
applied
sciences

Article

Highly Curved Lane Detection Algorithms
Based on Kalman Filter

Byambaa Dorj 1 , Sabir Hossain 2 and Deok-Jin Lee 2,*
1 School of Information Communication Technology, Mongolian University of Science and Technology,

Sukhbaatar 14191, Mongolia; doeoo8306@gmail.com
2 School of Mechanical & Convergence System Engineering, Kunsan National University, 558 Daehak-ro,

Gunsan 54150, Korea
* Correspondence: deokjlee@kunsan.ac.kr; Tel.: +82-63-469-4725

Received: 12 February 2020; Accepted: 25 March 2020; Published: 30 March 2020
����������
�������

Abstract: The purpose of the self-driving car is to minimize the number casualties of traffic accidents.
One of the effects of traffic accidents is an improper speed of a car, especially at the road turn. If we
can make the anticipation of the road turn, it is possible to avoid traffic accidents. This paper presents
a cutting edge curve lane detection algorithm based on the Kalman filter for the self-driving car.
It uses parabola equation and circle equation models inside the Kalman filter to estimate parameters
of a using curve lane. The proposed algorithm was tested with a self-driving vehicle. Experiment
results show that the curve lane detection algorithm has a high success rate. The paper also presents
simulation results of the autonomous vehicle with the feature to control steering and speed using
the results of the full curve lane detection algorithm.

Keywords: lane detection; top view image transform; adaptive threshold; Hough transform; Kalman
filter; parabolic model; circle model

1. Introduction

The development of the self-driving car is needed for the safety of driver and passenger on
the vehicle [1]. Traffic accidents occur for various reasons. The majority of traffic accidents are caused
by an improper speed on the road turning or unexpected lane changes when avoiding an obstacle [2].
Some modern cars are already equipped with the emergency braking system, collision warning system,
lane-keeping assist system, adaptive cruise control. These systems could be used to help avert traffic
accidents when driver is distracted or lost control.

The two most important parts of advanced driver assistance systems are a collision avoidance
system and a Lane keeping assist system, which could help to reduce the number of traffic accidents.
A fundamental technique for effective collision avoidance and lane-keeping is a robust lane detection
method [3]. Especially that method should detect a straight or a curve lane in the far-field of view.
A car moving at a given speed will spend a certain time to stop or reduce speed while keeping stability.
This means it is necessary to detect road lane in the near field as well as in far-field of view.

Tamal Datta et al. showed a way to detect lane in their lane detection technique [4]. The technique
consists of image pre-processing steps (grayscale conversion, canny edge detection, bitwise logical
operation) on the image input; it also masked the image according to the region of interest (ROI) in
the image. The final stage uses the Hough transformation [5,6] method and detects the lines. Using this
method, the parameters for a straight line are achieved. However, their technique did not propose lane
detection for curve lanes and can obtain parameters of curve lines (parabola and circle).

A video-based land detection at night was introduced by Xuan He et al. [7]. The method steps
include the Gabor filter operator [8] for image pre-processing, adaptive splay ROI, and Hough transform

Appl. Sci. 2020, 10, 2372; doi:10.3390/app10072372 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-1376-9815
https://orcid.org/0000-0002-9369-4640
https://orcid.org/0000-0003-3462-8579
http://dx.doi.org/10.3390/app10072372
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/7/2372?type=check_update&version=2

Appl. Sci. 2020, 10, 2372 2 of 22

to detect the marker. Lane tracking method that uses Kalman filter [9], is added after lane detection to
increase the probability and real-time detection of lane markers. But, their pre-processing steps lack
an adaptive auto-threshold method to detect lane in all conditions.

In order to eliminate the uncertainty of lane condition, Shun Yang et al. proposed a replacement
of image pre-processing [10]. Their method uses deep learning-based lane detection as a replacement
for feature-based lane detection. However, the UNet [11] based encoder-decoder requires high GPU
processing unit like Nvidia GPU Geforce GTX 1060 for training and testing. Also, the paper claims
CNN-branch is much slower than the feature-based branch in terms of detection rate. The fast detection
rate is very important in the case of the autonomous vehicle since the vehicle moves at a very high
speed. Also, the result lacks to show results of lane detection in case of the curved lane.

Moreover, Yeongho Son et al. introduced an algorithm [12] to solve the limitation of detecting
lane in light illumination change or a shadow or worn-out lanes by using a local adaptive threshold
to extract important features from the lane images. Moreover, their paper proposes a feedback
RANSAC [13] algorithm to avoid false lane detection by computing two scoring functions based on
the lane parameters. They used the quadratic lane model for lane fitting and Kalman filter for smooth
lane tracking. However, the algorithm did not provide any close-loop lane keeping control to stay
in lane.

Furthermore, a combination of the Hough transform and R-least square method is introduced
by Libiao Jiang et al. [14]. They used the Kalman filter to track the lane. Their combination of this
method provides results on straight lane marking. Similarly, hazed-based Kalman is used to enhance
the information of the road by Chen Chen et al. [15]. Also, Huifend Wang et al. introduced a straight
and polynomial curve model to detect the continuity of the lane [16]. The curve fitting method was
used to detect the lanes.

In our paper, we introduce a curve lane detection algorithm based on Kalman filter [17].
This algorithm includes Otsu’s threshold method [18,19] to convert RGB to Black-White image,
image pre-processing using top view image transform [20,21] to create a top-view image of the road,
a Hough transform for detecting the straight lane in the near-field of the sensor [22], and parameter
estimation of the curve lane using a Kalman filter. Also, we use two different models for a curve lane in
the Kalman filter. One is the parabola model [23], another is the circle model [24]. The Kalman-based
linear parabolic lane detection is already tested on consecutive video frames using the parabolic model
by K.H. Lim et al. [25]. The paper presents the method which is extended to the circular model.
Our proposed method shows robustness against noise. Effective parameter estimation of a curve lane
detection could be used to control the speed and heading angle of the self-driving car [26].

Multiple methods have been introduced to detect lane for the self-driving car and advanced driver
assistance systems. The vision-based lane detection methods usually used some popular techniques,
an edge detector to create a binary image, the classical Hough transform [27,28] to detect straight lines,
the color segmentation to extract lane markers, etc.

Most of the methods focused on only a straight lane detection in the near distance using a Hough
transform or some simple methods. For a curve lane, few number methods used to detect curved
roads such as parabola [23] and hyperbola fitting and B-Splines [29,30], Bezier Splines. To enhance
the result of lane detection, the area at the bottom of an image is considered as a region of interest
(ROI) [31]. Segmenting ROI will increase the efficiency of the lane detection method and eliminate
the effect of the upper portion of a road image [32]. The majority of the methods directly detect lanes
from the images that are captured by the front-view camera, as shown in Figure 1. However could be
robust using the raw image for detect lane, estimating the parameters of road lane may be difficult [33].

This research is considered on a curve lane detection algorithm, which can estimate parameters
of the road turning and define geometric shapes based on the mathematical model and the Kalman
filter [17].

Appl. Sci. 2020, 10, 2372 3 of 22

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 22

Figure 1. Field of view on the road turning.

This research is considered on a curve lane detection algorithm, which can estimate parameters
of the road turning and define geometric shapes based on the mathematical model and the Kalman
filter [17].

2. Research Method

Our new algorithm consists of two main parts. (1) Image pre-processing. It contains Otsu’s
threshold method [19] and top view image transform [20] to create a top-view image of the road.
Hough transform predict the straight lane in the near-field of view. (2) A curve lane detection. We
use the Kalman filter to detect a curve lane in the far-field of view. This Kalman filter algorithm
includes two different methods, the first method is based on the parabola model [23], and the second
method is based on the circle model [24]. This method shown in Figure 2 can estimate parameters of
the road turning and find geometric shapes based on the mathematical model and the Kalman filter.

Figure 2. The flow diagram of the lane detection algorithms using the Kalman filter.

2.1. Otsu Threshold

In 1978 inventor Nobuyuki Otsu introduced a new threshold technique. The Otsu threshold
technique uses statistical analysis, which can be used to determine the optimal threshold for an image.
Nobuyuki Otsu introduced a problem with one threshold for two classes and later extended to a
problem with multiple thresholds. For the two classes, this technique assumes the image containing
two classes of pixels following bi-modal histogram, foreground pixels, and background pixels. The
Otsu threshold method minimizes the sum of the weighted class variances. He named this sum
within-class variance and defines it as equation (1): 𝜎 = 𝜔 𝜎 + 𝜔 𝜎 , (1)

The criterion tries to separate the pixels, such that the classes are homogeneous in themselves.
Since a measure of group homogeneity is the variance, the Otsu criterion follows consequently.
Therefore, the optimal threshold is the one, for which the within-class variance is minimal. In order
to find the optimal threshold instead of minimizing the within-class variance is defined as equation
(2):

𝜎 = 𝜔 (𝜇 − 𝜇) + 𝜔 (𝜇 − 𝜇)𝜇 = 𝑝(𝑖) ∙ 𝑖 (2)

Figure 1. Field of view on the road turning.

2. Research Method

Our new algorithm consists of two main parts. (1) Image pre-processing. It contains Otsu’s
threshold method [19] and top view image transform [20] to create a top-view image of the road.
Hough transform predict the straight lane in the near-field of view. (2) A curve lane detection. We use
the Kalman filter to detect a curve lane in the far-field of view. This Kalman filter algorithm includes
two different methods, the first method is based on the parabola model [23], and the second method is
based on the circle model [24]. This method shown in Figure 2 can estimate parameters of the road
turning and find geometric shapes based on the mathematical model and the Kalman filter.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 22

Figure 1. Field of view on the road turning.

This research is considered on a curve lane detection algorithm, which can estimate parameters
of the road turning and define geometric shapes based on the mathematical model and the Kalman
filter [17].

2. Research Method

Our new algorithm consists of two main parts. (1) Image pre-processing. It contains Otsu’s
threshold method [19] and top view image transform [20] to create a top-view image of the road.
Hough transform predict the straight lane in the near-field of view. (2) A curve lane detection. We
use the Kalman filter to detect a curve lane in the far-field of view. This Kalman filter algorithm
includes two different methods, the first method is based on the parabola model [23], and the second
method is based on the circle model [24]. This method shown in Figure 2 can estimate parameters of
the road turning and find geometric shapes based on the mathematical model and the Kalman filter.

Figure 2. The flow diagram of the lane detection algorithms using the Kalman filter.

2.1. Otsu Threshold

In 1978 inventor Nobuyuki Otsu introduced a new threshold technique. The Otsu threshold
technique uses statistical analysis, which can be used to determine the optimal threshold for an image.
Nobuyuki Otsu introduced a problem with one threshold for two classes and later extended to a
problem with multiple thresholds. For the two classes, this technique assumes the image containing
two classes of pixels following bi-modal histogram, foreground pixels, and background pixels. The
Otsu threshold method minimizes the sum of the weighted class variances. He named this sum
within-class variance and defines it as equation (1): 𝜎 = 𝜔 𝜎 + 𝜔 𝜎 , (1)

The criterion tries to separate the pixels, such that the classes are homogeneous in themselves.
Since a measure of group homogeneity is the variance, the Otsu criterion follows consequently.
Therefore, the optimal threshold is the one, for which the within-class variance is minimal. In order
to find the optimal threshold instead of minimizing the within-class variance is defined as equation
(2):

𝜎 = 𝜔 (𝜇 − 𝜇) + 𝜔 (𝜇 − 𝜇)𝜇 = 𝑝(𝑖) ∙ 𝑖 (2)

Figure 2. The flow diagram of the lane detection algorithms using the Kalman filter.

2.1. Otsu Threshold

In 1978 inventor Nobuyuki Otsu introduced a new threshold technique. The Otsu threshold
technique uses statistical analysis, which can be used to determine the optimal threshold for an image.
Nobuyuki Otsu introduced a problem with one threshold for two classes and later extended to a problem
with multiple thresholds. For the two classes, this technique assumes the image containing two classes
of pixels following bi-modal histogram, foreground pixels, and background pixels. The Otsu threshold
method minimizes the sum of the weighted class variances. He named this sum within-class variance
and defines it as Equation (1):

σ2
w = ω1σ

2
1 +ω2σ

2
2, (1)

The criterion tries to separate the pixels, such that the classes are homogeneous in themselves.
Since a measure of group homogeneity is the variance, the Otsu criterion follows consequently.
Therefore, the optimal threshold is the one, for which the within-class variance is minimal. In order to
find the optimal threshold instead of minimizing the within-class variance is defined as Equation (2):{

σ2
B = ω1(µ1 − µT)

2 +ω2(µ2 − µT)
2

µT =
∑L

i = 1 p(i)·i
(2)

Appl. Sci. 2020, 10, 2372 4 of 22

where µT is the total mean calculated over all gray levels. So the task of finding the optimal set of
thresholds

[
t∗1, t∗2, . . . t∗M−1

]
in Equation (3) is either to find the thresholds, which minimize the within-class

variance or to find the ones, which maximize the between-class variance. The result is the same.[
t∗1, t∗2, . . . t∗M−1

]
= argmin

{
σ2

w

}
= argmax

{
σ2

B

}
, (3)

2.2. Top View Image Transformation

The second step in our algorithm is to create a top view image of the road. The output image
is the top view or bird’s view of the road where lanes will be parallel or close to parallel after this
transformation. Also, this transformation converts from pixels in the image plane to the world
coordinate metric. If necessary we can measure distance using that transformed image.

Figure 3 illustrates the geometry of the top-view image transformation. For the transformation,
we need some parameters, where θh is the horizontal view angle of the camera, θv is the vertical view
angle of the camera, H is the height of the camera located, and α is the tilt angle of the camera.

The height of the camera located in the vehicle is measured in the metric system. We can create
two types of top-view image, one is measured by metric using H parameter, another is measured by
pixel using Hpixel parameter. V is the width of the front view image Pi(Ui, Vi) and is proportional to
Wmin of the top view image field illustrated in Figure 3. Equations (4) and (5) show the relationship
between the H measured by metric and Hpixel measured by pixel.

Lmin = H ∗ tan(α)
Wmin = 2 ∗ Lmin ∗ tan(θh/2)
K = V/Wmin

, (4)

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 22

where μ is the total mean calculated over all gray levels. So the task of finding the optimal set of
thresholds 𝑡∗, 𝑡∗, … 𝑡∗ in equation (3) is either to find the thresholds, which minimize the within-
class variance or to find the ones, which maximize the between-class variance. The result is the same. 𝑡∗, 𝑡∗, … 𝑡∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝜎 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝜎 , (3)

2.2. Top View Image Transformation

The second step in our algorithm is to create a top view image of the road. The output image is
the top view or bird’s view of the road where lanes will be parallel or close to parallel after this
transformation. Also, this transformation converts from pixels in the image plane to the world
coordinate metric. If necessary we can measure distance using that transformed image.

Figure 3 illustrates the geometry of the top-view image transformation. For the transformation,
we need some parameters, where θ is the horizontal view angle of the camera, θ is the vertical
view angle of the camera, 𝐻 is the height of the camera located, and α is the tilt angle of the camera.

The height of the camera located in the vehicle is measured in the metric system. We can create
two types of top-view image, one is measured by metric using H parameter, another is measured by
pixel using 𝐻 parameter. V is the width of the front view image 𝑃 (𝑈 , 𝑉) and is proportional to
Wmin of the top view image field illustrated in Figure 3. Equations (4) and (5) show the relationship
between the H measured by metric and 𝐻 measured by pixel. 𝐿 = 𝐻 ∗ tan(𝛼) 𝑊 = 2 ∗ 𝐿 ∗ tan(𝜃 /2)𝐾 = 𝑉/𝑊 , (4)

Figure 3. Top view image transformation.

Coefficient K is used to transform the metric into the pixel data.

⎩⎨
⎧ 𝐻 = 𝐻 ∙ 𝐾 𝛾 = θ ∙ 𝑈 − 𝑈𝑈 𝑥 = 𝐿 − 𝐿 = 𝐻 ∗ tan(𝛼 + 𝛾) − 𝐻 ∗ tan(𝛼) (5)

Figure 3. Top view image transformation.

Appl. Sci. 2020, 10, 2372 5 of 22

Coefficient K is used to transform the metric into the pixel data.
Hpixel = H·K
γ = θv·

(U−Ui
U

)
xi = Li − L0 = Hpixel ∗ tan(α+ γ) −Hpixel ∗ tan(α)

(5)

According to the geometrical description shown in Figure 3, for each point Pi(Ui, Vi) on the front
view image, the corresponding sampling point Pt(Ui, Vi) on the top view image can be calculated by
using the previous Equations (4)–(6). β = θh·

(V−Vi
V

)
yi = Li· tan(θh − β)

(6)

Then RGB color data are copied from the (Ui, Vi) position of the front view camera image to
the (xi, yi) position of the top view image.

After top-view image transformation, line detection becomes a simple process, which only detects
parallel lines that are generally separated by a given, fixed distance. The next step is to detect a straight
lane using the Hough transform.

2.3. Straight Lane Detection with Hough Transform

In the near view image, a straight line detection algorithm is formulated by using a standard
Hough transformation. The Hough transform also detects many incorrect lines. We need to eliminate
the incorrect lanes to reduce computational time and complexity [34].

To remove incorrect lines using the same algorithms on the road lane, the removal of detected
lines is needed in which the vehicle is not in. For example, after Hough transformation on the binary
image, the longest two lines will be chosen to avoid the issue. The detection for curve lane will start
at the finishing points of those two longest two lines which were chosen based on length.

2.4. Curve Lane Detection Based on Kalman Filter and Parabola Equation

In this paper, the most important part is the curve line detection part. This method should detect
a straight or a curve line in the far-field of view. Image data (white points in the far-field of view)
include uncertainties and noise generated during capturing and processing steps. Therefore, as a robust
estimator against these irregularities, a Kalman filter was adopted to form an observer [22]. First of all,
we need to define the equation of the curve line, which is a non-linear equation. For the curve line,
the best-fit equations are the parabola equation and the circle equation.

In this part, we consider a curve lane detection algorithm which is based on the Kalman filter
and Parabola equation. From parabola equation y = ax2 + bx + c we need to define three parameters
using at least three measurement data. Equations (7) and (8) show system equation of the parabola.
Figure 4 illustrates the basic parabolic model of road turning.

yi−1 = ax2
i−1 + bx1

i−1 + cx0
i−1

yi = ax2
i + bx1

i + cx0
i

yi+1 = ax2
i+1 + bx1

i+1 + cx0
i+1

(7)

x2

i−1 x1
i−1 x0

i−1
x2

i x1
i x0

i
x2

i+1 x1
i+1 x0

i+1

a
b
c

 =

yi−1

yi
yi+1

 (8)

where xi−1, xi, xi+1 and yi−1, yi, yi+1 are the measurement data of the curve line detection process. In our
case, the measurement data are the coordinates of the white points in the far section.

Appl. Sci. 2020, 10, 2372 6 of 22

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 22

According to the geometrical description shown in Figure 3, for each point 𝑃 (𝑈 , 𝑉) on the front
view image, the corresponding sampling point 𝑃 (𝑈 , 𝑉) on the top view image can be calculated by
using the previous Equation (4), (5), and (6). β = θ ∙ 𝑉 − 𝑉𝑉 𝑦 = 𝐿 ∙ tan(𝜃 − 𝛽) (6)

Then RGB color data are copied from the (𝑈 , 𝑉) position of the front view camera image to the (𝑥 , 𝑦) position of the top view image.
After top-view image transformation, line detection becomes a simple process, which only

detects parallel lines that are generally separated by a given, fixed distance. The next step is to detect
a straight lane using the Hough transform.

2.3. Straight Lane Detection with Hough Transform

In the near view image, a straight line detection algorithm is formulated by using a standard
Hough transformation. The Hough transform also detects many incorrect lines. We need to eliminate
the incorrect lanes to reduce computational time and complexity [34].

To remove incorrect lines using the same algorithms on the road lane, the removal of detected
lines is needed in which the vehicle is not in. For example, after Hough transformation on the binary
image, the longest two lines will be chosen to avoid the issue. The detection for curve lane will start
at the finishing points of those two longest two lines which were chosen based on length.

2.4. Curve Lane Detection Based on Kalman Filter and Parabola Equation

In this paper, the most important part is the curve line detection part. This method should detect
a straight or a curve line in the far-field of view. Image data (white points in the far-field of view)
include uncertainties and noise generated during capturing and processing steps. Therefore, as a
robust estimator against these irregularities, a Kalman filter was adopted to form an observer [22].
First of all, we need to define the equation of the curve line, which is a non-linear equation. For the
curve line, the best-fit equations are the parabola equation and the circle equation.

In this part, we consider a curve lane detection algorithm which is based on the Kalman filter
and Parabola equation. From parabola equation 𝑦 = 𝑎𝑥 + 𝑏𝑥 + 𝑐 we need to define three
parameters using at least three measurement data. Equations (7) and (8) show system equation of the
parabola. Figure 4 illustrates the basic parabolic model of road turning.

Figure 4. Parabola model of the road turning.

From Equation (9) we can estimate a, b, c parameters easily.
a
b
c

 =

inv

x2

i−1 x1
i−1 x0

i−1
x2

i x1
i x0

i
x2

i+1 x1
i+1 x0

i+1

yi−1

yi
yi+1

 (9)

Using this matrix form we can implement our Kalman filter design for curve lane detection.
Two important matrices of the Kalman filter are the measurement transition matrix (H) and the state
transition matrix (A). It can be expressed as Equation (10):

[Yi] = [Hi][Xi] (10)

In our case, the measurement transformation matrix [Hi] contains three white points coordinate
values of x axis rearranging the calculation as Equation (11). But, the transition matrix is the identity
matrix, because of our Kalman filter design used for the image process.

[Yi] =

yi−1

yi
yi+1

 [Hi] =

x2

i−1 x1
i−1 x0

i−1
x2

i x1
i x0

i
x2

i+1 x1
i+1 x0

i+1

 [
Xprior

]
=

a
b
c

 (11)

These two matrices are often referred to as the process and the measurement models, as they serve
as the basis for a Kalman filter. The Kalman filter has two steps: the prediction step and the correction
step. The prediction step can be expressed as follows, Equations (12) and (13):

Xpost = AiXprior + Buk;
[
Xpost

]
=

[
Xprior

]
(12)

Ppost = AiPpriorAT
i + Qr; Ppost = Pprior + Qr (13)

where Ppost is the covariance of the predicted state. The correction steps of the Kalman filter can be
expressed through the following Equations (14), (15) and (17).

Ki+1 = (PpostHT)
(
HPpostHT + R

)−1
+ Qr (14)

Appl. Sci. 2020, 10, 2372 7 of 22

Xpost = Xprior + K
(
zi −HiXprior

)
; zi =

ymeas(i−1)
ymeas(i)

ymeas(i+1)

 (15)

where Ki+1 is the Kalman gain, Xpost is the a posteriori estimate state at the i-th white point. Ppost is the a
posteriori estimate error covariance matrix at the i-th white point in the Equation (17).

The Equation (16) shows a matrix form of a posteriori estimate state.
ai+1

bi+1

ci+1

 =

ai
bi
ci

+ K

ymeas(i−1)
ymeas(i)

ymeas(i+1)

−

x2
i−1 x1

i−1 x0
i−1

x2
i x1

i x0
i

x2
i+1 x1

i+1 x0
i+1

ai
bi
ci

 (16)

Ppost = (I −KHi)Pprior (17)

To evaluate the viability of the proposed algorithms, we tested the parabola equation using both
real data and noisy measurement data in Matlab. The Kalman filter can estimate the parameters of
the parabola equation from noisy data. The result section shows a comparison between the measurement
value and estimation value, the real value. Figure 5 shows the expected results of left and right turning
on the road using the parabolic model based on the Kalman filter [35].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 22

measurement value and estimation value, the real value. Figure 5 shows the expected results of left
and right turning on the road using the parabolic model based on the Kalman filter [35].

Figure 5. Left and right turning on the road.

From all these experiment results from the result section, we can see one relationship between
road turning and “a” parameter of our approach. If the road is turning toward the left side, the “a”
parameter is lower than zero. If the road is turning toward right side, “a” parameter is higher than
zero and if the road is straight, “a” parameter is almost equal to zero. This process is shown in Figure
6.

Figure 6. Relationship between “a” parameter and road turning.

Figure 5. Left and right turning on the road.

From all these experiment results from the result section, we can see one relationship between
road turning and “a” parameter of our approach. If the road is turning toward the left side, the “a”
parameter is lower than zero. If the road is turning toward right side, “a” parameter is higher than zero
and if the road is straight, “a” parameter is almost equal to zero. This process is shown in Figure 6.

2.5. Curve Lane Detection Based on Kalman Filter and Circle Equation

For the curve line, the second-best fit equation is the circle equation, shown in Figure 7. In this
part, we consider curve line detection algorithms [24] based on the Kalman filter and circle equation.
From the circle equation r2 = (x− h)2 + (y− k)2 we need to define circle radius r and the center of
circle (h, k).

Using every three points of a circle we can draw a pair of chords. Based on these two chords we
can calculate the center of the circle [36]. If we have n number points, it is possible to calculate n− 2
number center.

Pairs of chords in each chain are used to calculate the center. Here, (x1, y1), (x2, y2), (x3, y3) points
divide a circle to three arcs, and L1, L2 are the perpendicularly bisecting lines of the corresponding

Appl. Sci. 2020, 10, 2372 8 of 22

chords. P1, P2 points, shown in Figure 8 [36], are located in the lines L1, L2, and the Equations (18)
and (21) show the coordinates of P1, P2 points.{

P1(x) = (x1 + x2)/2
P1(y) = (y1 + y2)/2

(18)

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 22

measurement value and estimation value, the real value. Figure 5 shows the expected results of left
and right turning on the road using the parabolic model based on the Kalman filter [35].

Figure 5. Left and right turning on the road.

From all these experiment results from the result section, we can see one relationship between
road turning and “a” parameter of our approach. If the road is turning toward the left side, the “a”
parameter is lower than zero. If the road is turning toward right side, “a” parameter is higher than
zero and if the road is straight, “a” parameter is almost equal to zero. This process is shown in Figure
6.

Figure 6. Relationship between “a” parameter and road turning.
Figure 6. Relationship between “a” parameter and road turning.

Perpendicular lines rules and P1 points coordinate are used to calculate the equation of L1 line in
Equations (19) and (20)

y = m1x + c1 m1 =
y1 − y2

x1 − x2
m11 = −

(
1

m1

)
(19)

c11 = P1(y) − P1(x)m11 y = m11x + c11 (20)

For the L2 line same calculation runs to estimate the equation of L2 line, expressed in form of
Equations (22) and (23). {

P2(x) = (x2 + x3)/2
P2(y) = (y2 + y3)/2

(21)

y = m2x + c2 m2 =
y2 − y3

x2 − x3
m22 = −

(1
m2

)
(22)

Appl. Sci. 2020, 10, 2372 9 of 22

c22 = P2(y) − P2(x)m22 y = m22x + c22 (23)

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 22

2.5. Curve Lane Detection Based on Kalman Filter and Circle Equation

For the curve line, the second-best fit equation is the circle equation, shown in Figure 7. In this
part, we consider curve line detection algorithms [24] based on the Kalman filter and circle equation.
From the circle equation 𝑟 = (𝑥 − ℎ) + (𝑦 − 𝑘) we need to define circle radius 𝑟 and the center
of circle(ℎ, 𝑘).

Figure 7. Circle model of the road turning.

Using every three points of a circle we can draw a pair of chords. Based on these two chords we
can calculate the center of the circle [36]. If we have 𝑛 number points, it is possible to calculate 𝑛 − 2
number center.

Pairs of chords in each chain are used to calculate the center. Here, (𝑥 , 𝑦), (𝑥 , 𝑦), (𝑥 , 𝑦)
points divide a circle to three arcs, and 𝐿 , 𝐿 are the perpendicularly bisecting lines of the
corresponding chords. 𝑃 , 𝑃 points, shown in Figure 8 [36], are located in the lines 𝐿 , 𝐿 , and the
Equations (18) and (21) show the coordinates of 𝑃 , 𝑃 points.

Figure 8. Calculation of the center of the circle.

Figure 7. Circle model of the road turning.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 22

Figure 8. Calculation of the center of the circle.

𝑃 () = (𝑥 + 𝑥)/2𝑃 () = (𝑦 + 𝑦)/2 (18)

Perpendicular lines rules and 𝑃 points coordinate are used to calculate the equation of 𝐿 line
in equations (19) and (20) 𝑦 = 𝑚 𝑥 + 𝑐 𝑚 = 𝑦 − 𝑦𝑥 − 𝑥 𝑚 = − 1𝑚 (19)

𝑐 = 𝑃 () − 𝑃 ()𝑚 𝑦 = 𝑚 𝑥 + 𝑐 (20)

For the 𝐿 line same calculation runs to estimate the equation of 𝐿 line, expressed in form of
equation (22) and (23). 𝑃 () = (𝑥 + 𝑥)/2𝑃 () = (𝑦 + 𝑦)/2 (21)

𝑦 = 𝑚 𝑥 + 𝑐 𝑚 = 𝑦 − 𝑦𝑥 − 𝑥 𝑚 = − 1𝑚 (22)

𝑐 = 𝑃 () − 𝑃 ()𝑚 𝑦 = 𝑚 𝑥 + 𝑐 (23)

Based on 𝐿 , 𝐿 lines we can calculate the center of the circle expressed in equations (24) and
(25). The intersection of these two lines indicates the center of the circle. 𝑦 = 𝑚 𝑥 + 𝑐𝑦 = 𝑚 𝑥 + 𝑐 (24)

𝑥 = 𝑐 − 𝑐𝑚 − 𝑚 𝑦 = 𝑚 𝑥 + 𝑐 (25)

But, this method cannot determine the center correctly, it is easily disturbed by noises. Therefore,
we need the second step for the estimation of the correct center using a Kalman filter. The Kalman
filter is estimated using the raw data of the center(𝑥𝑐𝑒𝑛𝑡𝑒𝑟, 𝑦𝑐𝑒𝑛𝑡𝑒𝑟), which is stored by the previous step.

For the x coordinate and y coordinate of the center, we need individual estimation based on the
Kalman filter. Equations (26)–(32) show the Kalman filter for the center of the circle. Equations (26)–
(28) show an initial value of Kalman gain and 𝑃 is the covariance of the predicted state. 𝐾 = 1, 𝐼 = 1, 𝐻 = 1, (26)

Figure 8. Calculation of the center of the circle.

Based on L1, L2 lines we can calculate the center of the circle expressed in Equations (24) and (25).
The intersection of these two lines indicates the center of the circle.{

ycenter = m22xcenter + c22

ycenter = m11xcenter + c11
(24)

xcenter =
c22 − c11

m11 −m22
ycenter = m11xcenter + c11 (25)

Appl. Sci. 2020, 10, 2372 10 of 22

But, this method cannot determine the center correctly, it is easily disturbed by noises. Therefore,
we need the second step for the estimation of the correct center using a Kalman filter. The Kalman
filter is estimated using the raw data of the center (xcenter, ycenter), which is stored by the previous step.

For the x coordinate and y coordinate of the center, we need individual estimation based
on the Kalman filter. Equations (26)–(32) show the Kalman filter for the center of the circle.
Equations (26)–(28) show an initial value of Kalman gain and Pprior is the covariance of the predicted state.

Kxcenter = 1, I = 1, H = 1, (26)

Xprior = Xpost (27)

Pprior = APpostAT + Qr = Ppost + Qr (28)

Kxcenter = (PpriorHT)
(
HPpriorHT + R

)−1
+ Qr (29)

zi = xcenter(i) (30)

Xpost = Xprior + Kxcenter

(
zi −HXprior

)
(31)

Ppost = (I −KxcenterH)Pprior + Qr (32)

where zi = xcenter(i) is the x-coordinate value of the center, which is stored by the previous step.
After that, we can run the same process for the y coordinate value of the center. In the end, we can
easily estimate the radius of the circle using these correct values of x, y coordinate of center.

Figure 9 shows a curve lane detection expected result of Kalman filter in the prepared road
image [35], this image has a circle shape road turning. The results present good performance for both
of them, left turning and right turning.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 22

(a) (b)

Figure 9. The road turning with the circle shape (a) right turning (b) left turning.

Using this result we can predict road turning and based on this value of radius we can control
the speed of the self-driving car. For example, if the radius value is low, the self-driving car needs to
reduce speed, if the radius value is high, the self-driving car can be on the same speed (no need to
reduce speed). Also using radius value we can estimate suitable velocity based on centrifugal force
Equation (33), as shown in Figure 10.

𝐹 = 𝑚 𝑢𝑟 ; 𝑢 = 𝐹 ∙ 𝑟𝑚 (33)

Figure 10. Centrifugal force when a car goes around a curve.

3. Setup for Simulation in 3D Environments and Results

The 3D lane detection environment for simulation is designed using the GAZEBO simulator.
MATLAB is used for image preprocessing, lane detection algorithm, and closed-loop lane keeping
control, shown in Figure 11a. It shows the software communication in brief.

(a)

Figure 9. The road turning with the circle shape (a) right turning (b) left turning.

Using this result we can predict road turning and based on this value of radius we can control
the speed of the self-driving car. For example, if the radius value is low, the self-driving car needs to
reduce speed, if the radius value is high, the self-driving car can be on the same speed (no need to
reduce speed). Also using radius value we can estimate suitable velocity based on centrifugal force
Equation (33), as shown in Figure 10.

Fc = m
u2

r
; u =

√
Fc·r
m

(33)

Appl. Sci. 2020, 10, 2372 11 of 22

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 22

(a) (b)

Figure 9. The road turning with the circle shape (a) right turning (b) left turning.

Using this result we can predict road turning and based on this value of radius we can control
the speed of the self-driving car. For example, if the radius value is low, the self-driving car needs to
reduce speed, if the radius value is high, the self-driving car can be on the same speed (no need to
reduce speed). Also using radius value we can estimate suitable velocity based on centrifugal force
Equation (33), as shown in Figure 10.

𝐹 = 𝑚 𝑢𝑟 ; 𝑢 = 𝐹 ∙ 𝑟𝑚 (33)

Figure 10. Centrifugal force when a car goes around a curve.

3. Setup for Simulation in 3D Environments and Results

The 3D lane detection environment for simulation is designed using the GAZEBO simulator.
MATLAB is used for image preprocessing, lane detection algorithm, and closed-loop lane keeping
control, shown in Figure 11a. It shows the software communication in brief.

(a)

Figure 10. Centrifugal force when a car goes around a curve.

3. Setup for Simulation in 3D Environments and Results

The 3D lane detection environment for simulation is designed using the GAZEBO simulator.
MATLAB is used for image preprocessing, lane detection algorithm, and closed-loop lane keeping
control, shown in Figure 11a. It shows the software communication in brief.

Figure 11. Gazebo-MATLAB Software Communication; (a) Brief Visualization of Software Architecture,
(b) RQT Graph.

Figure 11b shows the comprehensive connection between nodes and topics in the gazebo simulator.
From the gazebo GUI, the camera sensor node gives us the image_row topic. The Matlab node receives

Appl. Sci. 2020, 10, 2372 12 of 22

the raw RGB image of the lane and processes the frames. Then, the Matlab node generates the heading
angle and sends it using cmd_vel topic to the gazebo. In order to get the trajectory of the robot,
the odom topic is used to plot the position of the vehicle.

For lane detection and closed-loop lane keeping control, we used two simulated track
environments using pioneer robot-vehicle as shown in Figure 12. Using this image input from
the Gazebo simulator, the algorithm detects the lane and estimates the vehicle’s angular velocity
and linear velocity based on lane detection results and output in Matlab. Initial parameters are
set according to the simulation environment. For top view transformation, parameters are set as
H = 59, f = 0.01, α = 0.62, θv = 0.9, θh = 1.1, and to get the binary image of the lane, the auto
threshold for each channel is used. Threshaverage = 0.5804.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 22

(b)

Figure 11. Gazebo-MATLAB Software Communication; (a) Brief Visualization of Software
Architecture, (b) RQT Graph.

Figure 11b shows the comprehensive connection between nodes and topics in the gazebo
simulator. From the gazebo GUI, the camera sensor node gives us the image_row topic. The Matlab
node receives the raw RGB image of the lane and processes the frames. Then, the Matlab node
generates the heading angle and sends it using cmd_vel topic to the gazebo. In order to get the
trajectory of the robot, the odom topic is used to plot the position of the vehicle.

For lane detection and closed-loop lane keeping control, we used two simulated track

environments using pioneer robot-vehicle as shown in Figure 12. Using this image input from the
Gazebo simulator, the algorithm detects the lane and estimates the vehicle’s angular velocity and
linear velocity based on lane detection results and output in Matlab. Initial parameters are set
according to the simulation environment. For top view transformation, parameters are set as 𝐻 =59, 𝑓 = 0.01, 𝛼 = 0.62, 𝜃 = 0.9, 𝜃 = 1.1, and to get the binary image of the lane, the auto threshold
for each channel is used. 𝑇ℎ𝑟𝑒𝑠ℎ = 0.5804.

(a) (b)

Figure 12. Gazebo real-time physic engine simulation of the environments; (a) Normal Track
Environment, (b) Athletic field Track.

To assess the viability of the introduced algorithms, random noises were added with real values.
We performed the experiment with noisy measurement data of the parabola equation in Matlab.
Figure 12b illustrates the 3d view and map of the athletic field and Figure 12a illustrates another track
environment. The plotted graph of the trajectory path is generated from the odometry data of the
robot-vehicle which shows that the curve lane follows the road curve scenario, as shown in Figure
13a,b with respect to the lane tracking of environments from Figure 12a,b.

Figure 12. Gazebo real-time physic engine simulation of the environments; (a) Normal Track
Environment, (b) Athletic field Track.

To assess the viability of the introduced algorithms, random noises were added with real values.
We performed the experiment with noisy measurement data of the parabola equation in Matlab.
Figure 12b illustrates the 3d view and map of the athletic field and Figure 12a illustrates another
track environment. The plotted graph of the trajectory path is generated from the odometry data
of the robot-vehicle which shows that the curve lane follows the road curve scenario, as shown in
Figure 13a,b with respect to the lane tracking of environments from Figure 12a,b.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 22

(a) (b)

Figure 13. Plotted graph of the trajectory path of the ground vehicle; (a) Normal Track Environment,
(b) Athletic field Track.

The angular velocity control uses a proportional-integral-differential (PID) controller, which is
a control loop feedback mechanism. In PID control, the current output is based on the feedback of the
previous output, which is computed to keep the error small. The error is calculated as the difference
between the desired and the measured value, which should be as small as possible. Two objectives
are executed, keeping the robot driving along the centerline 𝑑𝑦 = 0 and keeping the robot heading
angle, 𝜃 = 0, as shown in Figure 14. The equation can be expressed as 𝑦 _ = 𝑦 +𝑦 /2; 𝑑𝑦 = 𝑦 _ − 𝑦 _ from where error term can be written as 𝑒𝑟𝑟𝑜𝑟 = −(𝑑𝑦 + 𝑙 sin 𝜃). The steering angle of the car can be estimated using a straight line detection result
while also detecting the curve lanes.

Figure 14. Steering angle calculation.

Figure 15 and Figure 16 show the PID error and 𝑑𝑦 difference in pixel respectively. The steering
angle is derived from the arctangent of the centerline of the vehicle. Here, co-efficient of p-term = 0.3
and co-efficient of d-term = 0.1. Figure 17 shows the steering angle in the simulation experiment in
scenario one. Figure 15 shows that most of the time the error is positive. As a result, Figure 17

Figure 13. Plotted graph of the trajectory path of the ground vehicle; (a) Normal Track Environment,
(b) Athletic field Track.

Appl. Sci. 2020, 10, 2372 13 of 22

The angular velocity control uses a proportional-integral-differential (PID) controller, which is
a control loop feedback mechanism. In PID control, the current output is based on the feedback
of the previous output, which is computed to keep the error small. The error is calculated as
the difference between the desired and the measured value, which should be as small as possible.
Two objectives are executed, keeping the robot driving along the centerline dy = 0 and keeping
the robot heading angle, θ = 0, as shown in Figure 14. The equation can be expressed as
ycenter_line =

(
yrightline

+ yle f tline

)
/2; dy = ycenter_line − ycenter_pixel from where error term can be written

as error = −(dy + l sinθ). The steering angle of the car can be estimated using a straight line detection
result while also detecting the curve lanes.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 22

(a) (b)

Figure 13. Plotted graph of the trajectory path of the ground vehicle; (a) Normal Track Environment,
(b) Athletic field Track.

The angular velocity control uses a proportional-integral-differential (PID) controller, which is
a control loop feedback mechanism. In PID control, the current output is based on the feedback of the
previous output, which is computed to keep the error small. The error is calculated as the difference
between the desired and the measured value, which should be as small as possible. Two objectives
are executed, keeping the robot driving along the centerline 𝑑𝑦 = 0 and keeping the robot heading
angle, 𝜃 = 0, as shown in Figure 14. The equation can be expressed as 𝑦 _ = 𝑦 +𝑦 /2; 𝑑𝑦 = 𝑦 _ − 𝑦 _ from where error term can be written as 𝑒𝑟𝑟𝑜𝑟 = −(𝑑𝑦 + 𝑙 sin 𝜃). The steering angle of the car can be estimated using a straight line detection result
while also detecting the curve lanes.

Figure 14. Steering angle calculation.

Figure 15 and Figure 16 show the PID error and 𝑑𝑦 difference in pixel respectively. The steering
angle is derived from the arctangent of the centerline of the vehicle. Here, co-efficient of p-term = 0.3
and co-efficient of d-term = 0.1. Figure 17 shows the steering angle in the simulation experiment in
scenario one. Figure 15 shows that most of the time the error is positive. As a result, Figure 17

Figure 14. Steering angle calculation.

Figures 15 and 16 show the PID error and dy difference in pixel respectively. The steering angle
is derived from the arctangent of the centerline of the vehicle. Here, co-efficient of p-term = 0.3
and co-efficient of d-term = 0.1. Figure 17 shows the steering angle in the simulation experiment in
scenario one. Figure 15 shows that most of the time the error is positive. As a result, Figure 17 generates
positive steering angles most of the time which means steering left. All the figures below are the result
of the simulation from the map of Figure 13a. The vehicle maneuver was performed counter-clockwise.
To stay in the center lane, the vehicle needs to take steering on the left. So, that is the reason for
error value were greater than zero during the simulation. The portion where the error value is less
than zero indicates steering right and also indicates that there is curve going right particularly at that
time. The sudden reason for the spike in 480th number of cycle indicates that the dy value becomes
high at that moment. In order to reduce the dy value and bring the vehicle to the position close to
the center line, the error value is increased. Therefore, there steering angle to turn left was higher than
its average value.

Appl. Sci. 2020, 10, 2372 14 of 22

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 22

generates positive steering angles most of the time which means steering left. All the figures below
are the result of the simulation from the map of Figure 13a. The vehicle maneuver was performed
counter-clockwise. To stay in the center lane, the vehicle needs to take steering on the left. So, that is
the reason for error value were greater than zero during the simulation. The portion where the error
value is less than zero indicates steering right and also indicates that there is curve going right
particularly at that time. The sudden reason for the spike in 480th number of cycle indicates that the 𝑑𝑦 value becomes high at that moment. In order to reduce the 𝑑𝑦 value and bring the vehicle to the
position close to the center line, the error value is increased. Therefore, there steering angle to turn
left was higher than its average value.

Figure 15. Error term for proportional-integral-differential (PID) control

Figure 16. Distance between robot position and center-line (lateral error).

Figure 17. Steering angle output from the vehicle in the simulator.

Figure 15. Error term for proportional-integral-differential (PID) control.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 22

generates positive steering angles most of the time which means steering left. All the figures below
are the result of the simulation from the map of Figure 13a. The vehicle maneuver was performed
counter-clockwise. To stay in the center lane, the vehicle needs to take steering on the left. So, that is
the reason for error value were greater than zero during the simulation. The portion where the error
value is less than zero indicates steering right and also indicates that there is curve going right
particularly at that time. The sudden reason for the spike in 480th number of cycle indicates that the 𝑑𝑦 value becomes high at that moment. In order to reduce the 𝑑𝑦 value and bring the vehicle to the
position close to the center line, the error value is increased. Therefore, there steering angle to turn
left was higher than its average value.

Figure 15. Error term for proportional-integral-differential (PID) control

Figure 16. Distance between robot position and center-line (lateral error).

Figure 17. Steering angle output from the vehicle in the simulator.

Figure 16. Distance between robot position and center-line (lateral error).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 22

generates positive steering angles most of the time which means steering left. All the figures below
are the result of the simulation from the map of Figure 13a. The vehicle maneuver was performed
counter-clockwise. To stay in the center lane, the vehicle needs to take steering on the left. So, that is
the reason for error value were greater than zero during the simulation. The portion where the error
value is less than zero indicates steering right and also indicates that there is curve going right
particularly at that time. The sudden reason for the spike in 480th number of cycle indicates that the 𝑑𝑦 value becomes high at that moment. In order to reduce the 𝑑𝑦 value and bring the vehicle to the
position close to the center line, the error value is increased. Therefore, there steering angle to turn
left was higher than its average value.

Figure 15. Error term for proportional-integral-differential (PID) control

Figure 16. Distance between robot position and center-line (lateral error).

Figure 17. Steering angle output from the vehicle in the simulator. Figure 17. Steering angle output from the vehicle in the simulator.

4. Experimental Results for the Curve Lane Detection

Figure 18 represents an image output from MATLAB in the pixel coordinate system in the algorithm.
The image frame generated from the camera on the center is converted to a pixel coordinate system
due to convenience.

Results of the auto threshold by Otsu are shown in Figure 19b from the output of the Figure 20a.
For manual threshold Threshred = 0.7491, Threshgreen = 0.7202, Threshblue = 0.5834 are used.
Threshred = 0.75, Threshgreen = 0.68, Threshblue = 0.6 are obtained from here from auto threshold values.
For top view transformation, parameters are set as H = 105, f = 0.01, α = 1.0472, θv = 0.9, θh = 1.1.

Appl. Sci. 2020, 10, 2372 15 of 22

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 22

4. Experimental Results for the Curve Lane Detection

Figure 18 represents an image output from MATLAB in the pixel coordinate system in the
algorithm. The image frame generated from the camera on the center is converted to a pixel
coordinate system due to convenience.

Figure 18. Front-view camera image in pixel coordinate system.

Results of the auto threshold by Otsu are shown in Figure 19b from the output of the Figure 20a.

For manual threshold 𝑇ℎ𝑟𝑒𝑠ℎ = 0.7491, 𝑇ℎ𝑟𝑒𝑠ℎ = 0.7202, 𝑇ℎ𝑟𝑒𝑠ℎ = 0.5834 are used. 𝑇ℎ𝑟𝑒𝑠ℎ = 0.75, 𝑇ℎ𝑟𝑒𝑠ℎ = 0.68, 𝑇ℎ𝑟𝑒𝑠ℎ = 0.6 are obtained from here from auto threshold
values. For top view transformation, parameters are set as 𝐻 = 105, 𝑓 = 0.01, 𝛼 = 1.0472, 𝜃 =0.9, 𝜃 = 1.1.

(a) Manual threshold (b) Otsu threshold

Figure 19. Manual and Otsu threshold from the athletic track lane image.

The auto threshold results in Figure 19b are clearer than the manual threshold results in Figure
19a. Also, it can be robust in outside experiments. Top view transformation converts from pixels in
the image plane to world coordinates metric as shown in Figure 20.

(a)

Figure 18. Front-view camera image in pixel coordinate system.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 22

4. Experimental Results for the Curve Lane Detection

Figure 18 represents an image output from MATLAB in the pixel coordinate system in the
algorithm. The image frame generated from the camera on the center is converted to a pixel
coordinate system due to convenience.

Figure 18. Front-view camera image in pixel coordinate system.

Results of the auto threshold by Otsu are shown in Figure 19b from the output of the Figure 20a.

For manual threshold 𝑇ℎ𝑟𝑒𝑠ℎ = 0.7491, 𝑇ℎ𝑟𝑒𝑠ℎ = 0.7202, 𝑇ℎ𝑟𝑒𝑠ℎ = 0.5834 are used. 𝑇ℎ𝑟𝑒𝑠ℎ = 0.75, 𝑇ℎ𝑟𝑒𝑠ℎ = 0.68, 𝑇ℎ𝑟𝑒𝑠ℎ = 0.6 are obtained from here from auto threshold
values. For top view transformation, parameters are set as 𝐻 = 105, 𝑓 = 0.01, 𝛼 = 1.0472, 𝜃 =0.9, 𝜃 = 1.1.

(a) Manual threshold (b) Otsu threshold

Figure 19. Manual and Otsu threshold from the athletic track lane image.

The auto threshold results in Figure 19b are clearer than the manual threshold results in Figure
19a. Also, it can be robust in outside experiments. Top view transformation converts from pixels in
the image plane to world coordinates metric as shown in Figure 20.

(a)

Figure 19. Manual and Otsu threshold from the athletic track lane image.

Figure 20. Top view transformed image; (a) Real image for top view transformation, (b) Top view,
(c) Otsu Threshold.

Appl. Sci. 2020, 10, 2372 16 of 22

The auto threshold results in Figure 19b are clearer than the manual threshold results in Figure 19a.
Also, it can be robust in outside experiments. Top view transformation converts from pixels in the image
plane to world coordinates metric as shown in Figure 20.

The Hough transform result generates lines that should be almost parallel, as shown in Figure 21.
Also, the section to track the curve lane starts at the finishing point of these two longest straight lines.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 22

 (b) (c)

Figure 20. Top view transformed image; (a) Real image for top view transformation, (b) Top view,
(c) Otsu Threshold

The Hough transform result generates lines that should be almost parallel, as shown in Figure
21. Also, the section to track the curve lane starts at the finishing point of these two longest straight
lines.

Figure 21. Hough transform result (the longest two lines).

To evaluate the effectiveness of the proposed algorithms, we tested with noisy measurement
data of the parabola equation in Matlab. The noisy data is created by adding random value to the
true value generated using the random function from Matlab. The measurement legend marked in
blue in Figure 22, is the combination of true value and noisy value. Our Kalman filter can estimate

Figure 21. Hough transform result (the longest two lines).

To evaluate the effectiveness of the proposed algorithms, we tested with noisy measurement data
of the parabola equation in Matlab. The noisy data is created by adding random value to the true
value generated using the random function from Matlab. The measurement legend marked in blue in
Figure 22, is the combination of true value and noisy value. Our Kalman filter can estimate parameters
of the parabola equation from noisy data. Figure 22 presents a comparison between the measurement
value and estimation value, the real value.

In Figure 23, the graphs illustrated the estimation results of parameters. At the end of the process,
estimation results become almost equal to true values. In this simulation, “a” parameter’s true value is 8
and the estimated value is 7.4079, the “b” parameter’s true value is 16 and the estimated value is 22.4366,
“c” parameter’s true value 50 and the estimated value is 37.115. There is almost no difference between
the estimated value and the true value compared to the noise value ratio. Now, it is possible to apply
the proposed algorithms in the processed image to perform the detection process for the curve lane.

Figure 24 presents the real experimental results of the curve line detection based on the Kalman filter.
Where the yellow line is the result of our algorithm and estimation results of first line a = −1.2186·10−4,
b = 0.8486, c= 382.4092, and estimation results of second line a = −3.0639·10−5, b = 0.238, c = 885
in the first experiment image of the road. In the second experiment image of the road, estimation
results of first line a = −2.6319·10−5, b = 0.2096, c = 938.96, estimation results of the second
line a = −3.166·10−5, b = 0.2832, c = 1292. The simulation result of circle detection is shown in
Figure 25. Figure 26 shows a comparison between the measurement value and the estimation value,
the true value of circle detection. Of course, the proposed algorithm also has some shortcomings.

Appl. Sci. 2020, 10, 2372 17 of 22

For example, the right-hand side of Figure 24 is the aftermath of shadow reflection from the left side of
the lane. The reflection produces brightness in the lane image, causing a slight change in the detection.
Further research is needed later.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 22

parameters of the parabola equation from noisy data. Figure 22 presents a comparison between the
measurement value and estimation value, the real value.

Figure 22. Comparison between measured value (Blue), KF estimation (Orange), and real value

(Red) of parabola detection.

In Figure 23, the graphs illustrated the estimation results of parameters. At the end of the process,
estimation results become almost equal to true values. In this simulation, “a” parameter’s true value
is 8 and the estimated value is 7.4079, the “b” parameter’s true value is 16 and the estimated value is
22.4366, “c” parameter’s true value 50 and the estimated value is 37.115. There is almost no difference
between the estimated value and the true value compared to the noise value ratio. Now, it is possible
to apply the proposed algorithms in the processed image to perform the detection process for the
curve lane.

Figure 22. Comparison between measured value (Blue), KF estimation (Orange), and real value (Red)
of parabola detection.Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 22

Figure 23. The simulation result of predicting ‘a’, ‘b’ and ‘c’ parameters from the parabolic detection.

Figure 24 presents the real experimental results of the curve line detection based on the Kalman
filter. Where the yellow line is the result of our algorithm and estimation results of first line 𝑎 =−1.2186 ∙ 10 , 𝑏 = 0.8486, c= 382.4092, and estimation results of second line 𝑎 = −3.0639 ∙ 10 , 𝑏 = 0.238, c= 885 in the first experiment image of the road. In the second experiment image of the
road, estimation results of first line 𝑎 = −2.6319 ∙ 10 , 𝑏 = 0.2096, c= 938.96, estimation results of
the second line 𝑎 = −3.166 ∙ 10 , 𝑏 = 0.2832, c = 1292. The simulation result of circle detection is
shown in Figure 25. Figure 26 shows a comparison between the measurement value and the
estimation value, the true value of circle detection. Of course, the proposed algorithm also has some
shortcomings. For example, the right-hand side of Figure 24 is the aftermath of shadow reflection
from the left side of the lane. The reflection produces brightness in the lane image, causing a slight
change in the detection. Further research is needed later.

(a) (b)

Figure 23. The simulation result of predicting ‘a’, ‘b’ and ‘c’ parameters from the parabolic detection.

Appl. Sci. 2020, 10, 2372 18 of 22

Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 22

Figure 23. The simulation result of predicting ‘a’, ‘b’ and ‘c’ parameters from the parabolic detection.

Figure 24 presents the real experimental results of the curve line detection based on the Kalman
filter. Where the yellow line is the result of our algorithm and estimation results of first line 𝑎 =−1.2186 ∙ 10 , 𝑏 = 0.8486, c= 382.4092, and estimation results of second line 𝑎 = −3.0639 ∙ 10 , 𝑏 = 0.238, c= 885 in the first experiment image of the road. In the second experiment image of the
road, estimation results of first line 𝑎 = −2.6319 ∙ 10 , 𝑏 = 0.2096, c= 938.96, estimation results of
the second line 𝑎 = −3.166 ∙ 10 , 𝑏 = 0.2832, c = 1292. The simulation result of circle detection is
shown in Figure 25. Figure 26 shows a comparison between the measurement value and the
estimation value, the true value of circle detection. Of course, the proposed algorithm also has some
shortcomings. For example, the right-hand side of Figure 24 is the aftermath of shadow reflection
from the left side of the lane. The reflection produces brightness in the lane image, causing a slight
change in the detection. Further research is needed later.

(a) (b)

Figure 24. The real experiment result of the cure lane detection based on Kalman filter (yellow);
(a) Output Result of Parabolic Curve Detection, (b) Result aftermath of shadow reflection.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 22

Figure 24. The real experiment result of the cure lane detection based on Kalman filter (yellow); (a)
Output Result of Parabolic Curve Detection, (b) Result aftermath of shadow reflection.

Figure 25. The simulation result of predicting ‘xc’, ‘yc’ and ‘r’ parameters from the circle detection.

Figure 26. Comparison between measured value (blue), KF estimation (Orange), and true value

(Red) of circle detection.

Figure 25. The simulation result of predicting ‘xc’, ‘yc’ and ‘r’ parameters from the circle detection.

After that, we tested in the top-view transformed image of the different circular real roads.
Figure 27a,b illustrates the result of curve line detection using the circle model in real road image.

Here, the yellow line is the result of our algorithm and radius r = 1708.2, the center of the circle
is xcenter = 957.81, ycenter = −1260.2. Using this result we can predict road turning and based on this
value of radius we can control the speed of the self-driving car. For example, if the radius value is
low, the self-driving car needs to reduce speed, if the radius value is high, the self-driving car can be
at the same speed (no need to reduce speed).

Appl. Sci. 2020, 10, 2372 19 of 22

Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 22

Figure 24. The real experiment result of the cure lane detection based on Kalman filter (yellow); (a)
Output Result of Parabolic Curve Detection, (b) Result aftermath of shadow reflection.

Figure 25. The simulation result of predicting ‘xc’, ‘yc’ and ‘r’ parameters from the circle detection.

Figure 26. Comparison between measured value (blue), KF estimation (Orange), and true value

(Red) of circle detection.

Figure 26. Comparison between measured value (blue), KF estimation (Orange), and true value (Red)
of circle detection.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 19 of 22

After that, we tested in the top-view transformed image of the different circular real roads.
Figure 27a,b illustrates the result of curve line detection using the circle model in real road image.

(a) (b)

Figure 27. The result of curve lane detection based on circle model and Kalman filter (Yellow); (a)
Input Image for Circle Detection, (b) Output Result

Here, the yellow line is the result of our algorithm and radius 𝑟 = 1708.2, the center of the circle
is 𝑥 = 957.81, 𝑦 = −1260.2. Using this result we can predict road turning and based on
this value of radius we can control the speed of the self-driving car. For example, if the radius value
is low, the self-driving car needs to reduce speed, if the radius value is high, the self-driving car can
be at the same speed (no need to reduce speed).

5. Conclusions

In this paper, a curve line detection algorithm using the Kalman filter is presented. The algorithm
is split into two sections:

(1) Image pre-processing. It contains Otsu’s threshold method. Top view image transforms to
create a top-view image of the road. A Hough transform to track a straight lane in the near-field of
view of the camera sensor.

(2) Curve lane detection. The Kalman filter provides the detection result for curve lanes in the
far-field of view. This section consists of two different methods, the first method is based on the
parabola model, and a second method is based on the circle model.

The experimental results show that the curve lane detection method can be effectively detected
even under a very noisy environment and with parabola and circle model. Also, we have deployed
the algorithm in the gazebo simulation environment to verify the performance. One advantage of the
proposed algorithm is its robustness against noise, as our algorithms are based on the Kalman filter.
The viability of the proposed curve lane detection strategy can be applied to the self-driving car
systems as well as to the advanced driver assistant systems. Based on our curve lane detection results,
we can predict road turning, and also estimate suitable velocity and angular velocity for the self-
driving car. Also, our proposed algorithm provides close-loop lane keeping control to stay in lane.
The experimental result shows the proposed algorithm achieves an average of 10 fps. Even though
the algorithm has an auto threshold method to adjust with different light conditions such as low-
light, further study is needed to detect lane in conditions like light reflection, shadows, worn-lane,
etc. Moreover, the proposed algorithm does not require high GPU processing unit to perform other
CNN-based algorithms. The performance is satisfactory in the CPU-based system according to the
fps. However, CNN-based study in the pre-processing step can provide a more efficient result for
edge detection.

Figure 27. The result of curve lane detection based on circle model and Kalman filter (Yellow); (a) Input
Image for Circle Detection, (b) Output Result.

5. Conclusions

In this paper, a curve line detection algorithm using the Kalman filter is presented. The algorithm
is split into two sections:

Appl. Sci. 2020, 10, 2372 20 of 22

(1) Image pre-processing. It contains Otsu’s threshold method. Top view image transforms to create
a top-view image of the road. A Hough transform to track a straight lane in the near-field of view
of the camera sensor.

(2) Curve lane detection. The Kalman filter provides the detection result for curve lanes in the far-field
of view. This section consists of two different methods, the first method is based on the parabola
model, and a second method is based on the circle model.

The experimental results show that the curve lane detection method can be effectively detected
even under a very noisy environment and with parabola and circle model. Also, we have deployed
the algorithm in the gazebo simulation environment to verify the performance. One advantage of
the proposed algorithm is its robustness against noise, as our algorithms are based on the Kalman
filter. The viability of the proposed curve lane detection strategy can be applied to the self-driving
car systems as well as to the advanced driver assistant systems. Based on our curve lane detection
results, we can predict road turning, and also estimate suitable velocity and angular velocity for
the self-driving car. Also, our proposed algorithm provides close-loop lane keeping control to stay in
lane. The experimental result shows the proposed algorithm achieves an average of 10 fps. Even though
the algorithm has an auto threshold method to adjust with different light conditions such as low-light,
further study is needed to detect lane in conditions like light reflection, shadows, worn-lane, etc.
Moreover, the proposed algorithm does not require high GPU processing unit to perform other
CNN-based algorithms. The performance is satisfactory in the CPU-based system according to
the fps. However, CNN-based study in the pre-processing step can provide a more efficient result for
edge detection.

Author Contributions: Conceptualization, B.D. and D.-J.L.; methodology, B.D. and S.H.; software, S.H. and B.D.;
validation, S.H., and B.D.; formal analysis, B.D.; investigation, B.D. and S.H.; resources, D.-J.L.; data curation,
D.-J.L.; writing—original draft preparation, B.D. and S.H.; writing—review and editing, S.H.; visualization, S.H.
and B.D.; supervision, D.-J.L.; project administration, D.-J.L.; funding acquisition, D.-J.L.. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded and conducted under the Competency Development Program for Industry
Specialists of Korean Ministry of Trade, Industry and Energy (MOTIE), operated by Korea Institute for Advancement
of Technology (KIAT). (No. N0002428, HRD program for Future Car). This research was supported by
the Development Program through the National Research Foundation of Korea (NRF) grant funded by the Korea
government (MSIT) (NO.2019R1F1A1049711).

Acknowledgments: I (Sabir Hossain) would like to express my thanks and appreciation to my supervisor Professor
Deok-Jin Lee for his direction and support throughout this paper. I would like to thank Byambaa Dorj for his
cooperation in this paper. Additionally, I would also like to pay my profound feeling of appreciation to all CAIAS
(Center for Artificial Intelligence and Autonomous System) lab members for their support and CAIAS lab for
providing me all the facilities that were required from the lab.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fleetwood, J. Public health, ethics, and autonomous vehicles. Am. J. Public Health 2017, 107, 532–537.
[CrossRef] [PubMed]

2. Green, M. “How Long Does It Take to Stop?” Methodological Analysis of Driver Perception-Brake Times.
Transp. Hum. Factors 2000, 2, 195–216. [CrossRef]

3. Vacek, S.; Schimmel, C.; Dillmann, R. Road-marking analysis for autonomous vehicle guidance.
In Proceedings of the European Conference on Mobile Robots, Freiburg, Germany, 19–21 September
2007; pp. 1–6.

4. Datta, T.; Mishra, S.K.; Swain, S.K. Real-Time Tracking and Lane Line Detection Technique for an Autonomous
Ground Vehicle System. In Proceedings of the International Conference on Intelligent Computing and Smart
Communication 2019; Springer: Singapore, 2020; pp. 1609–1625.

5. Ballard, D.H. Generalizing the Hough transform to detect arbitrary shapes. In Pattern Recognition; Elsevier:
Amsterdam, The Netherlands, 1981; Volume 13, pp. 111–122.

http://dx.doi.org/10.2105/AJPH.2016.303628
http://www.ncbi.nlm.nih.gov/pubmed/28207327
http://dx.doi.org/10.1207/STHF0203_1

Appl. Sci. 2020, 10, 2372 21 of 22

6. Illingworth, J.; Kittler, J. A survey of the hough transform. Comput. Vision, Graph. Image Process. 1988,
44, 87–116. [CrossRef]

7. He, X.; Duan, Z.; Chen, C.; You, F. Video-based lane detection and tracking during night. In CICTP
2019: Transportation in China—Connecting the World—Proceedings of the 19th COTA International Conference of
Transportation Professionals; A.S.C.E.: Reston, VA, USA, 2019; pp. 5794–5807. ISBN 9780784482292.

8. Mehrotra, R.; Namuduri, K.R.; Ranganathan, N. Gabor filter-based edge detection. Pattern Recognit. 1992,
25, 1479–1494. [CrossRef]

9. Welch, G.; Bishop, G. An Introduction to the Kalman Filter. In Pract. 2006, 7, 1–16.
10. Yang, S.; Wu, J.; Shan, Y.; Yu, Y.; Zhang, S. A Novel Vision-Based Framework for Real-Time Lane Detection

and Tracking; S.A.E. Technical Paper; S.A.E.: Warrendale, PA, USA, 2019; Volume 2019.
11. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.

In Lecture Notes in Computer Science, Proceedings of the International Conference on Medical Image Computing
and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015;
Volume 9351, pp. 234–241.

12. Son, Y.; Lee, E.S.; Kum, D. Robust multi-lane detection and tracking using adaptive threshold and lane
classification. Mach. Vis. Appl. 2019, 30, 111–124. [CrossRef]

13. Borkar, A.; Hayes, M.; Smith, M.T. Robust lane detection and tracking with Ransac and Kalman filter.
In Proceedings of the International Conference on Image Processing, ICIP, Cairo, Egypt, 7–10 November
2009; pp. 3261–3264.

14. Jiang, L.; Li, J.; Ai, W. Lane Line Detection Optimization Algorithm based on Improved Hough Transform
and R-least Squares with Dual Removal. In Proceedings of the 2019 IEEE 4th Advanced Information
Technology, Electronic and Automation Control Conference (IAEAC), Chengdu, China, 20–22 December
2019; Volume 1, pp. 186–190.

15. Chen, C.; Tang, L.; Wang, Y.; Qian, Q. Study of the Lane Recognition in Haze Based on Kalman Filter.
In Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing
(AIAM), Dublin, Ireland, 16–18 October 2019; pp. 479–483.

16. Wang, H.; Wang, Y.; Zhao, X.; Wang, G.; Huang, H.; Zhang, J. Lane Detection of Curving Road for Structural
Highway with Straight-Curve Model on Vision. IEEE Trans. Veh. Technol. 2019, 68, 5321–5330. [CrossRef]

17. Salarpour, A.; Salarpour, A.; Fathi, M.; Dezfoulian, M. Vehicle Tracking Using Kalman Filter and Features.
Signal Image Process. Int. J. 2011, 2, 1–8. [CrossRef]

18. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1996,
9, 62–66. [CrossRef]

19. Yuan, X.; Martínez, J.F.; Eckert, M.; López-Santidrián, L. An improved Otsu threshold segmentation method
for underwater simultaneous localization and mapping-based navigation. Sensors 2016, 16, 1148. [CrossRef]
[PubMed]

20. Dorj, B.; Lee, D.J. A Precise Lane Detection Algorithm Based on Top View Image Transformation
and Least-Square Approaches. J. Sens. 2016, 2016, 4058093. [CrossRef]

21. Aly, M. Real time detection of lane markers in urban streets. In Proceedings of the IEEE Intelligent Vehicles
Symposium, Eindhoven, The Netherlands, 4–6 June 2008; pp. 7–12.

22. Tseng, C.-C.; Cheng, H.-Y.; Jeng, B.-S. A Lane Detection Algorithm Using Geometry Information and Modified
Hough Transform. In Proceedings of the 18th IPPR Conference on Computer Vision, Graphics and Image
Processing, Taipei, Taiwan, 21–23 August 2005; Volume 1, pp. 796–802.

23. Jung, C.R.; Kelber, C.R. A lane departure warning system based on a linear-parabolic lane model.
In Proceedings of the IEEE Intelligent Vehicles Symposium, Parma, Italy, 14–17 June 2004; pp. 891–895.

24. Luo, L.; Xu, D.; Zhang, Z.; Zhang, J.; Qu, W. A fast and robust circle detection method using perpendicular
bisector of chords. In Proceedings of the 2013 25th Chinese Control and Decision Conference, CCDC 2013,
Guiyang, China, 25–27 May 2013; pp. 2856–2860.

25. Lim, K.H.; Seng, K.P.; Ang, L.-M.; Chin, S.W. Lane detection and Kalman-based linear-parabolic lane tracking.
In Proceedings of the 2009 International Conference on Intelligent Human-Machine Systems and Cybernetics,
IHMSC’09, Hangzhou, China, 26–27 August 2009; Volume 2, pp. 351–354.

26. Dorj, B.; Tuvshinjargal, D.; Chong, K.; Hong, D.P.; Lee, D.J. Multi-sensor fusion based effective obstacle
avoidance and path-following technology. Adv. Sci. Lett. 2014, 20, 1751–1756. [CrossRef]

http://dx.doi.org/10.1016/S0734-189X(88)80033-1
http://dx.doi.org/10.1016/0031-3203(92)90121-X
http://dx.doi.org/10.1007/s00138-018-0977-0
http://dx.doi.org/10.1109/TVT.2019.2913187
http://dx.doi.org/10.5121/sipij.2011.2201
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.3390/s16071148
http://www.ncbi.nlm.nih.gov/pubmed/27455279
http://dx.doi.org/10.1155/2016/4058093
http://dx.doi.org/10.1166/asl.2014.5680

Appl. Sci. 2020, 10, 2372 22 of 22

27. Assidiq, A.A.M.; Khalifa, O.O.; Islam, M.R.; Khan, S. Real time lane detection for autonomous vehicles.
In Proceedings of the International Conference on Computer and Communication Engineering 2008, ICCCE08:
Global Links for Human Development, Kuala Lumpur, Malaysia, 13–15 May 2008; pp. 82–88.

28. Sehestedt, S.; Kodagoda, S. Efficient Lane Detection and Tracking in Urban Environments. In Proceeding of
the European Conference on Mobile Robots (ECMR), Freiburg, Germany, 19–21 September 2007; pp. 1–6.

29. Lim, K.H.; Seng, K.P.; Ang, L.-M. River flow lane detection and Kalman filtering-based B-spline lane tracking.
Int. J. Veh. Technol. 2012, 2012, 465819. [CrossRef]

30. Yonghong, X.; Qiang, J. A new efficient ellipse detection method. In Proceedings of the Object Recognition
Supported by User Interaction for Service Robots, Quebec City, QC, Canada, 11–15 August 2002; Volume 16,
pp. 957–960.

31. Hoang, T.M.; Hong, H.G.; Vokhidov, H.; Park, K.R. Road lane detection by discriminating dashed and solid
road lanes using a visible light camera sensor. Sensors 2016, 16, 1313. [CrossRef] [PubMed]

32. Mu, C.; Ma, X. Lane Detection Based on Object Segmentation and Piecewise Fitting. Telkomnika Indones. J.
Electr. Eng. 2014, 12, 3491–3500. [CrossRef]

33. Seo, Y.; Rajkumar, R.R. Use of a Monocular Camera to Analyze a Ground Vehicle’s Lateral Movements for
Reliable Autonomous City Driving. In Proceedings of the IEEE IROS Workshop on Planning, Perception
and Navigation for Intelligent Vehicles, Tokyo, Japan, 3–7 November 2013; pp. 197–203.

34. Olson, C.F. Constrained Hough Transforms for Curve Detection. Comput. Vis. Image Underst. 1999, 73, 329–345.
[CrossRef]

35. Dorj, B. Top-view Image Transformation Based Precise Lane Detection Techniques and Embedded Control
for an Autonomous Self-Driving Vehicle. Ph.D. Thesis, Kunsan National University, Kunsan, Korea, 2017.

36. Wang, H.; Liu, N. Design and recognition of a ring code for AGV localization. In Proceedings of the 2003
Joint Conference of the 4th International Conference on Information, Communications and Signal Processing
and 4th Pacific-Rim Conference on Multimedia (ICICS-PCM 2003), Singapore, 15–18 December 2003;
Volume 1, pp. 532–536.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2012/465819
http://dx.doi.org/10.3390/s16081313
http://www.ncbi.nlm.nih.gov/pubmed/27548176
http://dx.doi.org/10.11591/telkomnika.v12i5.3240
http://dx.doi.org/10.1006/cviu.1998.0728
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Research Method
	Otsu Threshold
	Top View Image Transformation
	Straight Lane Detection with Hough Transform
	Curve Lane Detection Based on Kalman Filter and Parabola Equation
	Curve Lane Detection Based on Kalman Filter and Circle Equation

	Setup for Simulation in 3D Environments and Results
	Experimental Results for the Curve Lane Detection
	Conclusions
	References

