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Featured Application: The transfer strategies proposed in this paper can guide the industry to
reuse and develop the existing PHM algorithm based on deep learning under different data
conditions and save the cost of algorithm development and data collection to the greatest extent.

Abstract: As we enter the era of big data, we have to face big data generated by industrial systems that
are massive, diverse, high-speed, and variability. In order to effectively deal with big data possessing
these characteristics, deep learning technology has been widely used. However, the existing methods
require great human involvement that is heavily depend on domain expertise and may thus be
non-representative and biased from task to similar task, so for a wide variety of prognostic and health
management (PHM) tasks, how to apply the developed deep learning algorithms to similar tasks to
reduce the amount of development and data collection costs has become an urgent problem. Based on
the idea of transfer learning and the structures of deep learning PHM algorithms, this paper proposes
two transfer strategies via transferring different elements of deep learning PHM algorithms, analyzes
the possible transfer scenarios in practical application, and proposes transfer strategies applicable in
each scenario. At the end of this paper, the deep learning algorithm of bearing fault diagnosis based
on convolutional neural networks (CNN) is transferred based on the proposed method, which was
carried out under different working conditions and for different objects, respectively. The experiments
verify the value and effectiveness of the proposed method and give the best choice of transfer strategy.

Keywords: transfer learning; transfer strategies; deep learning; bearing; fault diagnosis

1. Introduction

Prognostics and health management (PHM) is a framework that offers comprehensive yet
individualized solutions for managing system health [1], including prognostics and health management.
Prognostics is usually defined as the generation of current system status evaluation results through
fault data or historical maintenance data collected by sensors, combined with the future working
environment of the system to predict the system’s remaining useful life (RUL) or end of life (EOL);
health management is defined as the process of measuring, recording and monitoring the extent to
which the system deviates from normal operating conditions in real time. As an engineering discipline
PHM aims to provide users with an integrated view of the health state of a machine or an overall
system. Diagnostics are also included in prognostics and health management [2].

In today’s increasingly complex industrial systems, PHM technology provides important support
for system design and development, production and manufacturing, operation, logistics support and
maintenance, decommissioning and destruction. Because the big data generated by industrial systems
is massive, diverse, high-speed, and variable, deep learning technology has been added to overcome
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the existing problems of prognostics and diagnostics. The deep learning-based PHM technology
has been used in fault diagnosis and health evaluation of motors, gearboxes, bearings, etc., and has
achieved better results than traditional methods [3–8].

The PHM algorithm is the core of PHM technology. It provides the data processing foundation
for fault diagnostics, prognostics and health management, covering the entire process from
data preprocessing, condition monitoring, fault diagnostics, prognostics to health management.
The development and application of PHM algorithms is mostly based on proprietary systems, and deep
learning PHM algorithms are no exception. This means that the deep learning PHM algorithms
developed based on a certain instance are difficult to effectively reuse and generalize. For similar
problems, rebuilding the algorithm from scratch means a lot of manpower, material resources and time.
At the same time, if similar tasks do not have enough data support, the newly developed algorithms
will have difficulty in displaying good task performance or may even fail to complete tasks.

Taking rotary bearing fault diagnosis as an example, the training data of a fault diagnosis classifier
may come conditions where the motor has no load, while the motor may have different load states
in practical application. Although the failure mode has not changed, the target data distribution of
different load states has changed, so the classifier trained by the training data (source domain) cannot
be directly used for the target data (target domain). It is undoubtedly expensive to collect enough
fault data available for training to reconstruct the fault diagnosis classifier, and it is difficult to directly
train a satisfactory fault diagnosis classifier for the collection of a small amount of data [9]. In addition
to the above cases, if the rotary bearing is replaced, the original fault diagnosis classifier will not
be applicable. Even if sufficient target domain data is collected, the data reprocessing and network
construction tuning will be very expensive and inefficient.

To solve this challenge, a transfer learning technique, whose major research focus is how to store
the knowledge gained when solving a problem and apply it to different but related problems, would
be needed and desirable to reduce the amount of development and data collection costs and improve
the performance of algorithms in the target domain. There are already many examples in knowledge
engineering where transfer learning can be truly promising and useful, including object recognition,
image classification and natural language processing [10–12].

Lu [13] proposed a deep neural network for fault diagnosis-based domain adaption in 2017.
Combined with the idea of transfer learning, the problem of label-free transfer in the target domain
was solved. Xie [14] achieved feature transfer based on the transfer component analysis (TCA) method
in gearbox fault diagnosis. Although the research on transfer of fault diagnosis algorithms is gradually
increasing [15–17], most of them are about unlabeled transfer learning and there is litter research focus
on the solution for the situation that the amount of data in the target domain is small or the similarity
between the target domain and the source domain is low. In order to solve the above problems,
we propose a deep learning PHM algorithm transfer technology combined with the idea of transfer
learning, including two transfer strategies and the analysis of applicable transfer scenarios.

The rest of this paper is organized as follows: In Section 2, the background information of transfer
learning is outlined and the transfer scenarios are defined according to the data situation of the
target domain and the source domain. In Section 3, our transfer strategies are proposed and which
strategy should be applied in which scenario are talked. In Section 4, the application effect of different
transfer strategies in different transfer scenarios is tested and verified. Section 5 summarizes and gives
suggestions for the application of the method proposed in the industry.

Notations which are used in this work frequently are summarized in Table 1.

Table 1. Notations and Descriptions.

Notation Description Notation Description

Ds Source Domain Dt Target Domain
S Transfer Scenario TS Transfer Strategy

TM Transfer Method A1 Algorithm 1
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2. Deep Learning PHM Algorithm Transfer Scenario

When transferring a deep learning PHM algorithm, it is necessary to specify the transfer scenario.
The similarity between the target domain and the source domain and the amount of data in the
target domain are important indicators for the choice of transfer method. Therefore, according to the
similarity of data and the size of data set in the target domain, the transfer scenarios of deep learning
PHM algorithm are divided into four categories. Figure 1 shows the four types of scenarios for deep
learning PHM algorithm transfer.
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In scenario I (S1), the target domain data set is large and has a high degree of similarity with the
source domain data, which means that the weights of network obtained from the training of the source
domain data can be retained as far as possible. On this basis, using the target domain data for very few
batches of training can obtain a satisfactory deep learning PHM algorithm in the target domain.

The high similarity between target domain data and source domain data in scenario II (S2) makes
the transfer process similar to S1, but fewer target domain data require more batches of training in
order to obtain a satisfactory deep learning PHM algorithm for the target domain. The fault diagnosis
task of the same rotating bearing under different loads can be regarded as a concrete expression of
S1 and S2. According to the amount of data collected under different loads, the S1 or S2 can be
specifically distinguished.

In scenario III (S3), the data set of target domain is small so that it is difficult to achieve the desired
diagnostic goal if the network trained directly in the target domain. We transfer as many weights of
the network trained in the source domain as possible and fine-tune with a small amount of data in the
target domain to let the new network acquire more information of source domain easily so that the
desired diagnostic goal can more probably be achieved.

In scenario IV (S4), the target domain data set is large enough. In this scenario, continuing to
use the network weights gained in source domain may make the whole network weights fall into a
local optimum. For this scenario, we only transfer the network structure, and initialization weights
retraining will be more reasonable. Fault diagnosis tasks of different types of rotary bearings under the
same working condition can be considered as the concrete manifestation of S3 and S4. According to
the amount of data collected in the target domain, S3 or S4 can be specifically distinguished.
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3. Transfer Strategies of Deep Learning PHM Algorithms

The idea of transfer learning is to let a new algorithm inherit the knowledge (knowledge here
represents the ability of existing algorithms to extract and analyze data features from the source
domain) of the existing algorithm. Just as the teacher teaches the student knowledge, the higher level
of summary knowledge transfer is undoubtedly the fastest and most efficient. Deep neural networks
are based on network weights that come from information obtained from large amounts of data. If the
weights in the existing neural network are extracted and transferred to the new neural network, it
means that we “transfer” the learned features without having to retrain a network from scratch.

Based on this idea, we regard the existing deep learning PHM algorithm as a pre-training model.
When encountering a portable task, we transfer the network structure or weights of the existing
algorithm and obtain a new deep learning PMM algorithm needed by the new task through very
little training.

The object in the transfer process has two parts: network structure and weights. According to
whether the network weights are transferred during the transfer process, this paper proposes two
types of deep learning PHM algorithm transfer strategy:

TS1: Transfer both structure and weights of network simultaneously.
TS2: Transfer only structure of network and initialize weights of network.

The implementation process of the two strategies is shown in Figures 2 and 3.
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Figure 2. TS1 Transfer both structure and weights of network simultaneously.

TS1 transfers the structure and weights of the network at the same time, so that the network in
the target domain inherits more source domain information, which is suitable for scenarios where the
target domain and source domain are similar. TS2 only transfers the network structure. Its weights
need to be retrained using the target domain data after initialization. It inherits the network structure
design experience of the source domain, but the inheritance in the knowledge layer is relatively small,
which is more suitable for the scenarios where the target domain task is similar to the source domain
but the sample similarity is low.
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Figure 3. TS2 Transfer only the network structure, the weights of the new network is
randomly initialized.

These two types of transfer strategies can be used alone or in combination. For example, when
transferring a diagnosis fault diagnosis algorithm based on a CNN network, three transfer methods
can be designed according to the transfer tuple. When a CNN network is used for fault diagnosis,
its structure generally consists of convolutional layers, pooling layers, fully connected layers, and a
final classification layer. Among them, convolutional layers and pooling layers need to be connected
sequentially, fully connected layers can be flexibly modified, and the classification layer needs to be
placed at the end of the entire network structure. Convolution layers, pooling layers and full connection
layers are mainly used for data feature extraction and compression. Transfer of these network layers
can inherit the feature extraction and compression mode of source domain; classification layer is used
to achieve accurate fault mode diagnosis, and different classification layers should be designed for
different fault diagnosis tasks. Different layer types of transfer can produce different transfer effects.
Therefore, based on TS1 and TS2, three transfer methods can be designed for CNN network used for
fault diagnosis:

TM1: Combining TS1 and TS2. Transfer the network structure of the convolutional and pooling layers
of the source domain and their weights. The fully connected layer and classification layer only transfer
the network structure, and then use the target domain data for retraining.
TM2: TS1. Transfer all network structures and network weights in the source domain, and then use
the target domain data for retraining.
TM3: TS2. Transfer the source domain network structure, initialize the weights, and then use the target
domain data for retraining.

The application scenarios of the three transfer methods are analyzed. In S1 and S2, the target
domain and source domain samples have a high degree of similarity. Inheriting as much of the source
domain information as possible will be more helpful for the task of the target domain, so we can use
TM1 or TM2; in S3 The target domain and source domain samples have a low similarity, but because
the amount of data in the target domain is small, it is difficult to support the effective training of the
target domain algorithm. Therefore, we should also inherit as much source information as possible and
TM1 or TM2 can be used. In S4, the target domain and source domain samples have a low similarity,
but the sample size of the target domain is sufficient to support the effective training of the target
domain algorithm. Therefore, the structural design experience of the source domain algorithm should
be inherited to reduce the algorithm structure design cost. At the same time, the target domain data is
used for complete retraining to avoid negative interference caused by the source domain data. TM3
can be used.
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4. Case, Transfer of Rotating Machinery Fault Diagnosis Algorithm

4.1. Data Introduction

The bearing data of Case Western Reserve University are used. The bearing test device is shown
in Figure 4. On the left is a two-horsepower three-phase induction motor (model: 2HP IQPreAlert
Reliance Electric, Milwaukee, Wisconsin, US), on the right are a power meter and an electronic control
unit (not shown), which are connected by a middle torque sensor. In the test, the acceleration sensor is
installed via magnetic mount on the drive end at 12 o’clock, the fan end at 12 o’clock and the motor
support chassis respectively. The test data is collected by the acceleration sensor and is a vibration
signal that reflects the state of the bearing.
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The test bearings support the motor shaft, and single point faults are arranged on the inner ring,
outer ring (6:00, 3:00 and 12:00 directions) and rolling element of the bearings respectively by EDM
technology. The diameter of faults includes 0.007, 0.014, 0.021, 0.028 and 0.040 inches (1 inch = 2.54
cm). Vibration data were collected at 0, 1, 2 and 3 horsepower, and the frequency was 12 kHz. SKF
bearings are used for 0.007, 0.014 and 0.021 fault diameters, and equivalent NTN bearings are used for
0.028 and 0.040 fault diameters.

Drive end bearing and fan end bearing are two kinds of bearings. The drive end bearing
adopts 6205-2RS JEM, Z=9, double-sided seal deep groove ball bearings (SKF, Gothenburg, Sweden).
The specific size is shown in Table 2.

Table 2. Drive end bearing size (inch).

Inside Diameter Outside Diameter Thickness Ball Diameter Pitch Diameter

0.9843 2.0472 0.5906 0.3126 1.537

The fan end bearing adopts a SKF deep groove ball bearing 6203-2RS JEM, Z = 8, double-sided
seal. The specific size is shown in Table 3.

Table 3. Fan end bearing size (inch).

Inside Diameter Outside Diameter Thickness Ball Diameter Pitch Diameter

0.6693 1.5748 0.4724 0.2656 1.122
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In this paper, the bearing fault diagnosis algorithm A1 is developed via using the vibration data
of the bearing fault at the drive end under 0 horsepower loads. Then the obtained fault diagnosis
algorithm A1 is transferred to the vibration data of the bearing fault at the drive end under 2 horsepower
loads to verify the transfer effect of the algorithm under different working conditions. Finally, A1 is
transferred to vibration data of fan end bearing fault under 0 horsepower loads to verify the transfer
effect of algorithm between different objects.

4.2. Development of Rotating Machinery Fault Diagnosis Algorithm

In order to verify the proposed deep learning PHM algorithm transfer strategies, the CNN-based
bearing fault diagnosis algorithm was designed and developed.

4.2.1. Algorithm Design

(1) Data preprocessing
The data collected by Case Western Storage University are in MATLAB format (. mat). Each file

contains the vibration data of fan end, bearing end and supporting chassis and the speed of motor.
We import all the data into Python and store it in a multidimensional array.

The data preprocessing of the algorithm includes two parts: data enhancement and standardization.
In order to satisfy the amount of data required for the deep learning algorithm training, data

enhancement processing is performed on the existing fault data, and sufficient training data is obtained.
The fault of the bearing will be reflected in every revolution. Therefore, it is considered that the data
collected by the rotation of the motor can record the complete fault mode complete information, and the
minimum data length carrying the complete fault mode information is:

L =
F× 60

RPMmin min
(1)

where F is the acquisition frequency and RPMmin is the minimum speed in the same batch of data.
Segmentation is carried out every Lmin data points, and the training data of the k-th fault mode is:

Nk =
nk − Lmin

Lmin
(2)

where nk is the total amount of data collected by the kth fault, and Lmin is the minimum length of data.
Through the above data enhancement method, more training test data can be obtained.
Data standardization is based on zero mean and variance normalization. The formula is as follows:

z =
x− µ
σ

(3)

where µ and σ are the mean and variance of the original data set respectively.
Through this standardization, every dimension of data can be subjected to zero-mean and

one-variance normal distribution, so that each dimension of data feature dimension is equivalent.
In this way, when clustering analysis of neural networks, every dimension is de-dimensionalized,
which can avoid the influence of different dimension selection on neural network training.

(2) Fault diagnosis network based on CNN network structure
Compared with the multilayer perceptron (MLP) network, CNN has more prior knowledge of

spatial correlation between data. Using a CNN network, three kinds of fault characteristic data can be
observed simultaneously, and three kinds of fault feature data can be further combined to make fault
diagnosis. The input of CNN can be a multi-dimensional structure, so the three-dimensional vibration
data of driver end, fan end and support chassis after data preprocessing are directly sent into the CNN
network in three-dimensional form for training.

CNN network can extract fault features from original data and classify faults. The number of
layers and the number of nodes in each layer are selected based on previous experience on neural
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network design and cross-checked on the data set. The structure of CNN network is shown in Table 4.
It is a more general neural network structure for fault diagnosis. And in order to learn the relationship
between two-dimensional vibration data as much as possible, a 2×2 convolution kernel is used.

Table 4. Graph of network structure.

Layer (type) Output Shape Param#

Input_1 (InputLayer) (None, 3, 302, 1) 0
Conv2d_1 (Conv2D) (None, 2, 301, 32) 160

Max_pooling2d_1 (MaxPooling2) (None, 1, 150, 32) 0
Conv2d_2 (Conv2D) (None, 1, 149, 64) 4160

Max_pooling2d_2 (MaxPooling2) (None, 1, 74, 64) 0
Dropout_1 (Dropout) (None, 1, 74, 64) 0

Flatten_1 (Flatten) (None, 4736) 0
Dense_1 (Dense) (None, 1024) 4850688

Dropout_2 (Dropout) (None, 1024) 0
Dense_2 (Dense) (None, 512) 524800

Dropout_3 (Dropout) (None, 512) 0
Dense_3 (Dense) (None, 64) 32832

Dropout_4 (Dropout) (None, 64) 0
Dense_4 (Dense) (None, 4) 260

Total params: 5412965
Trainable params: 5412965
None-trainable params: 0

(3) Softmax classification layer
Because the five failure modes of bearings are mutually exclusive, the Softmax regression model

is used to achieve multi-classification. The last layer of CNN network structure connects the Softmax
classification layer. The function of Softmax is:

P(y = i
∣∣∣x;θ) =

exp
(
θT

i x
)

∑k
k = 1 exp

(
θT

k x
) (4)

where x is the model input, θ1,θ2, . . . ,θk
∈ <

n (The dimension of the feature vector x is n).
For training sets

{(
x(1), y(1)

)
, . . . ,

(
x(m), y(m)

)}
, y(i) ∈ {1, 2, . . . 5}, there are five categories in total.

For each input x there will be a probability P(y = j
∣∣∣x;θ) for each class. Softmax’s cost function is

defined as follows, which contains the indicator function 1{equation=True}=1.

J(θ) = −
1
m

 m∑
i = 1

k∑
j = 1

1
{
yi = j

}
log

(
p
(
y(i) = j

∣∣∣x(i);θ)) (5)

We use the adaptive moment estimation (Adam) optimization algorithm to minimize the cost
function of Softmax. The parameters of it are set as: learning_rate=0.001, beta1=0.9, beta2=0.999,
epsilon=1e-08.

After derivation, the gradient formula is obtained as follows:

∇θ j J(θ) = −
1
m

m∑
i = 1

[
x(i)

(
1
{
y(i) = j

}
− p

(
y(i) = j

∣∣∣x(i);θ))] (6)

Adam uses the first-order moment estimation and second-order moment estimation of the gradient
to dynamically adjust the learning rate of each parameter. Adam has a certain range of learning rate per
iteration, which makes the parameters more stable, and requires less memory, and calculates different
adaptive learning rates for different parameters.
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4.2.2. Result Analysis

The minimum data length Lmin = 400 carrying the complete failure mode information is
calculated by the formula (1). The training data amount of each failure mode is 302 calculated by the
Equation (2). Figure 5 shows the process of data enhancement.

1 

 

 

Figure 5. Graph of data preprocessing results.

The data obtained by the data enhancement is mapped by Equation (3) to finally obtain the
training data for the neural network training, and the data is standardized as shown in Figure 5.

Then the training data are sent into the CNN network structure for training. The training iterations
are 50 times and the batch size is 100. The training results are shown in Figure 6.
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4.3. Transfer of Fault Diagnosis Algorithm for Rotating Machinery under Different Working Conditions

The vibration diagnosis data of the fault of the drive end bearing under 0 horsepower and
2 horsepower are used to transfer the fault diagnosis algorithm under different working conditions.
The source domain is the drive end bearing of 0 horsepower, and the target domain is the drive end
bearing of 2 horsepower.

According to the ratio of the target domain of the source domain data, the data is divided into
four groups. The target domain data size is 0.125 (this means the percent of used data and full data),
0.375, 0.625, and 0.875, respectively. We define a data set that is less than 50% of the total data as a
small data set and a data set that is greater than 50% as a large data set. The impact of different target
domain data size and transfer methods proposed in Section 3 on the transfer results was verified.
The transfer process is shown in Figure 7. In TM1, the network weights are fully multiplexed from the
source domain network and not need initializing. In TM2, the weights of the classification layer are
initialized via glorot_uniform, and the remaining layers reuse the source domain network. In TM3, all
network weights are via glorot_uniform.

1 

 

 

Figure 7. Flowchart of bearing fault diagnosis algorithm transfer.
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When the same bearing works under different working conditions, its mechanical structure
has not changed, which means that the similarity between the source and target domains is high.
Therefore, Transfer under different working conditions can be divided into S1 and S2 according to the
corresponding target domain data size.

Figures 8–10 show the training accuracy, training loss, test accuracy and test loss for TM1, TM2,
and TM3 for the four groups of experiments. From the changes in training accuracy and training loss,
it can be seen that the size of data in the target domain has a small effect on the final fitting degree
of the training, but the bigger the size of data, the faster the diagnostic algorithm converges and the
shorter the time it takes to obtain a higher training accuracy. From the changes in test accuracy and
test loss, it can be seen that when the target and source domains are similar, TM1 and TM2 are not
sensitive to the size of data in the target domain, and TM3 is sensitive to the data in the target domain.
The larger the size of data, the better the algorithm’s final fault diagnosis effect.
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Figures 11–14 show the comparison of transfer methods in the four groups of experiments.
It can be seen thatTM3 in four target domain data quantities is not as good as the other two transfer
methods in terms of fitting speed, convergence speed and test accuracy. When the size of data is small,
the performance of TM1 is similar to that of TM2. With the increase of the amount of data, transfer
TM2 is slightly better than TM1.
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The test accuracy of the algorithm is a performance indicator when the algorithm is finally
applied to actual tasks. Table 5 summarizes the test accuracy of the four groups of experiments.
The experiments related to TM1 are performed only once, because the network parameters used by
it are completely inherited from the source domain network, and the experimental results are fixed.
The experiments related to TM2 and TM3 were repeated five times, and the results shown in the table
are the average results of repeated experiments. The reason why no more repeated experiments were
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taken was that the results of the five experiments were almost the same, and the fluctuation was very
small. Comparing the transfer methods, it can be seen that in both S1 and S2, the performance of TM1
and TM2 are higher than TM3, and the performance of TM2 is slightly higher than TM1. That is, as
long as the source domain similarity of the target domain is high, as much as possible transfer the
network structure and weights of the source domain and inheriting more source domain information
can maximize the algorithm’s fault diagnosis performance in the target domain. From the perspective
of data size, it can be seen that under each transfer method, increasing the target domain data size
improves the algorithm performance, but TM2’s algorithm performance in 0.875 data size is almost
equivalent to 0.125 data size. Using TM2 comes from TS1 for target domain fault diagnosis algorithm
development can effectively save algorithm development costs and data acquisition costs in S1 or S2.

Table 5. Summary of Correctness Rate of Transfer Test under Different Conditions.

Transfer
Scenario Data Ration Transfer Method 1 Transfer Method 2 Transfer Method 3

S1
0.125 0.9767 9.9992 0.7600
0.375 0.9855 0.9952 0.9759

S2
0.625 0.9986 1.0000 0.9769
0.875 0.9978 1.0000 0.9910

4.4. Transfer of Fault Diagnosis Algorithm for Rotating Machinery between Different Objects

The fault diagnosis algorithm for different objects is applied by the vibration data of the
0-horsepower drive end bearing and the 0 horsepower lower fan end bearing fault. The source
domain is the 0 horsepower lower drive end bearing, and the target domain is the 0 horsepower lower
fan end bearing. Different bearing’s sizes and other mechanical structures are different. When working
in the same working condition, the similarity between the target domain and the source domain is
lower than the same bearing working in different working conditions. It can be roughly divided into
S3 and S4 according to the size of data in the target domain. The test grouping and transfer methods
are the same as the transfer methods under different working conditions.

Figures 15–17 show the training accuracy, training loss, testing accuracy and testing loss of TM1,
TM2 and TM3 under four groups of experiments respectively. From the change of training accuracy
and training loss, it can be seen that when transfer between different objects, the size of data in the
target domain significantly affects the convergence speed and training accuracy of the target domain
diagnosis algorithm under each transfer method, which is different from transfer under different
working conditions. The larger the size of data in the target domain, the faster the convergence speed
of the algorithm, and the higher the final training accuracy. From the change of test accuracy and test
loss, it can be seen that when the size of data in the target domain is small, the test loss even shows an
upward trend, and only TM2 test loss is relatively stable. With the increase of the target domain data,
the performance of the target domain diagnosis algorithm under each transfer method is improved.
The larger the data size in the target domain, the better the final fault diagnosis effect of the algorithm.

Figures 18–21 show the comparison of transfer methods in four groups of experiments. It can be
seen that TM2 is superior to the other two transfer methods in terms of fitting speed, convergence
speed and test accuracy in four target domain data quantities. When the amount of data is small, TM1
is better than TM3. With the increasing amount of data, TM1 has the same performance as TM3.
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Table 6 summarizes the test accuracy of four groups of experiments. The experiments related to
TM1 are performed only once. The experiments related to TM2 and TM3 were repeated five times,
and the results shown in the table are the average results of repeated experiments. Comparing the
transfer methods, it can be seen that in S3, the performance of TM1, which inherits part of the source
network weights, and TM2, which inherits all the source network weights, are higher than TM3,
and TM2 has better performance than TM1, that is to say, when the similarity of the source domain of
the target domain is low but the size of the target domain data is small, the network structure and
weight of the source domain should be transferred as much as possible. Inheriting more source domain
information can better guide the target domain algorithm training and improve the fault diagnosis
performance of the target domain algorithm. In S4, TM1 and TM3 have comparable performance, but
both are lower than TM2. Analyzing the reasons, the difference between the data caused by different
bearing differences used in the data is smaller, which made the similarity between the target domain
and source domain smaller than supposed, and is closer to S1, so TM2 has better performance, so the
performance of TM2 is better. From the perspective of data size, it can be seen that under each transfer
method, increasing the data size in the target domain significantly improves the performance of the



Appl. Sci. 2020, 10, 2361 18 of 19

algorithm. Therefore, in the case of low similarity between the target domain and the source domain,
we should get as much data as possible in the target domain.

Table 6. Summary of Correctness Rate of Transfer Test between Different Objects.

Transfer
Scenario Data Ration Transfer Method 1 Transfer Method 2 Transfer Method 3

S3 0.125 0.5066 0.6283 0.4617
0.375 0.6581 0.8390 0.5777

S4 0.625 0.8278 0.8450 0.7656
0.875 0.8791 0.9714 0.8747

5. Conclusions

This paper develops a deep learning PHM algorithm transfer technology based on transfer
learning for the situation of small amount of data in target domain or low similarity between target
domain and source domain. By analyzing the structure of the deep learning PHM algorithm, the most
valuable content of the algorithm is determined, and the scenario of the transfer is studied. Then,
the transfer strategy and its specific implementation scheme which can be directly applied are discussed.
In the end, the applicability of the proposed deep learning PHM algorithm transfer technology is
verified by the transfer application of the fault diagnosis algorithm under different working conditions
(S1, S2) and between different objects (S3, S4).

Network weights and structural designs should be transferred as much as possible under S1,
S2, and S3. The test results of S4 show that the boundaries between the scenarios are not very clear.
In practical industrial applications, TS1 should be used as much as possible means network structure
and weight of source domain should be transferred at the same time, which allows the target domain
algorithm to perform better with less data. At the same time, when the similarity between the target
domain and the source domain decreases, the target domain data should be collected as much as
possible, which has a positive effect on improving the performance of the target domain algorithm.
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