the circuit response, element position and circuit topology. To eliminate 
the impacts of tolerances and signal aliasing, the 3D feature was introduced to make the 
indistinguishable features in fuzzy groups distinguishable. Fault feature separability is very 
important to improve the fault diagnosis accuracy. In addition, an effective classier can improve the 
precision and the time taken. With less computational complexity and a simpler process, the ELM 
algorithm has a fast speed and a good classification performance. The effectiveness of the proposed 
method is verified by simulation. The simulation results show the ELM-based algorithm classifier 
with the circle model can enhance precision and reduce time taken by about 80% in comparison 
with other methods for analog circuit fault diagnosis. To sum up, this proposed method offers a 
fault diagnosis method that reduces the complexity in generating fault features, improves the 
isolation probability of faults, speeds up fault classification, and simplifies fault testing. 

Keywords: analog circuit; feature engineering; fault diagnosis; circle model; extreme learning 
machine (ELM) 

 

1. Introduction 

Since the 1970s, analog circuit fault diagnosis has become a research hotspot in the field of 
electronic testing, and gradually formed a relatively complete theoretical system [1]. In order to 
ensure the test quality of circuits under test (CUT) at a low cost, many fault models and methods 
have been proposed [2–24]. One of the most widely used is the fault dictionary method [6]. The fault 
dictionary method is based on the simulation of circuit faults and the mapping relationship between 
fault features and fault components to form a fault dictionary. But it also has the following 
shortcomings: it can only diagnose catastrophic faults (hard faults) and discrete parameter fault types 
and the fault dictionary increases with the increase of components. Parameter fault diagnosis (also 
known as soft fault) is still an Non-deterministic (NP)-hard problem. With the development of 
modern information processing technology and artificial intelligence, starting from 1990's, a new 
generation of the analog circuit fault diagnosis method represented by machine learning algorithms 
has been widely developed. Modern analog circuit fault diagnosis methods can be divided into two 
main categories: model-based fault diagnosis methods and classifier based fault diagnosis methods. 
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The model-based fault diagnosis methods include the discrete parameter model, slope fault 
diagnosis, symbolic analysis, and so on. However, the discrete parameter model cannot characterize 
the fault completely, for the input/output (I/O) signals and element parameters all change 
continuously. The slope fault diagnosis only applies to linear circuits [3,4]. The fault of an element 
can be modeled with the slope as the fault feature. Nonetheless, slope fault diagnosis only works 
when the measuring points outnumber the faults to be modeled. The applicable scope of symbolic 
analysis is limited by its reliance on the transfer function [5]. Based on complex domain modeling, 
Tian et al. [6] and Yang et al. [9] proposed a method that creates a unified fault model called the circle 
model for all parameters, using only a few measuring points. Due to the presence of tolerances, this 
method cannot diagnose the critical regions of different circuit states accurately, which suppresses 
the test accuracy.  

The classifier-based fault diagnosis methods are generally implemented in three steps: collecting 
features of the circuit in different states, training the collected features with a classifier, and 
diagnosing the fault based on the training data. These methods typically adopt classifiers like support 
vector machine (SVM) [7], least squares support vector machine (LS-SVM) [8], extreme learning 
machine (ELM) [15,20], and so on. The SVM or LS-SVM algorithm is used to map the lower-
dimensional nonlinear response space into the higher-dimensional feature space for effective 
classification. However, this algorithm has a much higher time cost because of complex computation 
of SVM, processes of test signal generator and test structure, and has unstable testing accuracy 
because of reduced precision in case of compressing the sampled space. The computational 
complexity of ELM algorithm in sample classification is much lower than that of SVM. Furthermore, 
trade-off parameters are not sensitive to the accuracy of ELM classification, so ELM has a good 
classification performance without optimization of trade-off parameters in case of compressing 
sampled space. 

For modern intelligent diagnosis of analog circuit faults, the key lies in the extraction of fault 
features and the design of classification algorithms. In fact, the calculation rate and diagnosis 
efficiency of the diagnosis system directly hinge on the excellence of the fault feature extraction 
methods, especially those capable of extracting the features that clearly distinguishes between 
different types of faults. 

During the failure of the analog circuit, the response output collected at the output point is often 
nonstationary, nonlinear, and time-varying. The original signals contain redundant information and 
have high dimensionality. If directly applied in fault diagnosis, these signals will push up the 
computing load and drag down the diagnosis efficiency and accuracy. To clearly distinguish between 
fault modes, it is critical to effectively process fault signals by the appropriate fault feature extraction 
method. 

Through the above analysis, this paper decides to develop a novel fault diagnosis method for 
analog circuits, drawing on the model-based and classifier-based fault diagnosis methods. The circle 
modeling method is a model-based fault diagnosis method and it can characterize all possible faults 
in an easy way for both soft faults and hard faults. And the ELM classification algorithm is not time 
consuming as a classifier. The circle model is used for feature extraction and the ELM classification 
algorithm is used as a fault classifier. The proposed method of circle model-based feature extraction 
and the ELM classification algorithm combination will fully inherit the completeness of the circle 
model and the fast classification of the ELM, and achieve higher accurate and efficient fault diagnosis 
of analog circuit. 
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2. Feature Engineering Based on Circle Model  

2.1. Principle of Circle Modeling 

 
 

(a) Original circuit (b) Equivalent circuit 

 
 

(c) N stimulated by s

•

U  (d) N stimulated by x
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Figure 1. The procedure of circle modeling. 

Figure 1 illustrates the procedure of circle modeling. In Figure 1a ,N is a linear time-invariant 
circuit, �̇�𝑈s is the voltage phasor of the independent voltage source that stimulates N, �̇�𝑈o is the output 
voltage phasor, x is a passive element, and �̇�𝑈x is the voltage phasor across x. The theory is described 
below [6,9,10]: 

According to the substitution theorem, the passive element x can be replaced with an 
independent voltage source with voltage phasor �̇�𝑈 x (Figure 1b). The voltage phasor �̇�𝑈 x can be 
derived by the Thévenin's theorem: 
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z
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x
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 (1) 

where, �̇�𝑈oc is the open circuit voltage phasor across terminals a and b in the equivalent circuit (Figure 
1b); 𝑍𝑍o is the Thévenin impedance between terminals a and b. According to the Thévenin's theorem, 
�̇�𝑈oc and 𝑍𝑍o are independent from the value of x and uniquely determined by its location and the fault-
free elements in N.  

According to the substitution theorem, the output voltage phasor �̇�𝑈o in Figure 1a is equal to �̇�𝑈o 
in Figure 1b, where N is stimulated by two independent voltage sources �̇�𝑈s and �̇�𝑈x.  

According to the superposition theorem, the �̇�𝑈o in Figure 1b equals the algebraic sum of the 
responses to �̇�𝑈s or �̇�𝑈x. Figures 1c,d illustrate the circuit under the operation of �̇�𝑈s and that of �̇�𝑈x 
respectively. The following equation holds under the operation of �̇�𝑈s: 

( )jωHUU
so ′=′

••

 
(2) 

 
where, H′(jω) is independent from the value of x.  

The following equation holds under the operation of �̇�𝑈x: 
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( )jωHUU xo ′′=′′
••

 
(3) 

where, H′′(jω) is independent from the value of x.  
According to the superposition theorem, we have: 
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Replacing �̇�𝑈x with formula (1), we have: 
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where,  

( )jωHUUU soos ′−=
•••

 (7) 

Without loss of generality, it is assumed that: 
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where, j is the imaginary unit of the imaginary part and denotes the imaginary part. Since �̇�𝑈s, H′(jω), 
�̇�𝑈oc, H′′(jω), and 𝑍𝑍o are independent from 𝑍𝑍x, R0 , X0 , m and n must be independent from 𝑍𝑍x, too. 

Then, formula (6) can be rewritten as: 
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If fault component x is a resistor and 𝑍𝑍x=𝑅𝑅x, the following equations hold: 
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Eliminating 𝑅𝑅x, the following formula can be obtained: 
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In formula (7), ( )jωHUUU soos ′−=
•••
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following equations can be obtained: 
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Replacing 𝑈𝑈osr and 𝑈𝑈osj in formula (12) with formula (13), we have: 
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where,  
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Obviously, formula (15) is a circle equation, with a and b being the 𝑈𝑈or- and 𝑈𝑈oj-coordinates of 
the center and r being the radius. Because R0, X0, m, and n are independent from the value of x, a and 
b must be independent from the value of x, too. Therefore, formula (15) always holds regardless of 
the fault type occurring to x. Hence, the circle equation governing the relationship between 𝑈𝑈or and 
𝑈𝑈oj is applicable to both hard and soft faults, and thus selected as the circuit fault model of this 
research. The parameters a, b, and r that govern the circle equation are characteristic parameters. If x 
is a dynamic element, the same conclusions can be reached. In addition, because formula (15) is 
independent from the value of x to be modeled. The fault-free output voltage, �̇�𝑈o=Uor+jUoj must satisfy 
(15). Therefore, all characteristic curves pass through the fault-free point (Uor,Uoj) [13]. 

2.2. Circle Model-based Feature Engineering 

Circle modeling was adopted to collect the necessary features for the classifier. Take the circuit 
of a Leapfrog filter as an example, with a 5V, 1kHz sine wave as the excitation signal by using 
MATLAB calling PSPICE. The settings of circuit parameters are shown in Figure 2. The circuit 
features are collected at the second-stage filtered output point (out). 
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Figure 2. Diagram of Leapfrog circuit. 

2.2.1. Circle Model-based Feature Extraction 

According to the circle model theory, the real and imaginary parts of the fault voltage of a linear 
circuit can be described by the circle equation on the complex field, and all pass through the fault-
free point. Thus, a circle can be defined by three points and only three simulations are needed to 
obtain the fault features of the analog element in all fault states. 

If a component suffers from a catastrophic failure (e.g., open circuit and short circuit), the circle 
model of the element fault can be established based on the output voltages of the element under open 
circuit and short circuit and the fault-free point that the fault voltages of all element pass through. 
Suppose the parameter scanning range is X/104 ≤px≤104 X (X is the parameter value of an element). Taking 
a resistor for instance, the resistance is 100MΩ in open circuit and 1Ω in short circuit. 

Here, the fault parameters of each element are scanned within the preset range, revealing the 
output voltage of each element. Then, the analog voltage phasor �̇�𝑈o was decomposed into a real part 
Uor and an imaginary part Uoj. Three voltages {�̇�𝑈1, �̇�𝑈2, �̇�𝑈o} respectively denoting short circuit, open 
circuit and free fault can be obtained through one parametric sweep simulation. Then the following 
equations are obtained: 
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The output voltage of the test point of the free fault can be expressed as (2.394,3.175) in the 
complex field. To the fault model, only two more points need to be measured for each component. 
The simulation results and the parameters of the fault model are shown in table 1.  

Table 1. Fault model parameter of the Leapfrog circuit. 

Fault source Sampled value Output voltage 
Model parameter 

Circle center (a, 
b) 

Radius r 

R1 1Ω 2.383 × 104, 3.158 × 104 - - 
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100MΩ 2.394 × 10-2, 3.176 × 10-2 

R2 
1Ω 5.080 × 10-4, 5.548 × 10-4 (-15.393, 14.093) 

 
20.870 

 100MΩ 4.261, 7.073 

R3 
1Ω 6.061 × 10-8, 6.283 × 10-4 (3.3031, -0.0005) 

 
3.303 

 100MΩ 6.108, 1.744 

R4 
1Ω 6.104 × 10-4, 6.283 (-0.8641, 3.1416) 

 
3.258 

 100MΩ 6.114 × 10-2, 1.746 × 10-2 

R5 
1Ω 3.585 × 10-4, -2.25 × 10-4 (1.0614, 1.6897) 

 
1.995 

 100MΩ -4.321 × 10-1, 3.013 

R6 
1Ω -4.225 × 10-5, 3.000 × 10-4 (2.758, 0.4105) 

 
2.788 

 100MΩ 3.642, -2.234 

R7 
1Ω -1.573 × 10-4, 5.557 × 10-4 (2.3839, 0.6925) 

 
2.483 

 100MΩ 4.861, 8.568 × 10-1 

R8 
1Ω 4.863, 8.145 × 10-1 (5.1950, 3.6332) 

 
2.838 

 100MΩ 3.988, 6.202 

R9 
1Ω 4.038, 6.224 (5.1950, 3.6327) 

 
2.838 

 100MΩ 4.810, 8.212 × 10-1 

R10 
1Ω -0.6481, 3.870 (5.1950, 3.6332) 

 
2.838 

 100MΩ 4.863, 8.145 × 10-1 

R11 
1Ω 4.038, 6.224 (19.153, -3.8939) 

 
18.189 

 100MΩ 1.298, -4.253 × 10-1 

R12 
1Ω -0.6481, 3.870 (5.1950, 3.6332) 

 
2.838 

 100MΩ 4.863, 8.145 × 10-1 

R13 
1Ω -1.602 × 10-4, 5.512 × 10-4 

(2.3839, 0.6925) 2.482 
 100MΩ 4.861, 8.568 × 10-1 

C1 
1pF 1.210, 3.466 (1.3481, 1.4736) 

 
1.997 

 100mF 8.835 × 10-4, -8.085 × 10-4 

C2 
1pF -1.993 × 10-5, 1.502 × 10-4 

(2.758, 0.4105) 2.788 
 100mF 3.585, -2.252 

C3 
1pF 2.262, 7.341 × 10-1 (3.5283, 1.8896) 

 
1.714 

 100mF 4.864, 8.150 × 10-1 

C4 
1pF 3.452, 3.081 (3.0696, 4.7786) 

 
1.740 

 100mF 4.037, 6.225 

The three points of the measured data are taken to determine the characteristics of the analog 
circuit curves in Figure 3. It should be pointed out that because the parameter value of an actual 
analog component cannot be negative, the characteristic curve may not be a whole circle but an arc. 
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Figure 3. The circle model of Leapfrog circuit. 

It can be seen from the Table 1 and Figure 3 that the component set {R6, C2} has the same failure 
model (2.758,0.4105) 2.788, so they can't be distinguished and form a fuzzy group. Similarly, {R7,R13} 
and {R8,R9,R10,R12} are also fuzzy groups. The result of grouping is shown in Table 2. Except for the 
components of fuzzy group, other components have unique models. 

Table 2. Fuzzy groups of the Leapfrog circuit. 

Fuzzy groups Fault elements 
1 R1 
2 R2 
3 R3 
4 R4 
5 R5 
6 R6, C2 
7 R7, R13 
8 R8, R9, R10, R12 
9 R11 

10 C1 
11 C3 
12 C4 

In the actual test, each element has a certain tolerance, and thus faces a deviation in the actual 
trajectory of the output voltage. To minimize the deviation, a classifier was introduced to diagnose 
and position the fault more accurately, in association with the simulated voltage features of the circle 
model in the complex domain. 

2.2.2. Feature Construction  

Using the circle model, it is easy to acquire the characteristic fault voltage curves of the simulated 
elements quickly. Under the presence of tolerances, however, some elements belong to fuzzy groups, 
due to the similarity between their characteristic curves. The elements in the same fuzzy group are 
indistinguishable. Direct positioning of such elements will lead to misclassification, reducing the 
accuracy of diagnostic positioning. The classification accuracy will also be suppressed, if the selected 
features for classification are not distinguishable. For example, points X1, X2 and X3 (Figure 4) are 
too close to each other at a certain frequency. These points and their tolerance areas will greatly affect 
the classification accuracy. Therefore, the fuzzy groups must be handled effectively before 
diagnosing circuit faults [17,18]. 

Im
aginary part

Real part
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Figure 4. Sketch map of fuzzy groups. 

Considering the indistinguishability between 2D voltage features in the complex domain, this 
paper puts forward a 3D voltage feature construction method. First, all the points that are 
indistinguishable in 2D and distinguishable in 3D were identified based on the circle model of the 
original frequency. Then, the frequency was adjusted to find the second frequency making the 
originally indistinguishable voltage points distinguishable. The second frequency was inputted into 
the signal to compute the second set of complex domain features. In this way, a new feature was 
constructed as (

2211
,,, ffff yxyx ), which can be compressed into a 3D feature (

211
,y, fff xx ). 

Imaginary part
Real part
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Figure 5. The 3D map of complex domain with frequency feature. 

As shown in Figure 5, the 3D map with frequency feature helps to differentiate between the 
voltage output points that are indistinguishable in 2D complex domain, in the light of their variation 
with frequencies in 3D space. 

2.2.3. Feature Preprocessing 

The normalization of features can improve the test accuracy of the classification algorithm. Here, 
a feature normalization method is developed based on the circle model. Take the circle model in 
Figure 3 for example. Since the arc trajectory for the fault voltage of each element must pass through 
the fault-free point P, the theoretical fault-free point P based on voltage features was selected as the 
new origin of the complex domain in the translation operation. The setting of the new origin is 

0 
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reasonable, because all types of faults of Linear Time-Invariant systems (LTIs) change around point 
P. 

Let ttt jyxU +=  be an output characteristic voltage of the circuit. Then, the current voltage 

of the fault-free point P is 000 jyxU += , and the characteristic voltage after translation is 

0 0( , )t tx x y y− − . 
As shown in Figure 6, the characteristic voltages of different states after translation were 

distributed evenly around the fault-free point, which facilitates the compression of the eigenvalues 
to [–1,1] and the application of the classifier. 

 
Figure 6. Feature normalization based on the circle model. 

After the translation, the translated eigenvalues were compressed by a ratio equal to the 
difference between the maximum and minimum of the voltage features in the new coordinate system. 
Considering the effect of tolerances, the feature normalization formula can be expressed as: 
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+−
−

=

%)1)((

%)1)((

minmax

0

minmax

0

toryy
yyy

torxx
xxx

t

t

 

(18) 

where, tor% is the tolerance parameter; xt and yt are the real and imaginary values of the translated 
circuit. The maximum and minimum of the voltage features were identified quickly by drawing a circle 
from three points. Then, the compression ratio was determined as the difference between the maximum 
and the minimum. On this basis, the voltage features were normalized by formula (18), completing the 
feature preprocessing. 

2.3. The ELM theory 

Proposed in 2006, the ELM is a learning method based on a feedforward neural network with a 
single hidden layer [19–22]. The theory of the ELM is briefly introduced below: 

Let ),( ii tx be N different random samples, where nT
iiii Rxxxx ∈= ],,,[ n21  and 

mT
iiii Rtttt ∈= ],,,[ m21  , N are the number of nodes in the hidden layer, and )(xg is the 

activation function. Then, a neural network with a single hidden layer can be described as: 
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Njobxgxg jijiiji ,,2,1,)w()(
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where, T
iniii wwww ],,,,[ 21 = and T

iiii ],,,,[ m21 ββββ = are the weight vector and weight 

between the i-th hidden layer node and each input layer node, respectively; ib is the threshold of the 
i-th hidden layer node. The output of the ELM can be expressed as: 

)(),,()(
1

xhxbagxf ii

L

i
i ⋅== ∑

=

ββ  (20) 

According Huang’s Theory [16], the decision function of ELM can be expressed as: 
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In the ELM algorithm, the input layer parameters are randomly set up while the weight 
coefficients of the output layer are obtained by solving the Moore–Penrose generalized inverse of the 
hidden layer output matrix. Therefore, the algorithm runs much faster than the other neural network 
with a single hidden layer and the support vector machine (SVM). The ELM classification algorithm 
can improve the fault diagnosis of linear circuit, in both training speed and test speed. 

2.4. Process of the Proposed Method 

The parameter simulation of analog circuit is completed by PSPICE software and the output 
voltages are extracted from the output file by MATLAB. The process of the method is presented 
as follows: 

Step 1: Build a circle model through three points; 
Step 2: Determine whether the 3D feature construction has been completed. If not, go to 

the next step. If it is completed, go to step 4; 
Step 3: Judge the indiscernibility of fuzzy group; 
Step 4: Find out the second frequency and construct three-dimensional features by the 

complex voltage domain features of twice frequency; 
    Step 5: Normalization processing is carried out and the feature preprocessing is completed; 

Step 6: Train ELM; 
Step 7: Test the model and realize the fault diagnosis of an analog circuit. 

3. Test Verification 

3.1. Simulation Test 1 

The Tow–Thomas filter (Figure 7) was selected for simulation test 1. The tolerances of the 
elements fall within [-10%,10%]. The fault states of elements fall outside the tolerance interval: [10%, 
50%]U[-50%,-10%] . 

 

http://www.baidu.com/link?url=isqZJnDDourF7FTM9A6_V0S5LRZODk1Iwf-k5HhSQGpfEUi0tD9M4WolBGdCAAgs4TXmbJKIqAjtw_rXR7SCTX75e6GyYv6OZ7kixKpPR6_
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Figure 7. The Tow–Thomas filter. 

The ELM is a classification algorithm based on the activation function. The classification effect 
of the algorithm depends on the test accuracy of the activation function relative to sample features. 
Hence, three popular activation functions, namely, Multiquadrics, Gaussian and Sigmoid, were 
selected for training and testing. The results of the three functions are recorded in Table 3 below. 

Table 3. The training and test results of different activation functions. 

Activation function Training accuracy Test accuracy 
Multiquadrics 92.4 91.2 

Gaussian 94.7 93.8 
Sigmoid 93.9 92.6 

As shown in Table 3, the Gaussian function achieved the highest training and test accuracies in 
fault diagnosis. Therefore, the Gaussian function was adopted as the activation function of our ELM 
classification algorithm. 

Then, the fuzzy groups and the indistinguishable points at the current frequency were identified 
quickly by the circle model. The identification results are listed in Table 4. 

Table 4. Identification of fuzzy groups for simulation test 1. 

Fuzzy groups Fault elements 
1 R1 
2 R2 
3 C1, R6 
4 C2, R3, R4, R5 
5 (0,0) 

As shown in Table 4, there were a total of five fuzzy groups, in which (0,0) stand for the voltage 
values that are indistinguishable at the current frequency. Hence, this group was subjected to 
frequency adjustment, while the other four groups were classified. Through the identification of 
fuzzy groups, four groups that may affect the classification decision are screened out, reducing the 
influence of fuzzy groups on classification accuracy. 

During feature construction, three different features were created, including the 3D feature  
(

211
,y, fff xx ) designed by our method, the uncompressed 4D feature (

2211
,,, ffff yxyx ) and the 2D 

feature ),(
11 ff yx  before frequency adjustment. The three types of features were all normalized and 

compared with the original 3D feature. The training and test accuracies of the three normalized 
features and the original 3D feature are compared in Table 5 below. 

Table 5. Comparison between different feature engineering approaches. 

Feature engineering Training accuracy Test accuracy 
Normalized 3D feature 94.7 93.8 
Normalized 4D feature 94.5 93.2 

Original 3D feature 93.9 92.8 
Normalized 2D feature 90.1 88.4 

As shown in Table 4, normalized 3D feature and normalized 4D feature had comparable 
accuracies, both of which are higher than those of the original 3D feature. This means the 
normalization method in our feature engineering can effectively improve the diagnosis accuracy. In 
addition, the 2D feature, which had not undergone frequency adjustment, were much poorer than 
the original 3D feature, which was designed by our feature engineering approach, in test accuracy. 
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The comparison shows the frequency adjustment can make features that are indistinguishable in 2D 
space distinguishable in 3D space. The addition of the 3D feature can effectively enhance the test 
accuracy, proving the validity of our feature engineering method. 

3.2. Simulation Test 2 

To verify its superiority, the proposed fault diagnosis algorithm was compared with the 
methods of Long,B. et al.[7] and Long,T. et al.[8] through a simulation test on the same circuits. The 
comparison mainly focuses on the test accuracy and test time. 

 
Figure 8. Sketch map of biquad quad-op amp low-pass filter. 

Without loss of generality, the circuit in Figure 2 and that in Figure 8 were selected for simulation 
test 2. The tolerances of the elements fall within [–10%, 10%]. The fault states of elements fall outside 
the tolerance interval: [-50%,-10%]U[10%, 50%]. If both soft and hard faults are considered, the fault 

states of elements fall within[-∞,-10%]U[10%,+∞], where ∞- and ∞+ are 
410X −× and 

410X × , 
respectively (X is the parameter value of an element). 

Our method, the method of Long,B. et al.[7], and that of Long,T. et al.[8] were tested in turn. The 
test accuracy was measured by the false positive rate. The verification results are shown in Tables 6 
and 7. 

Table 6. Training and test accuracies of soft fault of Leapfrog circuit. 

Method 
Considering fuzzy 

groups? (Y/N) 
Training 

accuracy (%) 
Training 
time (s) 

Test 
Accuracy (%) 

Test 
time (s) 

Long, B.’s 
method N 78.9 12.5 76.5 2.4 

Long,T.’s 
method N 73.2 4.2 72.3 2.2 

Long,B.’s 
method Y 92.1 11.2 90.7 2.2 

Long,T.’s 
method Y 88.3 4.1 87.4 2.1 

Our method Y 91.5 1.7 89.4 0.5 
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As shown in Table 6, Long,B.’s method and Long,T.’s method exhibited low training and test 
accuracies, because neither of them considers fuzzy groups. By contrast, our method reclassifies 
faults based on fuzzy groups, and thus achieved much better accuracy in fault diagnosis. 

Table 7. Training and test accuracies of soft and hard faults in two circuits. 

Method Type of 
circuit 

Training 
accuracy (%) 

Training 
time (s) 

Test 
accuracy (%) 

Test  
time (s) 

Long, B.’s method Leapfrog 89.2 14.2 87.6 2.8 
Long,T.’s method Leapfrog 84.6 5.3 82.3 2.0 

Our method Leapfrog 90.3 2.2 88.8 0.7 
Long, B.’s method Biquad 91.6 12.8 89.4 2.3 
Long,T.’s method Biquad 87.3 4.9 85.8 2.1 

Our method Biquad 92.2 1.8 90.1 0.6 

As shown in Table 7, when both soft and hard faults were considered, our method achieved a 
relatively high classification accuracy, thanks to the circle model-based feature engineering that 
ensures the even distribution of faults across the circuit, in the light of the circuit features. On the 
contrary, Long,B.’s method only considers the degree of distinction between features through feature 
selection, and thus achieved poorer accuracy than our method. The lowest accuracy and efficiency 
were observed in Long,T.’s method, which resorts to traditional measures for feature engineering 
and classifier design. The high efficiency of our method in fault diagnosis is attributable to the ELM 
classifier, which enjoys a fast classification without involving any optimization algorithm. 

4. Conclusions  

This paper proposes a novel fault diagnosis method for linear analog circuit that combines the 
circle model-based feature engineering with ELM. In linear analog circuits, we find that the real part

orU and imaginary part ojU of the output voltage satisfy the circle equation ( ) ( ) 22
oj

2
oU rbUar =−+− .The 

parameters of a, b and r are independent from the parameter value of the component being 
modeled. It means that no matter how great the parameter shifting is, circle equation is always 
tenable. Hence, the circle equation characterizes all soft and hard faults. in detail. The circle equation 
can be confirmed by using three points; hence, only three simulations are needed to determine the 
three circle parameters a, b and r. Therefore, the time and space complexity are very low. 
Additionally, only one test node, usually the output node, is needed to model the component. Hence, 
it is especially applicable to the circuit under test (CUT), which has no inner accessible test nodes. 
The ELM classification algorithm has low computational complexity and simpler process, so it can 
make the classification and location of circuit fault faster. If additional test nodes are available, the 
fault resolution will be further enhanced. 

This method has the following main advantages:  
(1) Easier to model and lower space complexity. Circle modeling can be realized by simulating three 

sampling points at one time; 
(2) Higher completeness. All fault parameters (soft fault and hard fault) are characterized in a 

unified way. 
(3) Higher fault accuracy. 
(4) Less time cost 
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