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Featured Application: Model-informed drug discovery and development (MID3) is proposed to
be applied throughout the preclinical to clinical phases to provide an informative prediction of
drug exposure and efficacy in humans in order to select novel anti-tuberculosis drug combinations
for the treatment of tuberculosis.

Abstract: The increasing emergence of drug-resistant tuberculosis requires new effective and safe
drug regimens. However, drug discovery and development are challenging, lengthy and costly.
The framework of model-informed drug discovery and development (MID3) is proposed to be applied
throughout the preclinical to clinical phases to provide an informative prediction of drug exposure and
efficacy in humans in order to select novel anti-tuberculosis drug combinations. The MID3 includes
pharmacokinetic-pharmacodynamic and quantitative systems pharmacology models, machine
learning and artificial intelligence, which integrates all the available knowledge related to disease and
the compounds. A translational in vitro-in vivo link throughout modeling and simulation is crucial to
optimize the selection of regimens with the highest probability of receiving approval from regulatory
authorities. In vitro-in vivo correlation (IVIVC) and physiologically-based pharmacokinetic modeling
provide powerful tools to predict pharmacokinetic drug-drug interactions based on preclinical
information. Mechanistic or semi-mechanistic pharmacokinetic-pharmacodynamic models have been
successfully applied to predict the clinical exposure-response profile for anti-tuberculosis drugs using
preclinical data. Potential pharmacodynamic drug-drug interactions can be predicted from in vitro
data through IVIVC and pharmacokinetic-pharmacodynamic modeling accounting for translational
factors. It is essential for academic and industrial drug developers to collaborate across disciplines to
realize the huge potential of MID3.

Keywords: tuberculosis; MID3; pharmacokinetics; pharmacodynamics; drug-drug interactions;
in vitro; in vivo; drug development

1. Introduction

Drug discovery and development is a challenging, lengthy, and costly process. The costs of a
novel drug reaching the market can be as much as 2–3 billion dollars [1]. In the early discovery phase,
libraries consisting of thousands of compounds can be synthesized chemically and tested for efficacy
in vitro at a relatively low cost. The largest expenditures are in the late preclinical and clinical phases of
drug development, where the efficacy and safety of treatment are assessed. Smart decisions need to
be made regarding which compounds and regimens should progress through the preclinical phase
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and subsequently into clinical trials. Early characterization of each compound’s exposure-response
relationship, i.e., pharmacokinetic (PK)-pharmacodynamic (PD) relationship and potential interactions
within regimens and with commonly co-administered drugs, can allow for informative decision making
throughout preclinical development and into clinical development [2].

Tuberculosis (TB) is the leading cause of adult mortality through infectious diseases and 10 million
new cases are reported globally every year [3]. Sensitive TB is currently treated with a six-month
regimen of antibiotics, consisting of isoniazid, pyrazinamide, rifampicin and ethambutol, which was
developed in the mid-twentieth century. This therapy is believed to be suboptimal and was not
developed using modern approaches for drug development, thereby lacking important information
on the PK-PD relationship. Therefore, clinical trials have recently been conducted in order to define
the relationship between exposure and efficacy, as well as safety, where statistically significant
exposure-response relationships for rifampicin have been identified, in order to support a higher dose
of rifampicin [4–7]. Almost one in five patients will acquire multidrug-resistant tuberculosis (MDR-TB)
or rifampicin-resistant tuberculosis (RR-TB) [3]. Recently, the new anti-TB drugs bedaquiline, delamanid
and pretomanid were conditionally approved against MDR-TB, which led to updates to the World Health
Organization (WHO) treatment guideline for MDR-TB [8]. Bedaquiline is a diarylquinoline, a new class
of antibiotics. It is an inhibitor of the membrane-bound adenosine triphosphate (ATP)-synthase enzyme,
therefore blocking mycobacterial ATP formation and energy metabolism. Bedaquiline is therefore
bactericidal for dormant mycobacteria as well, a preferable feature for the shortening of treatment
duration and prevention of relapse [9]. Delamanid is a nitroimidazole and affects the mycobacterial cell
wall, thereby also improving drug penetration into the mycobacterium. It is the most potent TB drug
and is active against replicating and dormant mycobacteria as well [9]. The combination of delamanid
with bedaquiline is, however, not recommended, due to QT-prolongation-related cardiotoxicity [10].
Pretomanid belongs to the same class of antibiotics as delamanid [9]. Pretomanid was developed as part
of a drug combination together with bedaquiline and linezolid, an oxazolidinone-class otherwise used
for the treatment of pneumonia and skin infection. There is a clear need for the additional development
of new effective drug combinations. The European Medical Agency (EMA) drug development guideline
for TB specifies that efforts should be made to develop entirely new regimens to treat TB, rather than
focusing on single drugs [11]. Due to the burden of polypharmacy for the patients and the increased
risk of side effects, the focus should be on developing new regimens instead of the development of
single agents as an add-on to a current regimen which was recommended in the earlier EMA TB drug
development guideline [12]. Of the three new drugs against TB, only pretomanid is approved as a
new combination regimen, while bedaquiline and delamanid were developed as add-ons to existing
therapy [13]. The development of new combination regimens is the way forward, the acceleration of
which is the objective of the new Innovative Medicines Initiative (IMI)-funded consortium European
Regimen Accelerator for Tuberculosis (ERA4TB). It is important to assess drug-drug interactions (DDI),
with respect to both PK and PD, to understand how the different drugs behave in certain combinations
and doses in order to maximize the efficacy and potentially learn how the efficacy of the combination
varies with time and concentration. The development of drug combinations is, however, challenging.
It is difficult to demonstrate the contribution of an individual drug to a regimen regarding efficacy or
safety [14]. The duration of treatment is lengthy, especially when considering follow-up to ensure no
relapse. Moreover, the design and execution of preclinical experiments and clinical trials are complex,
as the number of treatments to test grows exponentially with every added drug or dose, leading
to longer development times and higher costs. Tuberculosis drug development, which focuses on
regimens rather than unique drugs as an add-on treatment, thus challenges our methods to assess
and identify optimal regimens. Therefore, smart experimental designs and optimized data analysis
are essential. Data from larger scale in vitro preclinical experiments, with different drug regimens
that explore the PD interaction space in order to investigate the synergism and/or antagonism of the
interacting drugs, should be used to select the best regimens to determine the exposure range in vivo.
Based on the exposure-response relationship in animals, and/or pure in vitro predictions, the first
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in-human (FIH) and early bactericidal activity (EBA) trials can be designed. These steps all require
a mathematical translational approach, taking into account the PK-PD and translational factors to
account for differences between preclinical species and patients [15,16].

The European Medicines Agency/European Federation of Pharmaceutical Industries and
Associations (EFPIA) Modeling and Simulation joint workshop held in 2011 assembled scientists from
the pharmaceutical industry, academia and regulatory authorities from across Europe, the USA and
Japan to consider the future role of modeling and simulation in drug development and regulatory
assessment. As a follow up to the workshop, one of the EFPIA groups’ commitment to EMA was
to generate a “good practice” manuscript covering aspects of planning, conduct and documentation
of a variety of quantitative approaches for modeling and simulation methods where the concept of
Model-Informed Drug Discovery and Development (MID3) was defined [17]. The aim of MID3 is
to enable more efficient and robust research and development and regulatory decisions using an
integrated model-based drug development approach [17,18]. The MID3 strategy for the development
of drugs in any therapeutic area is supported by the EMA [19]. The MID3 framework has been defined
as a “quantitative framework for prediction and extrapolation, centered on knowledge and inference
generated from integrated models of compound, mechanism and disease level data and aimed at
improving the quality, efficiency and cost effectiveness of decision making” [17]. The MID3 framework
should be applied in the development of new TB drug regimens and is necessary for the reliable
prediction of the optimal selection of novel TB drug combination therapies based on pre-clinical
information, and subsequent decisions on which combinations to evaluate in clinical trials in order
to confirm their efficacy and safety. The framework integrates all available data and information
on the disease and the compounds. In addition to PK and PD models, systems biology or systems
pharmacology models [18] and machine learning based on, for example, imaging data [20] or even
artificial intelligence (AI) [21,22] are important tools. Figure 1 shows the proposed MID3 strategy
for the rapid development of anti-TB regimens through the prediction of human-concentration-time
relationships (PK), exposure-response relationships (PK-PD) and DDIs to select FIH doses, as well
as the prediction of Phase II and Phase III drug regimens. Initially in a drug development program,
preclinical data is mostly available. The impact of modeling and simulation increases towards the
prediction of human exposure-response. With this input efficient decision can be made about the
optimal combination of different drugs, and the right dose for each drug in the combination. Currently,
limited modeling and simulation are required for market approval, which relies more on statistical
comparison between treatment groups after phase III [23]. However, modeling and simulation can
have a role in the analysis of Phase III data in order to define the relationship between exposure and
clinical endpoint, evaluate PK DDI and simulate alternative potential regimens in certain subgroups,
for example, patients with renal impairment [24]. A key step for successful TB drug development is to
use modeling and simulation to predict the efficacy of combinations, including DDIs, for, for example,
synergy. We will review the necessary steps from this perspective for the successful MID3 application
to the preclinical to clinical translation of efficacious TB drug combinations, regarding the optimal
doses of drugs in complex regimens.
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MID3, with modeling and simulation as key tools, is suggested to be applied throughout the
pre-clinical to clinical drug development phases in order to optimize and inform decision making
with respect to clinical trial design and the selection of drugs and doses to be carried forward from
the preclinical phase and into clinical trial programs. The prediction of human-concentration-time
relationships (PK), exposure-response relationships (PK-PD) in monotherapy and combination therapy,
as well as drug-drug interactions, (DDI), requires the application of MID3 techniques and integration of
all available data. In early preclinical drug development, preclinical data is used for predictions using,
for example, in vitro-in vivo correlation (IVIVC), physiology-based pharmacokinetics (PBPK) and a
biopharmaceutics drug disposition classification system (BDDCS) in order to define absorption,
distribution, metabolism, and excretion (ADME) properties. Further down the developmental
process, MID3 becomes more important in order to define exposure-response relationships and
pharmacodynamic (PD) interactions using preclinical data for optimal design of first-in-human (FIH)
and early bactericidal activity (EBA) trials. The need to define the optimal combination regimen using
preclinical information data is evident, as the necessary number of clinical trial arms/experimental
groups grow exponentially with the number of drugs within a regimen. Techniques using optimal
design and simulation studies are essential and part of the MID3 framework. Throughout the process,
the precision of human predictions increases. Different important drug development decision steps
(circles) are subject to learn-and-confirm cycles, for example, early EBA clinical studies where the
earlier defined exposure-response relationship using pre-clinical data (learning phase) is confirmed
(confirming phase).

2. Model-Informed Drug Discovery and Development

Model-informed drug discovery and development is given by a quantitative framework for
prediction and extrapolation, aimed at improving the quality, efficiency and cost-effectiveness of
decision making in drug development [17]. It can also be utilized in early drug discovery through
target identification and validation, and in describing the PK-PD and toxicological properties of the
candidate drug. In addition, it increases the efficiency of trials and reduces the cost through facilitating
dose and sample size selection [17]. Because of the great potential of MID3, it has been received well
and implemented by drug developers [18,25]. The EMA supports MID3 and has built competence
to meet the increasing modeling and simulation work in the dossiers submitted to EMA through the
implementation of the modeling and Simulation Working Group (MSWG). Further, the EMA stresses
that, in order to benefit from the full potential of MID3, stand-alone applications of modeling and
simulation, dissociated from clinical decisions with respect to the design and objectives of clinical
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trials, should be avoided [19]. This is also pointed out in the MID3 white paper [17], where the
implementation process is described as very important, and where the modeling and simulation work
should be clearly motivated in the analysis, with clear objectives that are relevant and understandable
for the entire development team. To realize the full potential of MID3, it needs to be integrated into the
development plan rather than being seen as an ad-hoc activity [23]. The FDA has implemented a new
Model-Informed Drug Development Paired Meeting Pilot Program which refers to the application
of a wide range of quantitative approaches in drug development to facilitate the decision-making
process, such as dose optimization, supportive evidence for efficacy, clinical trial design, and informing
policy [26]. Despite the recent efforts within academia, EFPIA and regulatory agencies, MID3 has not
been utilized to its full potential within TB drug development, where the need is great due to the
complex development of new drug regimens consisting of at least three drugs.

Model-informed drug discovery and development builds upon pharmacometrics, the discipline
that applies mathematical and statistical methods to understand, quantify, translate, and predict PK and
PD behavior, including uncertainty in that behavior [27,28]. Pharmacometric population PK and PK-PD
modeling can quantify these processes to better predict the concentration-time and exposure-response
relationships of anti-TB drugs as compared to non-modeling techniques, such as non-compartmental
analyses (NCA) for PK or traditional statistical analysis of, for example, the relationship between
dose and baseline-reduced response at the end of treatment [29] The advantage of pharmacometric
modeling is that it takes the inter-individual and inter-occasion variabilities into account. Once a
population model has been developed and evaluated, various simulation techniques can be used,
e.g., Monte Carlo simulations where virtual patients are drawn from the earlier quantified variance of
variability in the population. Pharmacokinetic models are usually nonlinear mixed-effects models
with unique parameters for fixed effects and random effects. Pharmacodynamic models can consist of
a statistical method suitable for the biomarker or endpoint where time-to-positivity and relapse would
be described with a time-to-event model, while colony forming unit (CFU) is a continuous variable
and, as such, can be described with similar nonlinear mixed effects modeling.

Model-informed drug discovery and development is likely most impactful in the translation
from preclinical to clinical, where the understanding and extrapolation of the exposure-response
from preclinical to clinical is crucial. Model-informed drug discovery and development is also very
important in the early clinical phases of anti-TB drug development, specifically phase II EBA trials,
as it is difficult to investigate all drug combinations and associated PD interactions in clinical trials.
The majority of the knowledge about the potential PD interaction space needs to come from preclinical
information. Additionally, MID3 can be used to design the next preclinical or clinical study in order
to optimize the likelihood of collecting informative data. A crucial step in drug development is the
prediction of FIH design and associated doses. Model-informed drug discovery and development
strategies and methods can be used to scale preclinical information to humans to design the FIH
trial. Pharmacometric techniques have been shown to reduce the sample size needed in comparison
to traditional statistical methods [29–31], while MID3 has been reported to save significant costs
through its impact on decision making [17]. Preclinical experiments should be designed to be able
to quantify the exposure-response relationship, including quantitative biomarkers relative to the
interspecies’ translation thereof [32]. An MID3 framework integrates all relevant preclinical and clinical
information, and can therefore be used to back-translate results from the clinic to improve the preclinical
understanding of the pathophysiology and pharmacology [33]. Even failed translations to humans are
valuable in correcting the preclinical methods used. An iterative forward- and reverse-translational
cycle has the potential to continuously enhance confidence in preclinical models [34]. The availability of
large clinical datasets from, for example, electronic medical records accelerates reverse translation and
improves the preclinical modeling of clinical manifestations [35]. Additionally, data from veterinary
medicine can be utilized to guide human medicine development [36]. For this framework to really
have an impact, data repositories and common languages are essential for application across different
disciplines, disease areas, or stages of development [23,37]. In addition, to ensure that modeling and
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simulation adds value through an MID3 approach, pharmacometricians must communicate with their
project teams before any data analysis starts to understand the key strategic development questions,
clinical context, available data, assumptions, and decision criteria [23].

The prediction of efficacy and safety in new drug combinations with new or unknown mechanisms
of action will benefit from the next paradigm in drug development and MID3, namely quantitative
systems pharmacology (QSP). This is the pharmacological perspective on a systems’ modeling,
a body-system-wide characterization of the health and disease of an organism based on a mechanistic
and molecular understanding of the individual components in the context of the holistic network [38].
QSP is the middle-out interface between systems biology and pharmacometrics, describing the
pharmacological perturbation within the studied context [39]. It accounts for differences in (molecular)
mechanisms of a disease [40], which is very relative for TB with its heterogeneous pathophysiology
of acute, chronic, and latent infections. Because of its mathematical description of all the relevant
elements of the pharmacological and pathophysiological pathways, and their differences between
species, it becomes key to translational medicine [41]. Because of this quantitative understanding
of the network, the prediction of the effects of drugs with new mechanisms of action improves
significantly [42]. The development of QSP models in the preclinical phase is, however, uncommon,
and the dedicated acquisition of experimental data like transcriptomics or metabolomics for the
development of QSP models is rare [43,44]. Quantitative systems pharmacology models are intended
to be applied to a wider scale than the individual questions or problems they were originally developed
for [45]. For TB specifically, this could mean a systems model of the M. tuberculosis infection in the
human context of macrophage infiltration, granuloma formation and pulmonary lesion development,
with all relevant pathways and drug targets quantitatively described. The effect of new combinations,
including drugs with novel mechanism of actions, can be predicted.

3. Prediction of Human Pharmacokinetics

In silico ADME-PK (absorption, distribution, metabolism, excretion, and pharmacokinetics) is
the use of computer modeling to understand structure−property relationships and to predict DMPK
(drug metabolism and pharmacokinetics) properties from compound structure. This is related to
but distinct from physiologically based pharmacokinetic (PBPK) modeling, which strives to provide
accurate predictions of the PK profile of drug candidates [46]. The focus of in silico ADME-PK is to
guide the design of novel compounds with superior ADME properties. Most often a quantitative
structure−property relationship (QSPR) approach is used to relate a compound’s structure to the
chemical property in question (e.g., cell permeability or metabolic clearance) measured in an in vitro
assay. Related terms are also quantitative-structure-activity relationships (QSAR), when a set of
predictor variables is related to the potency of the drug.

Orally administered products are subject to a sequence of transport and enzymatic barriers in
enterohepatic systems affecting bioavailability, including extraction in the intestinal and liver tissues,
which could impact the fraction of the orally administered dose that reaches the systemic circulation and
thereby the site of action. Bioavailability is mainly dependent on three general and rather complex serial
processes: the fraction of the oral dose that is absorbed (Fabs), the first-pass extraction of the drug in the
gut wall (EG), and the first-pass extraction of the drug in the liver (EH) [47]. In general, oral products with
a low F (<25%–35%) have a higher inter- and intra-individual variability in plasma exposure (coefficient
of variation >60%–120%) [48]. Drugs with high degree of Fabs show sufficiently high solubility of the
active pharmaceutical ingredient (API), no luminal degradation, and absorption along the small and/or
large intestine [49,50]. The regulatory framework Biopharmaceutics Classification System (BCS) of drugs
provides information relevant to understanding and predicting GI drug absorption and bioavailability
in general, which is relevant to the absorption potential in the small and large intestine [51]. After the
drug is absorbed, it passes to the liver, which expresses a broader range of different enzymes compared
to the intestine [52], such as the family of CYP enzymes [53]. Other enzymes such as microsomal uridine
5’-diphospho-glucuronosyltransferases (UGTs), sulfotransferases, and glutathione S-transferases are
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found in great amounts in the human liver [54]. Humans show large inter-individual variation in the
amount of different enzymes, which accounts, in part, for the large inter-individual variation reported
for EH and CL. A considerable large inter-individual variation in the expression of the different CYP
isoforms has also been observed, ranging from 20-(CYP2E1 and CYP3A4) to >1000-fold (CYP2D6).
The liver is also the major organ for glucuronidation in the body. Glucuronide conjugates have
molecular characteristics that are associated with biliary excretion of a compound, i.e., a high molecular
weight, ionized and the presence of polar groups [55].

The identification and quantification of the important PK processes described above can be
investigated in relevant in vitro models, and predictions of PK properties like regional intestinal
permeability can be made early [56]. Most importantly, an estimate of human drug clearance
will determine how fast a drug is eliminated, and conversely define the dose range to study
in FIH [57]. Several different models have been suggested for the prediction of oral absorption
for the biopharmaceutical design of oral drug delivery systems [58,59]. The proposed BDDCS
has been shown to be useful in predicting some crucial ADME parameters and especially the
transport/absorption/elimination interplay [60]. Preclinical data can then be translated through
in vitro-in vivo extrapolation, or even through PBPK modeling to generate basic PK parameters such
as fraction of dose absorbed, bioavailability, clearance (CL), volume of distribution, and terminal
half-life. Furthermore, the accuracy of the QSAR predictions of effective intestinal permeability (Peff),
is significantly improved when based on a combination of molecular physicochemical descriptors and
molecular dynamics simulations from in vitro data [61]. Molecular simulations have been successfully
used to predict the effects of cholesterol in the lipid membrane fluidity [62]. Additionally, molecular
simulations have been reported to be useful as they are comparable to experimental data [63].
Among the molecular descriptors evaluated by Lipinski (e.g., polar surface area, hydrogen bond
donors (HBDs)/acceptors, Log D), the number of HBDs is the most restrictive when it comes to
intestinal membrane transport/absorption [64,65]. Two drugs violating this rule (i.e., >5 HBDs and low
intestinal Peff and Fabs), one of which is rifampicin, have been investigated thoroughly and offered a
potential explanation for drug absorption beyond the Lipinski Rule-of-five [66]. Based on a liposomal
permeation assay, it has been proposed that drug molecules with more than five HBD can be sufficiently
absorbed in the intestine by passive lipoidal diffusion [66]. Some drugs are absorbed by passive lipoidal
diffusion despite their unfavorable physicochemical properties. It is therefore necessary to find more
complex descriptions of the molecular interaction by applying a combination of experimental data and
molecular dynamic modeling and simulation to further improve the accuracy in predicting general
membrane transport across the cellular membrane barrier and not only in the GI-tract [66–69].

Physiologically based pharmacokinetic modeling is considered to assist drug product development
by providing quantitative predictions through a systems approach [70]. A mechanism-based model,
like that of the PBPK approach, separates drug-specific from system-specific elements, which allows for
the interspecies translation of the time course of the drug [41]. Physiologically based pharmacokinetic
models divide the body into anatomically and physiologically meaningful compartments, including
the gastrointestinal tract for absorption, the eliminating organs, and non-eliminating tissue
compartments [71]. In addition, compound-specific parameters such as physicochemical and
biochemical parameters (e.g., tissue/blood partitioning and metabolic CL) are incorporated into
the model to predict the plasma and tissue concentration versus the time profiles of a compound
in an in vivo system following intravenous or oral administration. Translation between species,
special populations, or disease states, are the result of changing these physiological parameters
accordingly. Several variations are in use, including a whole-body PBPK model describing the complete
organism, and hybrid PBPK models, combining PBPK elements with empirical compartmental PK to
simplify the model [72]. An important element in the physiologically based translation of PK is binding
of the drug of interest to proteins in the plasma, mainly albumin, lipo- or glycoproteins, or globulins.
Protein binding differs between experimental settings (in vitro) and species (in vivo) and should be
taken into account because it influences tissue penetration and the free drug that can interact with its
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target [73]. Physiologically based pharmacokinetic modeling predictions are a valuable tool in the
pharmaceutical industry due to the possibility of combining all the available and relevant information
that is generated during the preclinical stage, which helps improve decision making during the selection
process [74]. For instance, biorelevant dissolution-absorption PBPK modeling and simulation has been
reported as applied in 88% of early drug development processes [75]. Moreover, PBPK modeling
provides a powerful tool to study potential PK DDIs through incorporating the drug’s physicochemical
properties, PK properties, human physiological variables, and inter-individual variability estimates.

Predictions of PK parameters use information from preclinical studies in animals to transition
to clinical trials, i.e., FIH studies, when no clinical information is available to guide the decision
of the starting dose. Thus, the estimation of the starting dose in human subjects relies on the PK
knowledge of the drug from different species. It is essential to have preclinical PK data based on
blood, plasma, and/or tissue sampled longitudinally to optimally capture the complete drug profile
during a dosing interval. A model-based approach to the starting dose often uses allometric scaling to
predict human drug clearance and distribution volumes. Allometric scaling is based on the assumption
that physiological similarities exist between different species arising from anatomical similarities,
specifically similarities in body weights and body surface areas [76]. Historically, a maximum dose for
FIH studies was based on the no observed adverse effect level (NOAEL) in preclinical experiments,
an arbitrary safety factor, and allometric scaling. This approach is empirical by nature and therefore
limited. When more mechanistic data and models are available, a minimal anticipated biological effect
level (MABEL) can be estimated [42]. For example, preclinical PK-PD and interspecies differences in
the target can be utilized to estimate the MABEL for a FIH trial [77]. This has the benefit of being
driven by pharmacology, where FIH trials will answer pharmacological questions on PK and PD,
rather than being driven by toxicology or tolerability. Taking into account MABEL and safety factors,
a first study with single ascending doses (SAD study) will quantify the PK and ensure safety and
tolerability. A second study with multiple administered doses (MAD) can subsequently be designed
accordingly [78].

In addition to allometric scaling, the use of IVIVC has markedly increased [79–82]. It is
suggested that animal PBPK models should be used as part of a stepwise approach, in which
the first step uses animal data to understand the processes and verify the predictive power of in vitro
systems, and the second step is about forecasting human PK from in vitro data and in silico methods
(learn-and-confirm) [82]. The first step in predicting drug CL using IVIVC is to obtain intrinsic CL
(CLint) from in vitro data [83,84]. In vitro CLint values determined from various systems including
hepatocytes, cell transport models, liver or intestinal microsomes, or recombinant CYPs, either by
substrate depletion or metabolite formation, are normalized for cell, microsomal protein or enzyme
concentration. The next step consists of scaling the activity determined in vitro to the whole liver by
the use of a scaling factor, to account for incomplete microsomal recovery from the tissue to obtain
in vivo CLint. Finally, the third step involves the use of a liver model which incorporates the effects of
hepatic blood flow, plasma protein-binding and blood cell partitioning to convert the estimated in vivo
CLint into a hepatic CL (CLH). The well-stirred liver model is most commonly used, but the dispersion
model or the parallel tube model is also available [84].

Using high doses of oral anti-TB drugs may result in high plasma concentrations, leading to
an increased risk of adverse effects [85] while not ensuring adequate concentrations at the site of
action [85,86]. This has prompted investigation into the use of the pulmonary route to deliver anti-TB
drugs directly to the site of action in the lungs. Administering anti-TB drugs as inhaled formulations
ensures the delivery of the drug directly to the target organ, avoiding any unwanted systemic side
effects, thereby improving patient compliance [87]. Optimal pulmonary drug delivery for locally
acting drugs includes a high local lung concentration, extended lung residence time and low systemic
concentration [88]. A fundamental understanding of pulmonary dissolution, residence time, and lung
absorption processes is key for the successful development of inhaled products [89,90]. However,
inhaled formulations have many challenges, including formulation stability, pulmonary distribution,
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lung toxicity, and additives safety [91]. Furthermore, dosing of inhaled drugs is more complicated than
other routes of administration as their absorption in the lung is highly variable [91]. Thus, many in vitro
and in vivo models have been developed to study the PK of inhaled anti-TB drugs, specifically their
absorption and distribution, in order to evaluate the efficacy and safety of anti-TB drugs in the lungs.
These models, while allowing a reduction in biological complexity, still face many challenges, and can be
demanding to build [92]. In vivo animal models are the gold standard regarding the assessment of drug
clearance, systemic side effects and PK after pulmonary administration [92]. However, animal models
are not always able to mimic human pulmonary anatomy and physiology, or TB disease progression in
humans, and they do not exhibit extrapulmonary dissemination similar to humans [86]. Translation
from animal data to the clinic has been recognized as challenging [93]. Understanding the pulmonary
exposure is important, and animal data can contribute specific information about the lesion to plasma
ratio [94], as similar lung distribution ratios can be obtained in human. However, little is known
about the factors that influence drug distribution from plasma into the range of tissues, nodules and
cavities that are inhabited by the TB pathogen. Pulmonary TB lesions consist of a diversity of cell types,
tissue structures and vascular architectures which suggests that the distribution of the drug is not only
governed by passive equilibration between unbound drug concentration in plasma and tissue [95].
MALDI mass spectrometry imaging (MALD-MSI) is a new technique to study the distribution of small
molecules in the various compartments of pulmonary lesions [96]. Information from such studies not
only provides knowledge of regional differences in drug exposure, but also confirms a high exposure
in regions where a high density of persistent TB bacteria is found.

4. Prediction of Human Pharmacokinetic-Pharmacodynamic Relationship

In order to translate drug effects from preclinical information to the clinical phase of drug
development, defining a drug exposure-response relationship using preclinical information is of
importance. The PK-PD relationship is quantitative, predictive, and reproducible and is valid in
all disease models [57,58]. Thus, characterizing this relationship is of great benefit in preclinical
PK-PD studies to help guide dose selection and study design in humans. Exhaustive reviews of
preclinical experimental methods that quantify exposure-response relationships have previously
been performed [97,98]. These methods, such as classical time-kill experiments, hollow-fiber system
(HF), different murine models, rabbits and guinea pig, all mimic elements of the human pathology
to a certain extent, but all have their limitations. Here, the focus is on their informativeness of the
exposure-response relationship for translation to human prediction.

In vitro determination of the minimum inhibitory concentration (MIC) is informative about the
sensitivity of the bacterial strain to the compound. This is especially the case when the target sizes
of the M. tuberculosis infection, macrophages, are utilized as environmental context [97]. The MIC is
a measure of the net effect of the drug on bacterial growth and survival. However, it is very crude
and undynamic as it is measured at a specific concentration and after a fixed time, which might cause
it to deviate from the true MIC [99]. The MIC is also limited because the resolution is determined
by the chosen dilution steps, and bigger dilution steps increase the risk of under- or overestimating
the MIC. In addition, the determination of MIC is based on visual inspection which makes it prone
to subjective error [99]. Mouton et al. have studied the variability between MIC measurements in
Staphylococcus aureus treated with linezolid and have concluded that over half of the variability in the
MIC measurements is either due to systemic and significant inter-laboratory differences or differences
between strains [100]. The other half can be explained by assay variation and different environmental
conditions, such as the media used and incubation temperature [100].

Several preclinical animal models for TB are in use. The advantage of an animal model over
in vitro systems is the holistic environment of a whole organism, including a functioning immune
system, physiological feedback systems and (drug) disposition. This results in more variability in
the determination of the exposure-response relationship and requires more effort to elucidate drug
effect from, for example, the immune system. The most emphasis is placed on murine models of
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TB [101], although there are arguments that the mouse is not a good model for TB in humans [102].
Mice can be housed in the required biosafety laboratories with ease, blood and tissue sampling is
well established, and both chronic and latent infections have been successfully used [103]. However,
the mice have a low susceptibility to M. tuberculosis and show only loosely organized granulomas,
and are therefore limited when considering lesion-specific treatment. Granuloma formation in guinea
pigs and rabbits is more representative of human granulomas, including caseous necrosis [102].
Guinea pigs are highly susceptible to M. tuberculosis which makes infection as straightforward as
exposure to exhaustion from TB patients [103]. Rabbits are also utilized to study a slower response
to treatment, disease relapse, and resistance development due to lung cavities, and their size makes
studying drug distribution to TB lesions more feasible [98]. The experimental toolbox regarding
immunologic reagents and genetic techniques is, however, more restricted in these animals, and both
need more difficult and expensive husbandry. Granuloma formation can also be studied non-invasively
in the zebrafish, a relatively new disease model organism in drug discovery and development [103].
Because of their transparency and easy genetic modification, fluorescence microscopy of pathogen
and immune cells can be leveraged to follow infection and treatment [104]. With the small size
and high fecundity of the zebrafish, high-throughput assays are available to test large numbers of
compounds in short amounts of time with enough statistical power [105]. Methods to quantify internal
drug exposure have also been established [106–108]. Recently, an exposure-response relationship has
been developed for isoniazid in the zebrafish, which translated well to humans [109]. In general,
non-invasive imaging of lesion pathology by computed tomography (CT) and positron emission
tomography (PET) has the potential to improve the comparison between preclinical and clinical
measurements of disease progression and treatment [102]. Ordonez et al have demonstrated this by
using dynamic [11C]rifampicin PET-CT imaging in patients newly diagnosed with pulmonary TB
and rabbits infected with cavitary TB to noninvasively measure intralesional drug concentration-time
profiles and, consequently, time to bacterial extinction [110]. They also employed integrated modeling
of the PET-captured concentration-time profiles in hollow-fiber bacterial kill curve experiments to
predict the rifampicin dose required to achieve a cure in 4 months, which has a huge potential in
antimicrobial drug development to shorten TB treatments [110]. It is clear that no single animal
model represents a heterogeneous disease such as TB. A mechanistic understanding of TB in humans
will identify which elements are characterized best by which animal model [103]. Independently
of which preclinical experimental method is utilized, the sampling design of both PK (e.g., drug
and/or metabolite concentration) and PD (e.g., infection, bacterial burden) biomarkers is of the utmost
importance. The careful selection of datapoints over the duration of the experiment and at different
drug concentrations is essential for a reliable quantification of the exposure-response relationship.

Regulatory agencies suggest determining PK/PD indices based on preclinical data for antibiotics,
e.g., the area under the concentration curve over MIC (AUC/MIC), the maximum concentration (Cmax)
over MIC (Cmax/MIC), and the percent of a 24-hour time period that the drug concentration is above MIC
(T > MIC), for the establishment of the PK-PD profile of antimicrobials and for deciding the most optimal
dosing regimens. PK/PD indices are based on preclinical studies that describe the PK-PD relationships
of antimicrobials [111]. However, PK/PD indices suffer from several clear limitations, some of which
are inherent to their use of MIC, the limitations of which are discussed above. Using PK/PD indices
ignores information about the time-course of individual PK and PD processes [112]. As summary
endpoints, they lack the ability to track the changes in the bacterial load over time [113]. Furthermore,
when using AUC/MIC as a PK/PD index, the rate of drug administration is ignored, while, when using
Cmax/MIC, bacterial killing is assumed to depend solely on the maximum drug concentration, ignoring
drug half-life and infusion duration [99]. Using T > MIC assumes that the maximal drug effect has
been reached when MIC is reached, regardless of whether higher concentrations were given [99].
Additionally, the colony-forming units (CFU) versus PK/PD indices profile shows great variability
in the CFU observations for the same PK/PD indices value [99]. These PK/PD indices are selected
and predicted as PD targets using HFS-TB to quantify a more realistic in vitro exposure-response
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relationship that is translatable to in vivo [98,99,114]. However, despite EMA’s qualification of the
preclinical HFS-TB to be used to complement existing methodologies, it still suffers from a number of
limitations. The EMA advises caution when interpreting HFS-TB results, as many instances of over-
and under-estimates of the drug’s anti-TB activity have been reported [115]. In addition, HFS-TB
cannot replace animal models or clinical studies [116], while the reproducibility of the method by other
laboratories has not yet been assessed [115].

Mechanistic, or semi-mechanistic, PK-PD models in TB based on preclinical data allow for the
description of the multiple mycobacterial populations present. A mechanism-based PK-PD model by
Hollow-fiber systems for TB has the advantage of being able to mimic dynamic PK in comparison
to more traditional static time-kill experiments. A semi-mechanistic PK-PD model can be derived
using HTS data [117–119]. Khan et al. describes susceptible, resting, and non-colony-forming bacterial
populations [120]. The multistate tuberculosis pharmacometric (MTP) model is a semi-mechanistic
mathematical model that can describe and identify the exposure-response profile of a drug towards
three bacterial subpopulations: fast-, slow-, and non-multiplying bacteria. It has been successfully
applied to describe in vitro [121], mouse [122], and clinical data [123]. In addition, the MTP model has
been successfully used in an MID3 approach, to predict observations from early clinical studies using
clinical dose-response forecasting from preclinical in vitro studies of rifampicin and in combination
with isoniazid [15,16]. This model has been selected by The Impact and Influence Initiative of the
Quantitative Pharmacology (QP) Network of the American society of Clinical Pharmacology and
Therapeutics (ASCPT) to highlight the most impactful examples of QP applications where the role
of quantitative translational pharmacology has bridged science and practice to make better, faster,
and more efficient decisions in drug discovery and development [25]. Another mechanism-based
model is the Magombedze et al. model that mimics the disease state in TB patients by describing
the mycobacterial population as logarithmic growth-phase, semi-dormant, and persister bacilli [117].
In addition, a pulmonary PK-PD model of isoniazid has been developed to better characterize the
relationship between its PK and its anti-TB effects in the lungs [124].

5. Prediction of Human Drug-Drug Interactions

Tuberculosis requires a combination therapy of three different antibiotics or more, which increases
the risk of DDIs. Drug-drug interactions between drugs that are intended to be used in combination
should be considered as early as possible. The prediction of DDIs from preclinical data will improve
the ability to predict the total efficacy of the combination in relation to the drugs in monotherapy,
as well as compared to expected additivity, i.e., the sum of all effects from the drugs when given alone.
DDIs that result in less efficacy in the combination than in a combination with one less drug should be
avoided. However, combinations that result in an efficacy less than the expected additivity, but still
result in more efficacy than when one drug is omitted, can be considered. Drug-drug interactions can
relate to both PK interactions, i.e., one drug (the perpetrator) impacting the absorption, distribution,
metabolism, or excretion of another drug (the victim), or PD interactions, i.e., the perpetrator impacting
the potency or efficacy of the victim drug.

Regulatory guidelines on the investigation of DDIs are brief about the use of in vitro data, while in an
MID3 context, knowledge on the relevant mechanisms of, e.g., metabolism combined with in vitro data
can be leveraged to decide on suitable combinations of drugs without extensive experimentation [125].
Both in vitro studies as well as animal experiments can be utilized to assess the potential for PK
DDIs [126]. In vitro studies make use of metabolically active hepatocytes or cells overexpressing
drug transporters to determine the PK interaction potential of a new drug [127]. When studying
DDIs in preclinical species, the between-species differences in transporters or enzymes should be
taken into account [128]. Pharmacokinetic DDIs mostly impact drug clearance by the induction or
inhibition of metabolic enzymes like those from the CYP family and, to some extent, ABC and transport
proteins. Such an interaction by the perpetrator drug will greatly enhance or reduce the exposure of
the victim drug. For example, rifampicin induces bedaquiline clearance 5-fold, and should therefore
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not be combined for therapy [129]. Because bedaquiline has a very long terminal half-life, potential
DDIs are difficult to identify using traditional methods, whereas properly designed experiments
and quantitative modeling are necessary to elucidate such interactions [130]. Drug distribution can
also be impacted because of the induction or inhibition of drug transporters like the permeability
glycoprotein (P-gp), which is present on the canalicular membrane and blood-brain barrier, among
others. Physiology based pharmacokinetic modeling can be very successful to predict metabolic DDIs,
and specific DDI studies can be assisted by modeling and simulations [131]. Some anti-TB drugs
are reported to be substrates for different hepatic enzymes or known to be inducers or inhibitors of
metabolic enzymes. Rifampicin is well known as a CYP3A4 modulator [132,133], as well as an inducer
of P-gp [134]. Additionally, even though the effect of clofazimine on CYP3A4 and P-gp is still unclear,
clofazimine has been shown to delay the time taken to reach Cmax of rifampicin [135]. Horita et al.
studied the effects of anti-TB and antiretroviral drugs on CYP3A4 and P-gp, and they found that
clofazimine exhibits weak inductive effects on CYP3A4 [136]. Furthermore, the co-administration
of bedaquiline and clofazimine has been reported to increase the risk of QT prolongation [137,138].
As described above, these potential DDIs can be predicted from in vitro data through, for example,
in vitro-in vivo scaling [139] or PBPK [140]. A transcription/translation model and a PBPK model have
been developed to predict rifampicin-induced DDIs with reasonable accuracy [141].

In contrast to PK interactions, due to clearly defined processes of absorption, distribution,
metabolism, and excretion, PD interactions are harder to investigate and quantify. This is because,
since a clinical DDI study has to study the drugs both alone and in combination, the number of arms
in the study will substantially increase when studying three or more interacting drugs. The Greco
model [142], which is derived from Loewe additivity, was developed to assess PD interactions.
However, such a model suffers from being limited to interactions between only two drugs. On the other
hand, the general pharmacodynamic interaction (GPDI) model overcomes this limitation, in addition
to being flexible to different drug interaction data without requiring knowledge on the modes of
action of the studied drugs [143]. The GPDI model-based approach proposes a PD interaction to be
quantifiable, as multidirectional shifts in drug efficacy (Emax) or potency (EC50) and explicates the
drugs’ role as victim, perpetrator or even both at the same time. The GPDI model has been utilized
along with the MTP model [121] to develop a model-informed preclinical approach for the prediction
of PD interactions [144]. The MTP-GPDI model has been further employed to successfully evaluate
and quantify the PD interactions of anti-TB drug combinations in mice [145]. Furthermore, it has
been demonstrated that the GPDI model outperforms conventional methods in the evaluation of PD
interactions for TB drugs [146].

It is clear that the need for a combination therapy of TB could potentially result in DDIs in the clinic.
It is therefore essential to quantitatively understand the DDIs, both PK- and PD-interactions, as early
as possible in drug development. Utilizing data from in vitro combination experiments combined with
preclinical in vivo data on the exposure-response relationships of the drugs in combination and early
clinical data, will inform on which combinations of drugs at which doses are efficacious and safe for
patients. This quantitative integration of data and translation to the clinic is possible through the MID3
model-informed framework.

6. Conclusions

The development of new combinations of anti-TB drugs is both promising and challenging.
Novel drug combinations and drug delivery routes require novel and innovative techniques.
Model-informed drug discovery and development is an integrated framework of preclinical and
clinical data through translational models that show great promise in selecting and predicting which
drug regimens to carry forward to be evaluated in clinical trials. The MID3 framework supports
decision making in drug development in relation to the prediction of efficacious and safe combinations
of new drugs and translates this to the clinic. It is essential for drug developers to collaborate across
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disciplines, and academic and industry borders and train a new type of scientist in experimental and
computational innovation.
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