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Abstract: This study is aimed at determining optimum partial gear ratios to minimize the cost of a
three-stage helical gearbox. In this work, eleven input parameters were investigated to find their
influence on the optimum gear ratios of the second and the third stages (u2 and u3). To reach the goal,
a simulation experiment was designed and implemented by a cost optimization program. The results
revealed that in addition to the input parameters, their interactions also have important effects in
which the total ratio gearbox ratio (ut) and the cost of shaft (Cs) have the most impact on u2 and u3

responses, respectively. Moreover, the proposed models of the two responses are highly consistent to
the experimental results. The proposed regression equations can be applied to solve optimization
cost problems.

Keywords: gearbox; gear ratio; optimum gearbox design; three-stage helical gearbox

1. Introduction

In gearbox optimization design, determining optimum gear ratios has been a greatly important
task. It can be explained by the fact that the size, the mass, and therefore, the cost of a gearbox is
significantly affected by the gear ratios. To illustrate, Figure 1 shows the relation between the gear mass
and the gear ratio of the second stage u2 [1]. It can be seen from the figure that with the optimum value
of u2 (u2 = 2), the mass of gears is merely about 178 (kg) whereas it reaches about 275 (kg) when u2 = 6.
Therefore, there has been various research work dealing with optimizing gear ratios so far [1–11]. The
methodology of gear ratio optimization can basically be divided into three groups, e.g., graph method,
practical method, and model method. The oldest method is the graph method [2,12], whereby the gear
ratios are found based on the graph of the relationship between the component ratios and the total
gearbox ratio. Figure 2 is an example of this method in which the gear ratios of the first and the second
stages u1 and u2 of a three-stage helical gearbox are determined graphically. The practical method is
introduced in [13], in which the optimum gears are determined based on the actual data from gearbox
companies. For example, the mass of a two-stage helical gearbox is minimum when the ratio of the
center distances of the second to the first stage is 1.4–1.6 [13]. From that comment, the optimum gear
ratios are given. The most common method is the model method [3,4,14–16]. In this method, models
for calculating optimum gear ratios are determined by solving optimum problems with different target
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functions such as minimal gearbox length [3,4,15], minimal mass of gears [4] or minimal gearbox cross
section [4,14,16].
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In literature these studies have investigated various levels of gear stages such as two-stage 
gearboxes [17–20], three-stage gearbox [4,14], and four-stage gearboxes [21]. Also, the determination 
of optimum gear ratios of bevel gearbox was carried in [22–25]. Recently, the optimum partial gear 
ratios have been found for mechanical driven systems using a gearbox and a chain drive [5,9,25] or a 
V-belt drive [24,26,27].  

As previously mentioned, the optimal gear ratios directly impact the cost of the gearbox. 
However, up to now, there has been no research on calculating the optimal gear ratios with cost 
objective function. For this reason, this article presents a study on cost optimization in terms of 
finding the optimum gear ratio of three-stage Helical Gearboxes. The objective functions selected 
were the optimum gear ratios for second and third stage gears. Eleven input parameters were taken 
to investigate each parameter’s influence and their interaction on the objective functions. A 
simulation experiment was planned using computer program to carry out the above issue. 

2. Optimization Problem 

2.1. Cost Analysis of Three-Stage Helical Gearbox  

In practice, the cost of a gearbox depends on many cost elements, including the cost of the casing, 
shafts and gears, and bearings. However, due to the complicated cost calculation, the cost of bearings 
has not been considered in this study. As a result, the cost of a three-stage helical gearbox, namely 𝐶 , can be calculated as the Equation (1): 𝐶 = 𝐶 + 𝐶 + 𝐶  (1)

where 𝐶 , 𝐶 , and 𝐶  indicate the cost of gears, the cost of gearbox housing and the cost of shafts 
respectively. 
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In literature these studies have investigated various levels of gear stages such as two-stage
gearboxes [17,18], three-stage gearbox [4,14], and four-stage gearboxes [19]. Also, the determination of
optimum gear ratios of bevel gearbox was carried in [20–23]. Recently, the optimum partial gear ratios
have been found for mechanical driven systems using a gearbox and a chain drive [5,9,23] or a V-belt
drive [22,24,25].

As previously mentioned, the optimal gear ratios directly impact the cost of the gearbox. However,
up to now, there has been no research on calculating the optimal gear ratios with cost objective function.
For this reason, this article presents a study on cost optimization in terms of finding the optimum gear
ratio of three-stage Helical Gearboxes. The objective functions selected were the optimum gear ratios
for second and third stage gears. Eleven input parameters were taken to investigate each parameter’s
influence and their interaction on the objective functions. A simulation experiment was planned using
computer program to carry out the above issue.

2. Optimization Problem

2.1. Cost Analysis of Three-Stage Helical Gearbox

In practice, the cost of a gearbox depends on many cost elements, including the cost of the casing,
shafts and gears, and bearings. However, due to the complicated cost calculation, the cost of bearings
has not been considered in this study. As a result, the cost of a three-stage helical gearbox, namely Cgb,
can be calculated as the Equation (1):
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Cgb = Cg + Cgh + Cs (1)

where Cg, Cgh, and Cs indicate the cost of gears, the cost of gearbox housing and the cost of
shafts respectively.

Theoretically, the cost of a gear (the price of a gear) includes material costs, machining costs, heat
treatment costs, labor costs including management and overhead costs, etc. The gear cost also depends
on the gear shape and the gear size. The above component costs help to calculate the cost of a gear.
In addition, in practice, the gear cost is usually calculated by unit price per kilogram and it varies by
company policy and periodically. Therefore, in this study, the gear cost is investigated as a variable
and calculated by the Equation (2):

Cg = cg.m·mg (2)

in which, cg.m is the cost per a kilogram of gears (USD/kg), and mg is representative for the mass of all
gears in the gearbox (kg).

The cost of gearbox housing can be determined by Equation (3):

Cgh = cgh.m·mgh (3)

in this situation, cgh.m is the cost per a kilogram of gearbox housing (USD/kg), and mgh is the mass of
the gearbox housing (kg).

Finally, the cost of shafts is determined by Equation (4):

Cs = cs.m·ms (4)

where cs.m is the cost per a kilogram of shaft (USD/kg), and ms is the mass of all shafts in the gearbox
(kg).

Based on previously mentioned equations, it can be drawn that in order to get the cost of the
gearbox (Cgb) two factors should be identified. The first is the cost per a kilogram of gears, gearbox
housing, and shafts which are varied according to the market. The second is the mass of gears,
the gearbox housing, and shafts corresponding to mg, mgh, and ms. However, it is noticed that the
first factor is beyond the scope of this study, because it depends on the price of commercial markets.
Then the later will be obtained by the detailed calculations in the next part of this study.

2.2. The Determination of Gearbox Housing Mass

The mass of gearbox housing (mgh) can be simply calculated by using Equation (5):

mgh = ρgh·Vgh (5)

where, ρgh is the weight density of gearbox housing materials referred in Table 1; Vgh is the volume of
the gearbox housing (m3).

Table 1. Weight density of used materials.

ρgh (kg/m3) ρg (kg/m3) ρs (kg/m3)

7.2 7.82 7.85

Figure 3 presents the schematic relations of the gearbox housing dimensions. It is realized that the
shape of gearbox housing is constructed by various component rectangulars. Hence, the volume of the
gearbox housing can be determined by Equation (6).

Vgh = 2·Vb + 2·VA1 + 2·VA2 (6)
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where Vb, VA1, and VA2 are the volumes of bottom housing, side A1, and side A2 (kg), respectively.

Vb = L·B1·1.5·SG (7)

VA1 = L·H·SG (8)

Vb = B2·H·SG = (B1 − 2·SG)·H·SG (9)

Substituting (7), (8), and (9) into (6) gets:

Vgh = 3·L·B1·SG + 2·L·H·SG + 2·(B1 − 2·SG)·H·SG (10)

In which, L, H, B1, and SG can be determined by [26]:

L = (dw11 + dw21/2 + dw12/2 + dw22/2 + dw13/2 + dw22/2 + 22.5)/0.975 (11)

H = dw23 + 6.5·SG (12)

B1 = bw2 + bw3 + 6·SG (13)

SG = 0.005·L + 4.5 (14)
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Figure 3. Schema for determination of gearbox mass.

2.3. Gear Mass Calculations

The studied gearbox includes three stages, consequently the total mass of gears can be summed
up as follow:

mg = mg1 + mg2 + mg3 (15)

where, mg1, mg2, and mg3 represent the gear mass of the first, the second, and the third stages (kg) in
which the first one can be determined by the following equations:
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mg1 = ρg·

π·e1·d2
w11·bw1

4
+
π·e2·d2

w21·bw1

4

 (16)

where ρg is the weight density of gear material (kg/m3), cf. Table 1; e1 and e2 are the volume coefficients
of the drive gear and the driven gear of the first stage, respectively. In practice, e1 and e2 can be orderly
selected by the values of 1 and 0.6; bw1 is the width of the gears calculated by: bw1 = Xba1·aw1 (mm).

Similarly, we have:

mg2 = ρg·

π·e1·d2
w12·bw2

4
+
π·e2·d2

w22·bw2

4

 (17)

and

mg3 = ρg·

π·e1·d2
w13·bw3

4
+
π·e2·d2

w23·bw3

4

 (18)

where bw2 and bw3 are the gear widths which can be determined in order by (mm); bw2 = Xba2·aw2 and
bw3 = Xba3·aw3.

2.4. Shaft Mass Calculation

It is known that a three stage gearbox contains four shafts constructing three stages. For this
reason, the mass of the gearbox shafts can be determined by:

ms = ms1 + ms2 + ms3 + ms4 (19)

In which,
ms1 = ρs·π·d2

s1·ls1/4 (20)

ms2 = ρs·π·d2
s2·ls2/4 (21)

ms3 = ρs·π·d2
s3·ls3/4 (22)

ms4 = ρs·π·d2
s4·ls4/4 (23)

ms1, ms2, ms3, and ms4 are the mass of shafts 1, 2, 3, and 4 of the gearbox (kg) respectively; ρs is the
weight density of shaft material (cf. Table 1); ls1, ls2, ls3, and ls4 are orderly the length of shaft 1, 2 , 3,
and 4 of the gearbox established by (cf. Figure 1):

ls1 = B1 + 1.2·ds1 (24)

ls1 = ls2 = B1 (25)

ls4 = B1 + 1.2·ds4 (26)

In the above equations [12]:
ds1 = [T11/(0.2·[τ])]1/3 (27)

ds2 = [T12/(0.2·[τ])]1/3 (28)

ds3 = [T13/(0.2·[τ])]1/3 (29)

ds4 = [T14/(0.2·[τ])]1/3 (30)

where [τ] is the allowable shear stress. In this study, its value is chosen as [τ] = 17 MPa.
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2.5. Determination of the Centre Distances of the Gear Stages

In addition to the module of gears, center distance is also an important factor for designing as
well as optimizing gearbox. According to [12], the center distance of the i stage of the gearbox can be
calculated by equation (31):

awi = ka·(ui + 1)· 3
√

T1i·kHβ/
(
[σHi]

2
·ui·Xba1

)
(31)

where:

– kHβ is the contacting load ratio for pitting resistance selected by 1.1 [12];
– [σHi] is the allowable contact stress of the i stage (MPa);
– ka is the material coefficient; As the gear material is steel, ka = 43;
– Xba1 is the coefficient of wheel face width of the i stage;
– T1i is the torque on the drive shaft of the i stage (Nmm) determined by:

T1i =
Tr∏3

j=i(ui·η4−i
hg ·η

5−i
be )

(32)

According to [12], the pinion and the gear pitch diameters of the i stage can be calculated by the
value of the center distance as the following equations:

dw1i = 2·awi/(u1 + 1) (33)

dw2i = 2·awi·ui/(ui + 1) (34)

2.6. Optimization Problem

Based on previously mentioned analyses, it can be emphasized that in order to reduce the cost of
gearbox, minimizing the objective function (Cgb) or Cgb should satisfy the following constraints:

1 ≤ u1 ≤ 91 ≤ u2 ≤ 91 ≤ u3 ≤ 9 (35)

It can be clarified that to solve the optimizing solution, it is essential to optimize the values of
partial gear ratios of u1, u2, and u3. On the other hand, we have the relation between transmission
ratios and partial ratios, ut = u1·u2·u3. Hence, in this study, instead of optimizing all three mentioned
partial ratios, the optimization of only two partial ratios (u2 and u3) are considered. The partial ratio
can be determined by equation: u1 = ut/(u2·u3).

3. Experimental Work

To investigate the influences of factors on objective functions of u2 and u3, simulation experiments,
namely screening experiments, are carried out. Eleven factors (or input parameters) listed in Table 2
are selected for the exploration. Low and high values are considered to test each input factor. As the
experiment in this work is a simulation experiment, it is not necessary to reduce the number of
experiments required to be performed like real experiments. Therefore, it is desired to perform full
factorial design of 211 instead of the Taguchi method as the usual practice. Nevertheless, the expecting
function is not available in Minitab@19, therefore the model of 211−4 and 1/16 fraction is purposely
adopted. Consequently, 211−4 = 128 tests for the simulation experiment are utilized. This method
is also the way for the largest number of experiments. Moreover, the use of a screening design is
aimed at eliminating influential parameters. This is the simplest method to determine the effects of
parameters as well as their interactions on the target function. On the other hand, it is possible to
provide mathematical models that the Taguchi method cannot.
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Table 2. Input parameters.

Real Factor Minitab®19 Name Unit Low High

Total gearbox ratio A ut - 10 100
Coefficient of wheel face width of stage 1 B Xba1 - 0.3 0.35
Coefficient of wheel face width of stage 2 C Xba2 - 0.33 0.38
Coefficient of wheel face width of stage 3 D Xba3 - 0.35 0.4
Allowable contact stress of stage 1 E AS1 MPa 350 420
Allowable contact stress of stage 2 F AS2 MPa 350 420
Allowable contact stress of stage 3 G AS3 MPa 350 420
Output torque H Tout Nm 1000 10000
Cost of gearbox housing I Cgh USD/kg 1 5
Cost of gears J Cg USD/kg 2 9
Cost of shafts K Cs USD/kg 1.5 5

The demonstration of the input parameters and the responses can be seen in Table 2, where the
factors are orderly assigned as factors A, B, etc. The output responses are presented in Table 3.

Table 3. Experimental plans and output responses.

Run Order Center Pt Blocks ut Xba1 Xba2 Xba3 AS1 AS2 AS3 Tout Cgh Cg Cs u2 u3

1 1 1 30 0.35 0.38 0.4 350 420 350 1000 1 2 1.5 4.02 3.64
2 1 1 100 0.35 0.33 0.36 420 350 420 1000 5 2 1.5 4.08 4.24
3 1 1 100 0.3 0.33 0.4 420 350 350 1000 5 9 5 4.11 3.73
4 1 1 30 0.35 0.33 0.4 350 350 350 1000 5 2 1.5 3.63 3.58
5 1 1 100 0.3 0.33 0.36 350 420 350 1000 5 9 1.5 5.22 2.59
6 1 1 30 0.35 0.38 0.4 420 350 350 10000 5 9 1.5 3.03 3.28
. . .

(Appendix A)
127 1 1 30 0.3 0.38 0.4 420 420 420 10000 1 2 5 4.11 5.83
128 1 1 100 0.3 0.38 0.36 420 350 350 10000 5 9 5 4.02 3.55

4. Results and Discussions

4.1. The Influence of Input Parameters and Their Interactions

The evolution of the optimum gear ratio of the second step (u2) as functions of each input
parameter is presented in Figure 4. It is observed that u2 increases when Total gearbox ratio (ut),
Allowable contact stress of stage 2 (AS2), and Cost of shafts (Cs) increase also. Nevertheless, for this
tendency it is realized that Total gearbox ratio (ut) has greater influence than that of other factors.
Conversely, u2 decreases with the growth of Allowable contact stress of stage 1 and 3 (AS1 and AS3),
and Output torque (Tout). Moreover, it is shown that Coefficients of wheel face width of stage 1, 2,
and 3 (Xba1, Xba2 and Xba3) do not have influence on u2. Regarding to the case of u3 (c.f. Figure 4b),
the experimental results reveal that Cost of gears

(
Cg

)
and Cost of shafts (Cs) have a significant effect

on the value of u3. It means that u3 develops when Cost of shafts rises or Cost of gears declines.
Furthermore, the first five input parameters mentioned in Table 2 do not have impact on the evolution
of u3. It is noticed that the influence investigation of the input factors on response as previously
mentioned do not take their interactions into account. This will be considered in the next part of the
current study.
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Figure 5a displays the interactions between the input parameters on the response of u2. It is
observed that the interactions between ut and some input parameters such as AE (ut*AS1), AF (ut*AS2),
AG (ut*AS3), AK (ut*Cg), and AL (ut*Cs) in both values of 30 and 100 has the most significant influence
on the u2 response, while the stable tendency is observed for the interactions between ut and remaining
input parameters, e.g., AB (ut*Xba1), AC (ut*Xba2), AD (ut*Xba3), AH (ut*Tout), and AJ (ut*Cgh). Similarly,
we can realize the interactions which have significant influence on the u2 response but are lesser than
the ones of ut like BF (Xba1*AS2), BE (Xba1*AS1), CL (Xba2*Cs), CK (Xba2*Cg), CF (Xba2*AS2), FH (AS2*Tout),
FG (AS2*AS3), FL (AS2*Cs), FK (AS2*Cg), FL (AS2*Cs), FJ (AS2*Cgh), HK (Tout*Cg), GL (AS3*Cs), GJ
(AS3*Cgh), and GH (AS3*Tout). Referring to the case of the response u3 (cf. Figure 5b), it is visualized
that the interactions JK (Cgh*Cg), JL (Cgh*Cs), GK (AS3*Cg), GL (AS3*Cs), FK(AS2*Cg), FL(AS2*Cs), KL
(Cg*Cs), BH (Xba1*Tout), BL (Xba1*Cs), DG (Xba3*AS3), EG (AS1*AS3), and EK (AS1*Cg) have significant
influences on the u3 response.

Figure 6 presents the Normal Plot of the standardized effects in which the relationship between
the responses (u2 and u3) and the input parameters as well as their interactions are exposed. Based
on the results presented in the figure, it is seen that ut and AS2 have the greatest influence on the
response u2 as previously documented. Furthermore, it is realized that, in addition to single input
parameters as early presented (ut, AS2, Cs, Cg, AS1, and AS3) the interactions of some input parameters
also have both positive and negative impacts on the response of u2. For instance, the increase in the
interactions of AK, EL, AJ, AF, BH, HK, and GK leads to the augment of the u2 response. Conversely,
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the decrease in the interactions of AL, KL, EK, AE, JL, and AG causes the reduction of u2 response.
Considering the case of u3, the results anew reveal that Cost of gears (Cg) and Cost of shafts (Cs) have
dominant impact on the value of u3 as mentioned above. Besides, the interactions between the input
parameters also have influence in both positive and negative trends. For example, the response of
u3 is positively influenced by the interactions of JK, EK, and BL, while being negatively affected by
those of KL, GK, EG, and BH. Based on the results shown in the Normal Plot of the Standardized
Effects, the parameters or interactions with insignificant influence can be eliminated, while those with
strong impact are remained. The testing process can go further and in more detailse with the remained
parameters. In these situations, the remained parameters are listed in Tables 4 and 5 in the case of u2

and u3, respectively.
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(b) u3

4.2. Proposed Regression Model of the Response

In order to achieve equations of the response u2 and u3, a regression process with two interaction
factors is carried out using Minitab@19. The significance of this regression is α = 0.05. The estimated
effects and the coefficients for u2 response are exhibited in Table 4 where the factors with no influence
on them are eliminated. It is noticed that if the effect of each input parameter or interaction has p-value
higher than the significance of α, it does not strongly impact the response. For example, the factor of
Xba1 has p-value of 0.111 superior to α = 0.05, which means that Xba1 is not significant to the response
u2. The regression equation of the u2 response is described by following model (Regression Equation
in Uncoded Units):
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u2 = 4.241 + 0.01830 ut − 1.106 Xba1 + 0.190 Xba2 + 1.925 Xba3 − 0.00601 AS1 + 0.004379 AS2

− 0.00686 AS3 − 0.000058 Tout + 0.00397 Cgh + 0.1013 Cg + 0.1261 Cs − 0.000036 ut*AS1

+ 0.000030 ut*AS2 − 0.000014 ut*AS3 + 0.000405 ut*Cgh + 0.000587 ut*Cg − 0.001144 ut*Cs

+ 0.000131 Xba1*Tout − 0.327 Xba2*Cs − 0.2243 Xba3*Cg + 0.000012 AS1*AS3

− 0.000404 AS1*Cg + 0.000670 AS1*Cs + 0.000101 AS2*Cg − 0.000218 AS2*Cs

+ 0.000105 AS3*Cg + 0.000001 Tout*Cg − 0.00676 Cgh*Cs − 0.007003 Cg*Cs

(36)

It can be said that the experimental data are greatly consistent with the proposed model when the
minimum value of R-square is approximately 98% (all of them are more than 98%).

Table 4. Estimated Effects and Coefficients for u2.

Term Effect Coef SE Coef T-Value p-Value VIF

Constant 4.03383 0.00598 674.32 0.000
ut 0.80109 0.40055 0.00598 66.96 0.000 1.00

Xba1 −0.01922 −0.00961 0.00598 −1.61 0.111 1.00
Xba2 −0.04359 −0.02180 0.00598 −3.64 0.000 1.00
Xba3 0.02766 0.01383 0.00598 2.31 0.023 1.00
AS1 −0.25172 −0.12586 0.00598 −21.04 0.000 1.00
AS2 0.43266 0.21633 0.00598 36.16 0.000 1.00
AS3 −0.16828 −0.08414 0.00598 −14.07 0.000 1.00
Tout −0.08484 −0.04242 0.00598 −7.09 0.000 1.00
Cgh 0.03328 0.01664 0.00598 2.78 0.006 1.00
Cg −0.27141 −0.13570 0.00598 −22.68 0.000 1.00
Cs 0.17766 0.08883 0.00598 14.85 0.000 1.00

ut*AS1 −0.08766 −0.04383 0.00598 −7.33 0.000 1.00
ut*AS2 0.07359 0.03680 0.00598 6.15 0.000 1.00
ut*AS3 −0.03422 −0.01711 0.00598 −2.86 0.005 1.00
ut*Cgh 0.05672 0.02836 0.00598 4.74 0.000 1.00
ut*Cg 0.14391 0.07195 0.00598 12.03 0.000 1.00
ut*Cs −0.14016 −0.07008 0.00598 −11.71 0.000 1.00

Xba1*Tout 0.02953 0.01477 0.00598 2.47 0.015 1.00
Xba2*Cs −0.02859 −0.01430 0.00598 −2.39 0.019 1.00
Xba3*Cg −0.03141 −0.01570 0.00598 −2.63 0.010 1.00
AS1*AS3 0.03047 0.01523 0.00598 2.55 0.012 1.00
AS1*Cg −0.09891 −0.04945 0.00598 −8.27 0.000 1.00
AS1*Cs 0.08203 0.04102 0.00598 6.86 0.000 1.00
AS2*Cg 0.02484 0.01242 0.00598 2.08 0.040 1.00
AS2*Cs −0.02672 −0.01336 0.00598 −2.23 0.028 1.00
AS3*Cg 0.02578 0.01289 0.00598 2.15 0.034 1.00
Tout*Cg 0.03234 0.01617 0.00598 2.70 0.008 1.00
Cgh*Cs −0.04734 −0.02367 0.00598 −3.96 0.000 1.00
Cg*Cs −0.08578 −0.04289 0.00598 −7.17 0.000 1.00

Coded Coefficients.

S R-sq R-sq(adj) R-sq(pred)

0.0676794 98.77% 98.41% 97.90%

Model Summary.

In the case of u3 response, the results obtained from regression process show the difference from
those of u2 response. Indeed, ut and Xba2 have no influence on the response, moreover, only eight
interactions between input parameters have impact on it (cf. Table 5). It is observed that the factors of B,
D, E, and H have p-value of 0.078, 0.184, 0.146, and 0.052 respectively, larger than significance α (0.05).
Hence, these parameters have little influence on the u3 response. However, the interactions of BH, BL,
DG, EG, and EK have p-value inferior to α. For this reason, they strongly influence the response of u3.
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The regression equation of this response can be presented as following model (Regression Equation in
Uncoded Units):

u3 = −16.99 + 0.19 Xba1 + 29.9 Xba3 + 0.01838 AS1 − 0.005652 AS2 + 0.0599 AS3

+ 0.000197 Tout − 0.1537 Cgh − 0.079 Cg + 0.072 Cs − 0.000575 Xba1*Tout

+ 1.404 Xba1*Cs − 0.0737 Xba3*AS3 − 0.000053 AS1*AS3 + 0.000524 AS1*Cg

− 0.000528 AS3*Cg + 0.01440 Cgh*Cg − 0.03934 Cg*Cs

(37)

Table 5. Estimated effects and coefficients for u3.

Term Effect Coef SE Coef T-Value p-Value VIF

Constant 4.2002 0.0224 187.27 0.000
Xba1 0.0797 0.0398 0.0224 1.78 0.078 1.00
Xba3 0.0600 0.0300 0.0224 1.34 0.184 1.00
AS1 0.0656 0.0328 0.0224 1.46 0.146 1.00
AS2 −0.3956 −0.1978 0.0224 −8.82 0.000 1.00
AS3 0.6103 0.3052 0.0224 13.61 0.000 1.00
Tout 0.0881 0.0441 0.0224 1.96 0.052 1.00
Cgh −0.2981 −0.1491 0.0224 −6.65 0.000 1.00
Cg −1.1550 −0.5775 0.0224 −25.75 0.000 1.00
Cs 1.0922 0.5461 0.0224 24.35 0.000 1.00

Xba1*Tout −0.1294 −0.0647 0.0224 −2.88 0.005 1.00
Xba1*Cs 0.1228 0.0614 0.0224 2.74 0.007 1.00

Xba3*AS3 −0.1031 −0.0516 0.0224 −2.30 0.023 1.00
AS1*AS3 −0.1294 −0.0647 0.0224 −2.88 0.005 1.00
AS1*Cg 0.1284 0.0642 0.0224 2.86 0.005 1.00
AS3*Cg −0.1294 −0.0647 0.0224 −2.88 0.005 1.00
Cgh*Cg 0.2016 0.1008 0.0224 4.49 0.000 1.00
Cg*Cs −0.4819 −0.2409 0.0224 −10.74 0.000 1.00

Coded Coefficients.

S R-sq R-sq(adj) R-sq(pred)

0.253752 94.10% 93.19% 92.02%

Model Summary.

The results in Table 5 also report that the experimental data are highly consistent with the proposed
model when the minimum value of R-square approximately 92.02% (all of them are more than 92.02%).
However, this is less reliable when compared to that of u2 response.

Based on previous analysis, it can be said that the proposed models of u2 and u3 can be utilized to
get the optimum gear ratio of the second and third stages. As a consequence, the optimum gear ratio
of the first stage can be obtained by u1 = ut/(u2·u3).

4.3. Analysis of Variance—ANOVA

In order to quantitatively conclude the impact of each parameters and their interactions on the
responses, Analysis of Variance is necessary. Table 5 reveals the Analysis of Variance in case of u2

response. It is observed that F-values of some parameters of A, F, K, E, L, G, AK, AL, EK, AE, KL, H,
EL, AF, AJ, and JL exhibit the F-value higher than 50, and it can be concluded that these parameters
have static significance. The R-square value in this case is high when the lowest R-square approaches
92%. In a similar way, we can also identify the high F-value of parameters in case of the u3 response,
such as K, L, G, KL, F, and J. the lowest value of R-square reaches 92%.
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4.4. Validation of Proposed Model

The estimation of errors resulting from the difference between experiments and model of u2

is qualitatively described in Figure 7. From the Normal Probability Plot, it is observed that the
contribution of errors is similar to normal distribution. The Versus fits graph discloses that the relation
between residual and fitted value of model is random. Moreover, the Versus Order also exhibits the
random relationship between residual and order of data point. The identical tendency is also noted
when comparing experiments and proposed model in case of u3 response. The observed phenomena
given by the graphs one more time show the reliability of the proposed model which is highly fitted
for the experiments.
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Another way to validate the approximation of data is probability plot exhibited in Figure 8.
The Anderson–Darling test in Minitab@19 which is a statistical test to validate the data set come from a
specific distribution, e.g., the normal distribution or not. In this way, the data set is representative by
blue points. There are three straight lines in the plot where the middle line presents the probability of
normal distribution, while two lines in the left and the right refer to limiting boundary with significance
of 95%. It is observed that all data set for both case of u2 and u3 are sited inside two limiting line when
the p-value of 0.289 and 0.097 are greater than α value of 0.05. This indicates that the data set follows
the distribution.
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5. Conclusions

The influence of main design parameters on the optimum partial gear ratios for three-stage helical
gearboxes was conducted. The optimum partial gear ratios are derived from the results of optimization
problem for getting minimum gearbox cost. This is the first result appearing in scientific publications.
To solve the optimum problem, a computer program was built, while a plan of simulation experiments
was designed and carried out. The influences of eleven input parameters and their interactions on
the output response of u2 and u3 were investigated. The input parameters include total gearbox ratio,
coefficient of wheel face width of stage 1, coefficient of wheel face width of stage 2, coefficient of
wheel face width of stage 3, allowable contact stress of stage 1, allowable contact stress of stage 2,
allowable contact stress of stage 3, output torque, cost of gearbox housing, cost of gears, and cost of
shafts. The following conclusion can be made:

X The influence of input parameters and their interactions on u2 response is different from those of
u3 response. The ANOVA results showed that the parameters of A, F, K, E, L, G, AK, AL, EK, AE,
KL, H, EL, AF, AJ, and JL have significant influence on u2 response (R-square value approaching
98%), while the corresponding to be the parameters of K, L, G, KL, F, and J in case of u3 (R-square
of 92%).

X The parameters having insignificant influence were eliminated, inversely, the others that had
strong influence would be considered for deeper experiments.

X The proposed models of both u2 and u3 responses are highly consistent to experimental data.
The reliability of the models is validated. It can be said that the proposed models can be applied
to optimize the costs of gearbox.
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Appendix A

Run Order CenterPt Blocks ut Xba1 Xba2 Xba3 AS1 AS2 AS3 Tout Cgh Cg Cs u2 u3

1 1 1 30 0.35 0.38 0.4 350 420 350 1000 1 2 1.5 4.02 3.64
2 1 1 100 0.35 0.33 0.36 420 350 420 1000 5 2 1.5 4.08 4.24
3 1 1 100 0.3 0.33 0.4 420 350 350 1000 5 9 5 4.11 3.73
4 1 1 30 0.35 0.33 0.4 350 350 350 1000 5 2 1.5 3.63 3.58
5 1 1 100 0.3 0.33 0.36 350 420 350 1000 5 9 1.5 5.22 2.59
6 1 1 30 0.35 0.38 0.4 420 350 350 10000 5 9 1.5 3.03 3.28
7 1 1 100 0.3 0.33 0.4 420 420 420 10000 5 2 5 4.62 5.14
8 1 1 100 0.35 0.38 0.36 350 420 350 1000 5 2 1.5 5.07 3.25
9 1 1 30 0.3 0.33 0.36 350 420 350 10000 5 2 5 4.26 4.63
10 1 1 100 0.3 0.38 0.4 420 350 350 10000 1 2 1.5 3.93 4.75
11 1 1 30 0.3 0.38 0.36 420 350 350 1000 5 2 1.5 3.45 3.58
12 1 1 30 0.3 0.38 0.4 350 350 420 10000 5 9 5 3.36 4.3
13 1 1 30 0.3 0.38 0.36 420 420 420 10000 5 9 1.5 3.3 3.37
14 1 1 30 0.3 0.38 0.4 350 350 350 1000 5 9 1.5 3.36 3.07
15 1 1 100 0.35 0.38 0.4 350 350 350 1000 1 2 1.5 4.44 3.67
16 1 1 100 0.35 0.33 0.36 420 350 350 10000 5 2 5 4.35 4.69
17 1 1 30 0.35 0.38 0.36 350 350 420 1000 5 2 5 3.72 6.16
18 1 1 100 0.3 0.33 0.36 420 350 420 10000 1 2 5 4.11 6.28
19 1 1 30 0.3 0.33 0.36 420 350 420 1000 1 9 1.5 2.97 3.79
20 1 1 100 0.3 0.38 0.4 420 350 420 1000 1 2 5 4.26 6.04
21 1 1 100 0.3 0.33 0.4 420 420 350 1000 5 2 1.5 4.95 2.89
22 1 1 100 0.35 0.33 0.36 420 420 420 1000 5 9 5 4.41 3.91
23 1 1 100 0.3 0.33 0.4 420 350 420 10000 5 9 1.5 3.72 4.15
24 1 1 30 0.3 0.33 0.4 350 350 420 1000 1 2 1.5 3.51 4.63
25 1 1 30 0.35 0.33 0.36 350 350 420 10000 1 9 1.5 3.18 3.67
26 1 1 30 0.3 0.38 0.36 420 350 420 10000 5 2 5 3.63 6.43
27 1 1 100 0.35 0.33 0.36 420 420 350 10000 5 9 1.5 4.44 3.13
28 1 1 30 0.35 0.33 0.36 420 350 350 1000 5 9 1.5 3.09 3.16
29 1 1 100 0.35 0.38 0.4 420 350 350 1000 5 2 5 4.38 5.65
30 1 1 100 0.3 0.38 0.4 350 350 420 1000 5 2 1.5 4.41 4.15
31 1 1 30 0.3 0.33 0.4 350 420 420 1000 1 9 5 3.81 4.06
32 1 1 100 0.35 0.38 0.36 420 420 350 1000 1 2 5 4.77 4.99
33 1 1 30 0.3 0.33 0.4 350 420 350 10000 1 9 1.5 3.72 2.83
34 1 1 100 0.35 0.38 0.4 350 420 350 1000 1 9 5 4.77 3.97
35 1 1 100 0.35 0.33 0.4 420 420 420 1000 1 2 1.5 4.44 4.3
36 1 1 30 0.35 0.38 0.36 350 350 350 10000 5 2 1.5 3.51 3.82
37 1 1 30 0.35 0.33 0.4 350 350 420 10000 5 2 5 3.81 6.22
38 1 1 100 0.35 0.33 0.4 350 420 420 1000 5 2 5 4.86 5.53
39 1 1 30 0.35 0.38 0.36 420 350 350 10000 1 2 5 3.9 5.5
40 1 1 100 0.3 0.38 0.4 420 420 420 1000 1 9 1.5 4.23 3.76
41 1 1 100 0.3 0.38 0.36 350 420 420 1000 1 2 1.5 4.62 4.51
42 1 1 100 0.35 0.38 0.36 350 350 420 10000 5 9 1.5 4.26 3.52
43 1 1 30 0.3 0.33 0.4 420 350 420 1000 5 2 5 3.84 5.65
44 1 1 100 0.3 0.33 0.36 350 420 420 10000 5 9 5 4.71 3.82
45 1 1 100 0.3 0.38 0.36 420 350 420 1000 5 9 1.5 3.93 3.46
46 1 1 30 0.3 0.33 0.36 350 350 420 1000 5 9 5 3.42 4.12
47 1 1 100 0.3 0.33 0.36 350 350 350 1000 5 2 5 4.68 4.51
48 1 1 100 0.35 0.33 0.36 350 350 420 1000 1 2 5 4.32 7.03
49 1 1 100 0.3 0.33 0.4 350 350 350 1000 1 9 1.5 4.5 2.92
50 1 1 30 0.3 0.38 0.36 420 420 350 1000 5 9 5 3.66 3.76
51 1 1 30 0.35 0.33 0.4 420 350 350 1000 1 2 5 4.14 5.86
52 1 1 30 0.3 0.33 0.4 350 350 350 10000 1 2 5 4.05 6.16
53 1 1 30 0.35 0.38 0.4 420 350 420 1000 5 9 5 3.24 4.63
54 1 1 100 0.35 0.38 0.36 350 350 350 1000 5 9 5 4.26 4.15
55 1 1 30 0.3 0.38 0.4 350 420 420 10000 5 2 1.5 3.69 4.45
56 1 1 30 0.35 0.38 0.4 420 420 350 10000 5 2 5 4.2 4.81
57 1 1 30 0.35 0.33 0.4 420 350 420 10000 1 2 1.5 3.3 4.87
58 1 1 30 0.3 0.33 0.4 420 350 350 10000 5 2 1.5 3.45 3.58
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Run Order CenterPt Blocks ut Xba1 Xba2 Xba3 AS1 AS2 AS3 Tout Cgh Cg Cs u2 u3

59 1 1 30 0.35 0.38 0.36 350 420 350 10000 5 9 5 3.81 3.52
60 1 1 30 0.3 0.38 0.4 350 420 350 1000 5 2 5 4.32 4.54
61 1 1 30 0.35 0.33 0.4 350 420 350 1000 5 9 5 3.93 3.43
62 1 1 100 0.3 0.38 0.4 420 420 350 10000 1 9 5 4.32 4.15
63 1 1 100 0.3 0.38 0.36 420 420 350 10000 5 2 1.5 4.62 3.28
64 1 1 100 0.35 0.38 0.36 420 350 420 10000 1 9 5 3.78 4.48
65 1 1 100 0.35 0.38 0.4 350 350 420 10000 1 2 5 4.2 6.34
66 1 1 30 0.35 0.33 0.36 350 420 350 1000 1 2 1.5 3.96 3.85
67 1 1 100 0.35 0.33 0.4 420 350 420 1000 1 9 5 3.93 4.18
68 1 1 30 0.35 0.38 0.4 350 420 420 1000 1 2 5 4.29 5.86
69 1 1 100 0.35 0.33 0.4 420 420 350 10000 1 2 5 4.74 5.59
70 1 1 30 0.3 0.33 0.36 420 350 350 10000 1 9 5 3.27 3.91
71 1 1 100 0.3 0.38 0.4 350 420 420 1000 5 9 5 4.8 3.82
72 1 1 100 0.35 0.38 0.4 350 420 420 10000 1 9 1.5 4.77 3.4
73 1 1 100 0.3 0.38 0.36 350 350 420 1000 1 9 5 4.2 4.15
74 1 1 30 0.3 0.33 0.36 350 420 420 1000 5 2 1.5 3.93 3.34
75 1 1 30 0.35 0.38 0.4 420 420 420 1000 5 2 1.5 3.69 3.61
76 1 1 100 0.35 0.33 0.4 350 420 350 10000 5 2 1.5 5.1 3.1
77 1 1 100 0.35 0.38 0.4 420 420 350 1000 5 9 1.5 4.47 3.19
78 1 1 30 0.35 0.33 0.36 420 420 350 1000 5 2 5 4.23 4.87
79 1 1 30 0.3 0.33 0.36 420 420 420 1000 1 2 5 4.26 5.86
80 1 1 30 0.35 0.33 0.4 350 420 420 10000 5 9 1.5 3.57 3.4
81 1 1 100 0.35 0.33 0.4 420 350 350 10000 1 9 1.5 3.81 3.7
82 1 1 30 0.35 0.33 0.36 420 350 420 10000 5 9 5 3.18 4.57
83 1 1 30 0.35 0.33 0.4 420 420 420 10000 1 9 5 3.54 4.03
84 1 1 30 0.35 0.38 0.36 420 420 420 1000 1 9 5 3.54 4.36
85 1 1 100 0.35 0.38 0.36 350 420 420 10000 5 2 5 4.47 6.31
86 1 1 100 0.3 0.33 0.4 350 350 420 10000 1 9 5 4.17 4.24
87 1 1 100 0.3 0.33 0.36 420 420 350 1000 1 9 5 4.62 3.22
88 1 1 100 0.35 0.33 0.4 350 350 350 10000 5 9 5 4.29 3.97
89 1 1 100 0.35 0.33 0.4 350 350 420 1000 5 9 1.5 4.29 3.55
90 1 1 100 0.35 0.33 0.36 350 420 420 1000 1 9 1.5 4.77 3.43
91 1 1 30 0.3 0.38 0.36 350 420 420 10000 1 9 5 3.69 3.97
92 1 1 30 0.35 0.33 0.36 350 350 350 1000 1 9 5 3.51 3.73
93 1 1 30 0.35 0.38 0.4 350 350 420 1000 1 9 1.5 3.18 3.82
94 1 1 30 0.3 0.33 0.4 420 420 350 10000 5 9 5 3.66 3.52
95 1 1 30 0.3 0.38 0.36 350 350 350 1000 1 2 5 4.05 5.47
96 1 1 100 0.35 0.33 0.36 350 350 350 10000 1 2 1.5 4.38 3.67
97 1 1 30 0.3 0.33 0.36 420 420 350 10000 1 2 1.5 3.75 3.7
98 1 1 30 0.3 0.33 0.4 420 420 420 1000 5 9 1.5 3.36 3.31
99 1 1 30 0.35 0.38 0.4 350 350 350 10000 1 9 5 3.45 3.85

100 1 1 30 0.35 0.33 0.36 350 420 420 10000 1 2 5 4.11 6.22
101 1 1 100 0.35 0.38 0.4 420 350 420 10000 5 2 1.5 3.99 4.24
1000 1 1 100 0.3 0.33 0.36 420 350 350 1000 1 2 1.5 4.08 4.09
103 1 1 30 0.3 0.38 0.36 350 350 420 10000 1 2 1.5 3.36 4.93

10000 1 1 30 0.3 0.33 0.36 350 350 350 10000 5 9 1.5 3.3 3.1
105 1 1 30 0.35 0.38 0.36 420 350 420 1000 1 2 1.5 3.33 4.69
106 1 1 30 0.3 0.38 0.36 350 420 350 1000 1 9 1.5 3.72 2.83
107 1 1 30 0.35 0.33 0.36 420 420 420 10000 5 2 1.5 3.6 3.91
108 1 1 100 0.3 0.38 0.36 350 420 350 10000 1 2 5 4.74 4.96
109 1 1 100 0.35 0.38 0.36 420 420 420 10000 1 2 1.5 4.32 3.97
110 1 1 100 0.35 0.38 0.4 420 420 420 10000 5 9 5 4.38 3.67
111 1 1 30 0.35 0.38 0.36 420 420 350 10000 1 9 1.5 3.39 2.89
112 1 1 100 0.35 0.38 0.36 420 350 350 1000 1 9 1.5 3.84 3.67
113 1 1 30 0.3 0.38 0.4 420 420 350 1000 1 2 1.5 3.81 4.21
114 1 1 100 0.3 0.38 0.36 350 350 350 10000 1 9 1.5 4.47 2.92
115 1 1 30 0.3 0.38 0.4 420 350 420 10000 1 9 1.5 2.94 3.82
116 1 1 100 0.3 0.33 0.4 350 420 350 1000 1 2 5 5.13 4.93
117 1 1 30 0.3 0.38 0.4 420 350 350 1000 1 9 5 3.36 3.88
118 1 1 100 0.3 0.38 0.4 350 350 350 10000 5 2 5 4.44 5.23
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Run Order CenterPt Blocks ut Xba1 Xba2 Xba3 AS1 AS2 AS3 Tout Cgh Cg Cs u2 u3

119 1 1 100 0.3 0.33 0.4 350 420 420 10000 1 2 1.5 4.62 4.48
120 1 1 100 0.35 0.33 0.36 350 420 350 10000 1 9 5 5.01 3.04
121 1 1 100 0.3 0.33 0.36 420 420 420 10000 1 9 1.5 4.17 3.82
122 1 1 100 0.3 0.33 0.36 350 350 420 10000 5 2 1.5 4.17 4.72
123 1 1 100 0.3 0.38 0.4 350 420 350 10000 5 9 1.5 5.19 2.59
124 1 1 30 0.35 0.38 0.36 350 420 420 1000 5 9 1.5 3.66 3.04
125 1 1 100 0.3 0.38 0.36 420 420 420 1000 5 2 5 4.65 4.78
126 1 1 30 0.35 0.33 0.4 420 420 350 1000 1 9 1.5 3.42 2.98
127 1 1 30 0.3 0.38 0.4 420 420 420 10000 1 2 5 4.11 5.83
128 1 1 100 0.3 0.38 0.36 420 350 350 10000 5 9 5 4.02 3.55
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