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Abstract: A new technique based on the Band-Limited Phase-Only Correlation (BLPOC) function to
deal with acoustic individual identification is proposed in this paper. This is a biometric technique
suitable for limited data individual bird identification. The main advantage of this new technique, in
contrast to traditional algorithms where the use of large-scale datasets is assumed, is its ability to
identify individuals by the use of only two samples from the bird species. The proposed technique
has two variants (depending on the method used to analyze and extract the bird vocalization from
records): automatic individual verification algorithm and semi-automatic individual verification
algorithm. The evaluation of the automatic algorithm shows an average precision that is over 80%
for the identification comparatives. It is shown that the efficiencies of the algorithms depend on the
complexity of the vocalizations.

Keywords: bioacoustics; speech recognition; bird identification; individuals classification;
limited data

1. Introduction

Biodiversity comprises several levels of biological variation, from genes to ecosystems, where
species richness and abundance are two of its important features [1,2]. The density of birds in an area
is an indicator that can be used to determine bird survival, reproduction, dispersion, and population
growth [3]. This parameter is measured through a search methodology traditionally based on point
counts, linear transects, and mist nets techniques [4–6]. The point counts and linear transects techniques
are used to monitor population change by identifying birds by sight and/or their characteristic sound.
In this sense, for the reliability of the evaluation, some conditions must be guaranteed such as the
lack of movement of birds before detection and the statistical independence of the counts [7]. Mist
nets are used to capture individuals and determine features such as sex, age, and bird survival [8].
Commonly, artificial marks are used on the captured birds to determine, among others, the dispersion
of their habitats and the mapping of their territories [9]. Although these techniques have shown good
results, the use of non-standard methods and the limited availability of bird experts reduce their
effectiveness [5].

Bioacoustics is an alternative method of non-invasive monitoring that studies biodiversity based
on the relationship between animal species and their sounds [10–12]. The study of these signals
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is important in diverse biology areas, such as behavior, physiology, and evolution, among others
[13,14]. Specifically, the acoustic individual identification in birds involves the extraction of features
from the vocalizations (song or call) of a specific individual that allows its identification among other
vocalizations from other same-species individuals (or even from other bird species) [15]. Some
of the statistical techniques commonly used for speaker recognition can also be applied to the
individual identification of animals [16,17]. Although these techniques have good performance
on automatic speaker recognition through the use of large-scale datasets, some of them have an
inadequate performance in limited data conditions (small datasets) [18]. In this sense, for the acoustic
identification of bird individuals in real-field conditions, the amount (and quality) of vocalizations
from an individual makes it difficult to apply any statistical methods efficiently. It is nowadays a
complex challenge.

This paper proposes a new technique to deal with the acoustic individual identification in birds
based on the Band-Limited Phase-Only Correlation (BLPOC) function [19]. The BLPOC function is a
high accuracy biometric technique traditionally implemented for human identification by fingerprints
recently applied in speaker verification [20]. In this work, the (BLPOC) function is adapted to process
bird vocalizations as a limited data individual identification method. This is a proof-of-concept whose
main advantage, in contrast to traditional algorithms where the use of large-scale datasets is assumed,
is its ability to provide an individual identification result by only verifying two samples from the
bird species. The proposed method has two variants (depending on the method used to extract bird
vocalization from records): one that is automatic and another that is considered as semi-automatic.

This paper is organized as follows, Section 2 explains the basic theory of the BLPOC function.
Section 3 details the proposed acoustic individual identification algorithm. Section 4 shows the results
of the algorithm evaluation. Finally, Section 5 discusses the findings and Section 6 provides some
conclusions.

2. Band-Limited Phase-Only Correlation (BLPOC)

The Phase-Only Correlation (POC) function is an efficient technique commonly applied on
image matching tasks as a measure of similarity between two sequences. However, when the main
information of a given signal is clustered in a frequency band, the meaningless phase components of
the signal reduce the efficiency of the method. In this sense, the Band-Limited Phase-Only Correlation
(BLPOC) eliminates meaningless information by extracting an effective region obtained from the
compared sequences [21–26]. The basic theory of the BLPOC function is described below.

Given two N-point 1D sequences ( f (n) and g(n)), for which the index ranges are n = 0, . . . , N− 1,
the 1D Discrete Fourier Transform (1D DFT) of each sequence (F(k) and G(k), respectively) is calculated
as [27]:

F(k) =
N−1

∑
n=0

f (n)Wkn
N = AF(k) exp(jθF(k)), (1)

G(k) =
N−1

∑
n=0

g(n)Wkn
N = AG(k) exp(jθG(k)), (2)

where k = 0, . . . , N − 1, and WN = exp(−j2π/N); amplitude components are denoted as AF(k) and
AG(k); and θF(k) and θG(k) denote the phase components. Next, the cross-phase spectrum (RnFG(k))
between F(k) and G(k) is defined as:

RnFG(k) =
F(k)G(k)
‖F(k)G(k)‖

, (3)

where G(k) denotes the complex conjugate of G(k). An effective region is calculated to eliminate the
meaningless information in the cross-phase spectrum (depending on the input sequence) [19,26]. Thus,
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assuming the zero frequency component of the input sequence F(k) is shifted at the center of the
spectrum, the range of the effective region (defined by the limits F1 and F2) is:

k = F1, . . . , F2, (4)

where 0 ≤ F1 ≤ F2 and F1 ≤ F2 ≤ N − 1. Finally, the BLPOC function (r̂ f g(n)) is the 1D Inverse
Discrete Fourier Transform (1D IDFT) of RnFG(k), which is calculated by:

r̂ f g(n) =
1
L

F2

∑
k=F1

RnFG(k)W−kn
L , (5)

where L is the effective size of the region defined as L = (F2 − F1) + 1. The BLPOC function is a
measure of similarity between sequences and, in this sense, if f (n) and g(n) are the same sequence,
the resulting BLPOC function is the Kronecker’s delta function (δ(n)); on the other hand, if f (n) and
g(n) are not the same sequence, the resulting similarity is computed through a matching score.

3. Acoustic Individual Identification in Birds

A vocalization database of a few individuals is necessary to evaluate the proposed methodology.
For this purpose, several audio files were collected from two free online databases:

• The bird sound library of Mexico (from INECOL) [28]: A small database used for ornithology
research and the diffusion of audio records of bird species in Mexico.

• Xeno-canto [29]: A citizen-science database with about 500k audio records of vocalization of bird
species from around the world.

Although databases have different audio records, some of them do not offer specific features
(e.g., the type of vocalization or information about if the records are from more than one individual).
The acoustic information shown in Table 1 was obtained from the databases for different species in
order to use it in the proposed algorithm (all birds in the database are Passeriformes). There is not a
special consideration about the selection of bird species. Given that there is a wide variety of songs
available in databases, a quick search was made (audios that were easy to identify acoustically) to test
the system.

Table 1. List of bird species and records in the database.

Family Species Number of Number of Vocalizations
Individuals from Each Individual

Furnariidae (a) Clibanornis rubiginosus (P.L.Sclater, 1857) 4 4,4,27,6
(b) Synallaxis erythrothorax (P.L.Sclater, 1855) 6 7,15,7,5,27,9

Cardinalidae (c) Cardinalis cardinalis (Linnaeus, 1758) 3 17,2,22
Thamnophilidae (d) Cercomacra tyrannina (P.L.Sclater, 1855) 4 7,4,2,3

Troglodytidae (e) Hylorchilus sumichrasti (Lawrence, 1871) 5 4,6,4,4,2
Tyrannidae (f) Myiozetetes similis (Spix, 1825) 6 10,28,8,13,7,8

(g) Pitangus sulphuratus (Linnaeus, 1766) 3 5,5,6
Icteridae (h) Psarocolius montezuma (Lesson, 1830) 5 5,3,2,2,2

Psittacidae (i) Amazona viridigenalis (Cassin, 1853) 2 6,3

Table 1 gives information about the number of vocalizations extracted from original audio files.
The variability of vocalizations correspond to the variability of audio files available from a specific
individual and the number of specific vocalizations in each audio file.

The proposed method uses a pre-stored audio record of a bird vocalizations (call or song) to
identify whether an input audio record belongs to the same individual (genuine matching) or not



Appl. Sci. 2020, 10, 2382 4 of 18

(impostor matching). As mentioned in the Introduction, the proposed technique has two variants
(depending on the method used to analyze and extract the bird vocalization from records): automatic
individual verification algorithm and semi-automatic individual verification algorithm. The process is
depicted in Figure 1.

Pre-stored
audio record

Input audio
record

Vocalization extraction: automatic
identification or by-observation extraction

Time domain adjustment

Matching
(BLPOC
function)

Verification process:
-Equidistant vertical

and horizontal
regions

Verification result: "the imput
record is from the same

individual (genuine
matching)" or "is not
(impostor matching)" 

Figure 1. Proposed acoustic individual identification algorithm. Each arrow in the diagram represents
a signal processed.

3.1. Automatic Individual Verification Algorithm

3.1.1. Automatic Identification of Bird Vocalization

It is very common the audio records of bird vocalizations have periods of silence and other
background sounds. For this reason, the segments of the signal corresponding to bird vocalization
need to be extracted (see Figure 2). Let f (n) be an audio record of a bird vocalization. Based on a voice
activity detection (VAD) algorithm [30], the bird vocalization region (SF) is extracted as follows: (i)
Compute the energy average of the whole signal using E = 1

N ∑N−1
n=0 | f (n)|2. (ii) Divide f (n) into M

frames ( f rj(i)) of m equal samples according to sampling frequency. (iii) Compute the energy average
of each jth frame as e(j) = 1

m ∑m
i=1 | f rj(i)|2. (iv) Determine a suitable whole energy threshold value

(thrE) depending on the signal to noise ratio (SNR). (v) Identify the bird vocalization frames by using
Equations (6) and (7):

SFs = f irst({ f rj(i)|e(j) ≥ thrE, 1 ≤ j ≤ M, 1 ≤ i ≤ m}), (6)

SFf = last({ f rj(i))|e(j) ≥ thrE, 1 ≤ j ≤ M, 1 ≤ i ≤ m}), (7)

where SFs and SFf are the first and last detected bird vocalization frames in f (n). (vi) Define the bird
vocalization region according to:

SF = [SFs, . . . , SFf ]. (8)
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(a)

(b)

Figure 2. Bird vocalization automatic identification: audio record of a bird vocalization (a) before and
(b) after automatic region extraction.

The whole energy threshold value used in the experiments was thrE = 0.001 ∗ E.

3.1.2. Time Domain Adjustment and Matching

Before the matching between the records of the bird vocalization is carried out, an adjustment
to reduce the time domain variability in the sequences is applied (see Figure 3 a, b, before and after
time domain adjustment, respectively). This process is as follows: (i) Compare the number of samples
between the pre-stored and the input record. (ii) Adjust the time domain variability by a zero padding
at the end of the shortest record (according to the number of samples in each signal).
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(a)

(b)

Figure 3. Example of an audio record of a bird vocalization (a) before and (b) after time domain
adjustment.

The inherent frequency band is extracted traditionally by analyzing the DFT of the pre-stored
sequence [19]. To avoid inconsistencies in the BLPOC function, the proposed algorithm detects the
inherent frequency band in the cross-phase spectrum of the signals. Thus, when the compared signals
have the same length, the effective frequency band can be obtained as follows (see Figure 4): (i) By
using Equations (1)–(3), calculate the cross-phase spectrum (RnFG(k)) between bird vocalizations. (ii)
Compute the Normal Power Spectral Density (NPSD) by using the following equation:

NPSD =
RnFGRnFG

max(RnFGRnFG)
, (9)

where RnFG denotes the complex conjugated of RnFG. (iii) Compute and store the frequency band
index by the equations:

F1 = min({i|NPSD(i) ≥ thrp, 0 ≤ i ≤ N − 1}), (10)

F2 = max({i|NPSD(i) ≥ thrp, 0 ≤ i ≤ N − 1}), (11)

where thrp is a suitable NPSD threshold. The threshold value used in the experiments was thrp =

0.001. Finally, the matching between signals is calculated using Equation (5) and the zero frequency
component of r̂ f g sequence is shifted at the center of the spectrum.
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Figure 4. Example of the effective frequency band of the cross-phase spectrum of the compared signals.
Dashed line denotes the proposed threshold (thrp).

3.2. Semi-Automatic Individual Verification Algorithm

3.2.1. By-Observation Vocalization Extraction

Usually, the skills of the observers are affected by the conditions of the observations (especially when
vegetation height increase or when bare ground decreases) [4,5]. Since, in some cases, the vocalization of an
individual could be the unique source for identification, the quality of the record plays an important role.
The sound variability between bird species makes it difficult to have an automatic extraction algorithm of the
bird vocalization from records. In this context, it is proposed to extract the main acoustic information from
the audio records through a visual filter. This process is based on user (observer) selection of two spectrogram
points of an audio record to generate a region of interest where the most important time–frequency domain
information is located (as one can see in Figure 5).

(a)

(b)

(c)

Figure 5. Example of by-observation vocalization extraction: (a) first selected point; (b) second selected
point; and (c) region extracted by the user selection.
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Consider f (n) as an audio record from a bird vocalization. To extract the most important
information from the record, the following tasks were carried out: (i) Compute the 1D DFT of the
sequence using Equation (1). (ii) From the region of interest selected in the spectrogram, convert the
selected points of the frequency domain to coordinates in F(k). (iii) Calculate the minimum in the
sequence F(k) and replace the magnitude value in the frequencies of F(k) outside the region of interest
limited by the selected points (see Figure 6). (iv) Calculate its 1D IDFT according to:

f ′′(n) =
1
N

N−1

∑
k=0

F(k)W−kn
N , (12)

where f ′′(n) is the audio record in the frequency region of interest of the bird vocalization. (v) From
the selected region of interest in the spectrogram, convert the selected points of the time domain to
coordinates of the sequence f ′′(n). (vi) After a normalization, generate an audio playback of the signal
( f ′(n)) (as can be seen in Figure 7). Repeat the process until the resulting audio record has only the
desired information.

(a)

(b)

(c)

Figure 6. Example of a frequency region of interest extraction: (a) audio record from a bird vocalization;
(b) 1D DFT of the bird vocalization; and (c) frequency region of interest extracted.
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Figure 7. Audio record from a bird vocalization after by-observation region extraction.

3.2.2. Time Domain Adjustment and Matching

The time domain adjustment and matching steps are the same as those described in Section 3.1.2.

3.3. Individual Verification Decision

The height of the max peak in the BLPOC function can be used as a measure of similarity in human
identification by image matching; however, for the individual verification through bird vocalizations,
some other discrimination features (to determine a genuine and impostor matching) need to be
calculated. Since the BLPOC function has multiple shapes, depending on the verified vocalizations
(see Figure 8), the proposed criterion for evaluating the BLPOC function is an automatic parametric
verification process based on the BLPOC function shape from genuine matching.

(a) (b)

(c) (d)

Figure 8. Examples of genuine and impostor matching: (a) BLPOC function between two identical
bird vocalizations from the same individual; (b) BLPOC function between two similar vocalizations
from the same individual; (c) BLPOC function between two similar vocalizations from two different
individuals from same bird species; and (d) BLPOC function between two different individuals from
different bird species.

3.3.1. Verification Process through Equidistant Vertical Regions

The first step in the verification process is the evaluation of the location of the max peak in the BLPOC
function by the following process (see also Figure 9): (i) determine the number of samples of the BLPOC
function. (ii) Calculate m + 1 equidistant indices (ei(i)) between samples. (iii) Calculate ith equidistant
vertical regions (evri) according to:

evri = [r̂ f g(ei(i)), . . . , r̂ f g(ei(i + 1))]. (13)
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Figure 9. Accepted shape of the BLPOC function through equidistant vertical regions.

(iv) Calculate the index of the BLPOC function max peak (PM) and determine the equidistant
vertical region to which it belongs. (v) Compare the identified region with the acceptance equidistant
vertical region. The number of equidistant indices in the experiments was a constant value m = 5 and,
on the other hand, the acceptance region was the third equidistant vertical region.

However, since the BLPOC function can take many shapes, the next step is to set an acceptance
shape in the equidistant vertical regions. In this sense, for genuine matching, energy is concentrated in
the region of the max peak of the BLPOC function. To identify this shape in the BLPOC function, the
next steps can be followed (see Figure 9): (i) Calculate the energy of the BLPOC function (Ei) in the ith
equidistant vertical region (evri) according to:

Ei =
1
k

k

∑
j=1
|evri(j)|2, (14)

where i = 1, 2, . . . , m and k is the number of samples in the evri. (ii), Identify the equidistant vertical
region with the max energy. (iii) Compare the identified region with the acceptance location of the max
energy. In the experiments, the location of acceptance of the maximum energy in the BLPOC function
was the third equidistant vertical region (acceptance location of the maximum peak in the BLPOC
function). Examples of BLPOC functions verification process through equidistant vertical regions are
shown in Figure 10.

(a) (b)

(c)

Figure 10. Examples of the BLPOC function verification process through equidistant vertical regions:
(a) genuine matching correctly verified as accepted; (b) impostor matching correctly verified as rejected;
and (c) impostor matching incorrectly verified as accepted.
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3.3.2. Verification Process through Equidistant Horizontal Regions

To avoid verification errors (see Figure 10c), an evaluation of the magnitude of the less significant
peaks in the non-acceptance vertical regions is made (see Figure 11). Evaluation is as follows: (i)
Calculate the maximum and minimum peaks of the BLPOC function. (ii) Calculate m + 1 intervals of
magnitude (im(i)) between the magnitude of the calculated peaks. (iii) Calculate the maximum peak
at the ith equidistant vertical region evri by:

peak(i) = max |segvi|. (15)

Figure 11. Accepted shape of the BLPOC function through equidistant horizontal regions.

(iv) Compare the identified peaks (peak(i)) with the maximum acceptance horizontal region. The
number of intervals of magnitude in the experiments was a constant value n = 5. On the other hand, the
maximum acceptance region was the third equidistant horizontal region, as shown in Figure 12.

(a)

(b)

Figure 12. Examples of the BLPOC function verification process through equidistant horizontal regions:
(a) a genuine matching correctly verified as accepted; and (b) impostor matching correctly verified as
rejected.
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Sub-domain deformation can introduce possible errors (see Figure 13). In the experiments, a
special criterion based on an evaluation of the number of less significant maximum peaks greater than
the maximum acceptance horizontal region was implemented.

Figure 13. Example of possible errors due to sub-domain deformations: genuine matching incorrectly
verified as rejected.

4. Results

Table 1 shows the list of bird species in the database [31] and the number of records. On the other
hand, a subcategory of species based on the complexity of the vocalizations is proposed (Figure 14
shows two examples: (a) noncomplex vocalization; and (b) complex vocalization). As a consequence,
in Table 1, the following species in the database were considered to have a complex vocalization:

• Cercomacra tyrannina (P.L.Sclater, 1855);
• Hylorchilus sumichrasti (Lawrence, 1871);
• Pitangus sulphuratus (Linnaeus, 1766);
• Psarocolius montezuma (Lesson, 1830); and
• Amazona viridigenalis (Cassin, 1853).

(a)

(b)

Figure 14. Examples of the complexity in the vocalizations: (a) noncomplex vocalization; and (b)
complex vocalization.
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The complexity of vocalizations is measured according to the time and frequency variations in
the sound. This classification does not exist in the literature but this term is introduced in this article to
make a fairer comparison for the algorithm. It is supported that it is not possible to obtain a general
classification of the methodology for all species that are being recognized.

To guarantee the correct identification of individuals among other bird species individuals, an
evaluation of the algorithm’s discarding performance was obtained. This was made by computing
the probability that a vocalization from an individual of a certain bird species is correctly rejected
by the algorithm at being identified as “not generated from a specific bird species′′. To measure this
probability, the True Rejection Rate (TRR) was calculated (the probability that an impostor individual
is correctly verified as rejected). This was a combinational process where each of the individuals from
a certain species was matched (using the proposed algorithm) against other individuals from other
species in the database. The process was repeated for each species in the database. Some obtained
results are shown in Table 2.

Table 2. Results of the automatic individual verification algorithm’s discarding evaluation performance (%).

VS (a) (b) (c) (d) (e) (f) (g) (h) (i)

(a) . 92.5 96.5 100 100 99.22 100 97.90 100

(b) 92.54 . 98.21 98.36 91.17 98.75 98.71 96.02 99.15

(c) 86.4 96.08 . 100 100 69.68 94.66 100 93.6

(d) 100 96.18 97.22 . 100 98.6 97.14 100 100

(e) 100 91.38 100 95.5 . 98.97 92.85 100 100

(f) 99.69 99.34 69.09 99.39 98.93 . 93.63 100 100

(g) 100 90 84.16 100 100 99.66 . 100 100

(h) 98.86 94.4 100 100 98.75 100 98.21 . 96.42

(i) 100 100 98.57 97.4 100 100 100 100 .

In this sense, Table 2 shows that the performance of the proposed automatic individual verification
algorithm is over 90% in almost all the identification comparatives.

A second evaluation criterion was carried out through a verification test of individuals of the
same bird species. To achieve this task, the following set of parameters was used:

• True acceptance (TA) is when the system verifies a genuine matching correctly.
• False acceptance (FA) is when the system verifies a genuine matching incorrectly.
• True rejection (TR) is when the system verifies an impostor matching correctly.
• False rejection (FR) is when the system verifies an impostor matching incorrectly.

This was a combinational process where each of the individuals (records) from a certain species
was matched (using the proposed algorithm) against its vocalizations (genuine matching) and
vocalizations from other individuals (impostor matching). The process was repeated for each species
in the database. Some obtained results are shown in Tables 3 and 4.
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Table 3. Identification evaluation of the semi-automatic algorithm.

Species Number of Comparatives
Parameter Results

TA FA TR FR

(a) 229 81 20 115 13

(b) 300 102 20 143 35

(c) 229 118 0 104 7

(d) 28 4 18 3 3

(e) 20 7 7 4 2

(f) 300 19 13 227 41

(g) 12 1 9 2 0

(h) 21 7 8 3 3

(i) 17 1 10 4 2

Table 4. Identification evaluation of the automatic algorithm.

Species Number of Comparatives
Parameter Results

TA FA TR FR

(a) 1681 511 286 764 120

(b) 6084 233 925 4391 535

(c) 1681 687 90 876 28

(d) 256 34 44 178 0

(e) 400 72 16 154 158

(f) 5476 910 320 3630 616

(g) 256 26 60 168 2

(h) 196 18 28 150 0

(i) 81 9 36 36 0

The next step was to calculate the probability that an individual would be verified as accepted (genuine
matching) or rejected (impostor marching) by each of the two variants of the proposed algorithm. To
measure this probability, the precision was calculated as follows (results are shown in Table 5):

Precision =

(
TA + TR

TA + FA + TR + FR

)
∗ 100. (16)

Table 5 shows the efficiency of the algorithms in the verification of individuals. On the one hand,
the semi-automatic algorithm has an average precision of 86.53% for the bird species with noncomplex
vocalizations and a maximum of about 55% from species with complex vocalizations. The automatic
algorithm has an average precision of 81.93% for the bird species with noncomplex vocalizations and a
maximum of about 85.71% from species with complex vocalizations.



Appl. Sci. 2020, 10, 2382 15 of 18

Table 5. Results of individuals identification performance test (%). Species with complex vocalizations
are written in bold.

Species Semi-Automatic Individual Automatic Individual
Verification Algorithm Verification Algorithm

(a) Automolus rubiginosus 85.58 75.84

(b) Synallaxis erythrothorax 81.6 76

(c) Cardinalis cardinalis 96.94 92.98

(d) Cercomacra tyrannina 25 82.81

(e) Hylorchilus sumichrasti 55 56.5

(f) Myiozetetes similis 82 82.9

(g) Pitangus sulphuratus 25 75.78

(h) Psarocolius montezuma 47.6 85.71

(i) Amazona viridigenalis 29.4 55.55

5. Discussion

5.1. Identification and Results Analysis

Table 2 shows the probability of correct rejection of the algorithms. Since there are many possible
comparatives between bird species, the main objective of this table is to show the algorithm’s capability
to reject individuals from impostor species. Note that the described performance (over 80% in almost
all the identification comparatives) correspond to the automatic algorithm. The semi-automatic
performance varies depending on the capability of the user to determine different species by analyzing
the spectrogram.

Table 3 shows the evaluation of the semi-automatic algorithm, where the number of comparatives
correspond to the TA + FA + TR + FR matchings. The variability of comparatives is due to the variability
of audio data available for each species (see Table 1). Since it is a combinational process, the number of
comparatives carried out using the semi-automatic algorithm was only a random sampling. On the
other hand, Table 4 shows the same information as in Table 3 but using the automatic algorithm. In this
case, the number of comparatives was the total of the combinational process.

The research hypothesis states that the BLPOC function can be used to identify individuals.
Table 5 shows the precision results (based on previous tables). Notice that the results differ depending
on the bird species and that, although the average stated is 86.53%, the results are given by specifying
the individual species performance. The difference between both algorithms’ precisions is minimum
for noncomplex vocalizations. On the other hand, the automatic algorithm shows a better precision (in
comparison with the semi-automatic algorithm) for complex vocalizations. A possible explanation
that supports such results is based on the observer identification of the information in the spectrogram.
Since this is a subjective selection, the user may omit important information by unselecting this
information in the spectrogram (see Figure 5). However, a trained and experienced observer may
distinguish the primal spectrogram information.

Thus, the obtained results represent a proof-of-concept and investigating more complex acoustic
scenarios is needed to obtain the reliability of the algorithm.

5.2. Bird Individual Identification and the Complexity Classification

Even though the automatic algorithm shows better efficiencies in complex vocalizations (see
Table 5), this is mainly due to the algorithm’s discarding ability for impostor matching. In this sense,
a more specialized automatic region extraction algorithm may improve the efficiency of the proposed
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automatic algorithm for genuine matching. As expected, the semi-automatic algorithm shows better
efficiencies in non-complex vocalizations because the main information from the bird vocalization in
the recordings is easy to extract from the spectrogram.

According to the efficiency of the algorithm and the spectrogram characteristics of each
vocalization, some differences about what is (or is not) a complex sound (for example, variations of
time–frequency and number and type of syllables) could be established. This classification term does
not exist in the literature, but it is presented in this article to make a fairer comparison of the algorithm
(and for possible bird identifications that could be carried out in future investigations).

5.3. Recording Conditions Consideration and Bird Species in the Database

Due to the different sound qualities of the recordings, the collected records do not have a specific
recording condition (even among records of individuals of the same bird species). In this context, the
proposed algorithm can verify an individual regardless of the difference in the recording conditions (a
common condition in field recordings).

There was not biological consideration about the selection of the bird species in the database. This
lack of consideration may introduce biases; therefore, in future work, it could be interesting to adopt
some more objective criteria at the selection of bird species.

5.4. Application Areas

It is still not well understood if the capture of an individual is dangerous to the habitat; in any
case, the health of the birds is paramount. Therefore, non-invasive, passive methods are to be preferred
(to avoid the common problems of capture such as the stress or death of the individuals) [5,9]. On
the other hand, as mentioned in the Introduction, obtaining a large amount (and high quality) of
vocalizations from an individual to apply the statistical methods efficiently is nowadays a complex
challenge. In this context, the proposed algorithm can provide an identification evaluation by only
analyzing two samples from individuals (a limited data condition), implying a time-cost reduction
and a new easy way to monitor biodiversity. Although the proposed method does not extract the same
features as those from a captured individual, it is a non-invasive method for individual identification
that, in addition to the application in counting, could be used to determine the dispersion of the
habitats and the mapping of the territories.

Due to the particular skills of experienced observers, it is recommendable that only these qualified
observers participate in biodiversity monitoring programs (to guarantee reliability on the data) [5].
Although this is the desired condition, there is often a lack of available qualified observers mainly
because of the amount of time consumed by the identifications [7]. On the other hand, training new
observers requires from two to three weeks in an intensive program (depending on the number of
species to be identified) [9]. The acoustic identification of birds has shown greater efficiency than visual
identification, especially because acoustic identification maximizes the visual observations [7]. For that
reason, to increase the efficiency of identifications, it is recommended to combine visual and acoustic
identification techniques. In this context, the proposed semi-automatic identification algorithm could
be used as a valuable tool that can be applied together with traditional counting techniques. Since
it is based on the identification of patterns in the spectrogram, the methodology could be used for
the training of new observers and to help experienced observers with the reliability of avian counts
through the search methodologies.

6. Conclusions

Based on the BLPOC function as an efficient method traditionally used in human identification
by image matching, in this paper, a new technique for the acoustic individual identification in birds
is proposed. Although many methods can provide bird species identification, the proposed method
focuses on the individual identification. The results support the proposed algorithm as a method for
the acoustic individual identification that can provide an identification evaluation by only analyzing
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samples from individuals. Two different methods for the identification are presented, depending on
the structure of the vocalization extraction. From the results, it can be concluded that the efficiencies of
the algorithm depend on the complexity of the vocalizations. Although complexity of vocalization is
the only term used in this paper, it could represent a fair comparison method for bioacoustic algorithms
due to the variability of sounds produced by birds (and future work may determine a better metric
to determine which sounds are complex and which are not complex). In addition to the individual
identification, the acoustic identification technique proposed could be used together with traditional
counting techniques to determine the dispersion of the habitats and the mapping of the territories.
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