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Abstract: The detection of pulmonary nodules on computed tomography scans provides a clue for
the early diagnosis of lung cancer. Manual detection mandates a heavy radiological workload as
it identifies nodules slice-by-slice. This paper presents a fully automated nodule detection with
three significant contributions. First, an automated seeded region growing is designed to segment
the lung regions from the tomography scans. Second, a three-dimensional chain code algorithm
is implemented to refine the border of the segmented lungs. Lastly, nodules inside the lungs are
detected using an optimized random forest classifier. The experiments for our proposed detection are
conducted using 888 scans from a public dataset, and achieves a favorable result of 93.11% accuracy,
94.86% sensitivity, and 91.37% specificity, with only 0.0863 false positives per exam.

Keywords: automated seeded region growing; 3D chain code; firefly; lung cancer; pulmonary nodule;
random forest

1. Introduction

Lung cancer is a disease that mainly affects the lungs, which is the principal organ of the respiratory
system and performs vital activities for human survival. It usually starts once the epithelial cells of
the bronchioles or alveoli grow abnormally. If the lungs do not carry out their functions properly, due
to lung cancer, other parts of the body can also be affected, which can eventually lead to death. This fact
makes the mortality rate of lung cancer higher than those of other types of cancer. The global cancer
data by the World Health Organization (WHO) stated that lung cancer reached the most significant
number of deaths, 1.8 million, which was 18.4% of the total cancer deaths in 2018 [1]. Effective ways
to reduce the mortality of lung cancer include preventions, early detections, and precise treatments.
However, most patients usually notice lung cancer at the advanced and uncurable stages because lung
cancer is asymptomatic at the immature stage of the disease.

Importantly, since the advent of medical imaging technologies, computed tomography (CT)
became an effective modality for the early diagnosis of lung cancer. According to the National Lung
Screening Trial (NLST), the mortality rate of lung cancer reduced up to 15%–20% in patients who
performed low-dose CT screening [2]. CT can provide detail morphologic information about lung
cancer by detecting abnormal lesions inside the lungs, called pulmonary nodules. They are the round
or oval-shaped opacities on the CT scans that have well-defined or irregular margins. Nodules are
generally regarded as an early signal of lung cancer. They form due to the inflammation of pulmonary
structures, and often react to infection and diseases. However, not all the nodules discovered in
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the lungs are cancerous. They can be categorized into two types, namely, benign and malignant.
Benign nodules are commonly found in almost all CT examinations, but they are not cancer. However,
malignant nodules are cancerous and can even metastasize to other parts of the body. There are
several clinical factors to distinguish benign and malignant pulmonary nodules, such as size, location,
calcification, margin-types, and texture [3]. With the increasing number of lung cancer cases, manual
detection of nodules has become a challenging task. It is effort-intensive and error-prone because
the interpreter has to read the massive amount of CT scans slice-by-slice. Moreover, this task requires
a high proficiency by the interpreters as an incorrect or miss-detection of the potential malignant nodule
is highly-risky for patients. For these reasons, automated nodule detection schemes were strongly
demanded as supportive tools. They were developed with aim of providing second options for better,
more confident, and reliable diagnosis results. Additionally, they can make the interpretation process
faster and more convenient by stacking the multiple sequential CT slices together as volumetric images.

Different research on automated nodule detections have emerged over the years. Generally, most
of these works are based on two fundamental steps: (i) suspicious nodule detection and (ii) false
reduction. The first step aims to extract the lesions that have a high possibility of being a nodule.
In this step, the lung regions from the input CT scan are initially segmented. Afterwards, potential
nodules scattered in the segmented lungs are extracted. The existing segmentation methods for
this step can be categorized into four major groups: intensity-based, region-based, template-based,
and machine-learning-based methods. Intensity-based segmentations are the fastest and simplest
methods. They segment the region of interest (ROI) by grouping image pixels based on one or more
predefined grey-value. Nodule detections using fixed thresholding [4,5], Otsu’s thresholding [6], and
optimal thresholding [7–9] are examples of the intensity-based methods. While they are easy to use,
the effectiveness of these methods strongly depends on the predefined or initial threshold values.
Moreover, they are less sensitive to noises and blur boundaries because they neglect spatial information
about the image. Unlike the intensity-based methods, region-based segmentation schemes [10–13]
consider not only spatial information, but also the relationship between the pixels. To segment
the ROI, they identify an initial region and determine the homogeneity between neighbouring
pixels. Regrettably, these methods require a proper choice of the initial region and homogeneity
criteria for accurate segmentation. Indeed, it is difficult due to the fuzzy nature of the lungs and
nodules. Next, several template-based segmentations, for example, genetic-algorithm-based template
matching [14,15] and 3D template matching [16], create template models to detect the target position
of the nodules. Nonetheless, template-based methods are computationally intensive and may have
flaws for the affine variant of the nodules. With the recent emergence of machine learning techniques,
segmentation using machine-learning-algorithms became famous for lung cancer diagnosis. Multi-class
pixel-wise segmentation using deep neural networks, such as SegNet [17] and CNN [18], are examples
of deep-learning-based segmentation schemes. Due to the use of multiple network layers, these
segmentations are in favor of unique feature learning [19]. However, these methods usually consume
a massive amount of data and training efforts.

Generally, nodules are solitary inside the lungs, but sometimes they may attach to the boundary
of the lungs. These nodules are radiologically termed as juxta-pleural nodules. In most cases, such
nodules are usually under-segmented since their intensity is substantially similar to the intensity of
the lungs. For this reason, a follow-up task, called border reconstruction, is usually performed after
the lung segmentation process. Morphological closing, which uses a structuring element (SE) [7,20,21],
can help to reconstruct the boundary of the lungs. Similarly, a rolling ball algorithm [4,10], which uses
a round-shaped SE, is also a kind of border reconstruction scheme. Instead of using a round-shaped SE,
the border reconstruction scheme in [12] used a 45-degree rotated window. However, all these methods
have weaknesses in adjusting the optimal size of the SE or window. As the size and shape of the nodules
are fuzzy, a small-sized SE or window may cause under-segmentation; conversely, a big-sized SE
may cause over-segmentation. Another popular border reconstruction method is the Freeman chain
code [5]. This method traces the directional changes of the pixels along the boundary of the segmented
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lungs. If concave regions along the border are detected, they are assumed to be the boundary-attached
nodules and enclosing them will be attempted. The bidirectional chain code in [6] is an improved
version of the original Freeman chain code. Unlike the original one, it traces the boundary pixels in
both the horizontal and vertical directions using two code-word systems. Compared to other border
reconstruction schemes, chain coding algorithms have more of a guarantee to detect variant sizes and
shapes of the nodules because they do not depend on the SE or window. Nevertheless, they need
extra effort to enclose the concave regions. For example, [6] used SVM to detect the critical point pairs
in order to enclose the concave areas along the lung boundary. Since SVM is a supervised learning
method, it needs historical data to train the model. As a negative consequence, it may suffer training
related problems, such as overfitting and underfitting. An alternative border reconstruction method,
known as contour-marching (CM), was proposed in [22]. It corrects the lung boundary by checking
the texture features. If a region suspected to be a border-attached nodule is detected, CM encloses
that region into the lungs using the region growing method. Indeed, only the texture features are
insufficient to distinguish the border-attached nodules.

The second step, false reduction, aims to discriminate the nodules from a high number of suspicious
structures. This task can be accomplished using a classification algorithm. For example, rule-based
methods [23], k-nearest neighbour (KNN) [20] and support vector machine (SVM) [6–10,12,13], are
some popular algorithms for false reduction. Similarly, the neural network-based classifiers, such as
the artificial neural network (ANN) [11,21] and convolutional neural network (CNN) [24,25], are also
found in this step. Besides, the ensemble classifiers like the integrated ANN [26] and random forest
(RF) [27] are also applicable for false reduction. As there are several classification algorithms, it is
difficult to pick the best one because the performance of each classifier depends on the segmentation
methods and the dataset applied. However, the recent trend of automated lung nodule detection
aims to achieve better performance. Moreover, a de facto nodule detection scheme which is fully
automatic, increases sensitivity, reduces false positives, and ensures the detection of variant nodules, is
still demanding for practical use.

Related Works

As automated nodule detection has been an active research area since 1980, numerous research
papers have been published on this topic. Those papers proposed different algorithms using different
datasets with different focuses. Among them, we studied some related research that presented the same
objective and processes. As our experiments are based on the Lung Image Database Consortium and
Image Database Resource Initiative (LIDC-IDRI) [28–30], we reviewed some previous works using
the same dataset. An extensive review of nodule detections, working on different datasets, can be
referred to [31].

In 2015, Demir and Çamurcu [9] proposed computer-aided lung nodule detection using outer
surface extraction. For lung region segmentation, they applied multiple thresholding, which uses
two threshold values: maximum and minimum. Afterward, possible nodules were detected using
labeling and rule-based methods. From each possible nodule, four different feature groups, including
(i) morphological features, (ii) statistical and histogram features, (iii) outer surface statistical and
histogram features, and (iv) outer surface textural features, are extracted. Based on these features, false
reduction was conducted using a support vector machine (SVM), optimized by the particle swarm
algorithm. Their experiments were performed using 200 CT exams of the LIDC-IDRI dataset. Their
findings revealed that using outer surface features can provide a higher performance up to 98.03%
sensitivity, 87.71% selectivity, 90.12% accuracy, and 2.45 false positives per scan. As a weakness,
their work could not detect the nodules that had intensities outside the maximum and minimum
threshold range. Moreover, they did not take into account the detection of nodules that were attached
to the lung boundary.

In addition, Arindra et al. [24] also implemented novel nodule detection using multi-view
convolutional networks (ConvNets). They initiated suspicious nodule detection by combining three
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existing candidate detectors, which are designated for solid, sub-solid, and large solid nodules,
respectively. Subsequently, multiple streams of 2D ConvNets were created using 2D patches of
the detected nodule candidates. ConvNets can learn the discriminative features automatically from
the training data in order to perform the false reduction. Their detection is evaluated using three
datasets, and the highest performance (sensitivity 90.1% with four false positives per scan) has resulted
in the LIDC-IDRI dataset. Even though ConvNets are powerful for feature learning and classification,
they demand very high computation costs, especially the graphical processing unit (GPU).

Recently, Zhang et al. [13] also developed a CAD for nodule detection that applied 3D skeleton
features. For lung region segmentation, they used the global optimal active contour model, which
can enclose both solitary and boundary attached nodules. Then, the suspicious nodules scattered in
the lungs are segmented using thresholding, morphological operations, and labeling methods. Ten
features, including the 3D skeleton features, are extracted, and invalid nodule candidates are eliminated,
based on prior anatomical knowledge. Finally, the real nodules are segregated by the SVM-based false
reduction. Their CAD was also tested on 71 exams of LIDC-IDRI and reported a 89.3% sensitivity, 93.6%
accuracy, and 2.1 false positives per subject. Nonetheless, their CAD did not describe the detection of
small nodules surrounded by the vessels.

Moreover, Yuan et al. [25] also presented a lung nodule classification scheme, based on hybrid
features. Instead of using a segmentation method to detect suspicious nodules, they created
icosahedrons to sample the spherical structures. From these samples, they estimated nodule radii
based on threshold values and created a 3D volume of nodule candidates. Then, convolutional neural
networks (CNNs)-based statistical features and Fisher vector (FV)-based geometrical features were
extracted from the volume candidates. These features were fused and fed into the multi-class support
vector machine (SVM) for the classification of different nodule types. Their scheme is evaluated
using two datasets, namely LIDC-IDRI and ELCAP. They achieved the classification rate of 93.1% on
LIDC-IDRI and 93.9% on ELCAP, respectively. However, their nodule voxels selection was based on
the radii threshold; thus, it is challenging to make it a scalable scheme for the detection of invariant
and very tiny nodules.

The primary objective of this paper is to present a fully automated scheme that can detect various
types of nodules providing a high accuracy. Unlike the previous works, we present three significant
contributions. For the first contribution, we propose an automated seeded region growing algorithm
for the segmentation of lung regions. It is an advance of the original region-growing method and
can overcome the weakness in the conventional one, in particular, the needs of the proper initial
region and homogeneity criteria. For the second contribution, we present a three-dimensional chain
coding algorithm to detect the boundary-attached nodules. This algorithm traces the voxelized edge of
the lungs to find the juxta-pleural nodules. As it is based on three-dimensional codeword systems, it
can provide more specific information about the nodules, as compared to the two-dimensional methods.
Moreover, it does not need an extra algorithm to find the start and endpoints of the boundary gap. As
an advantage, we can eliminate the training related problems as well as saving on computational effort.
For the third contribution, we develop an optimized random forest (RF) for false reduction. The original
RF is a successful ensemble method for nodule detection, and we further improve its performance by
combining the attribute selection algorithms in order to get more accurate diagnosis results. The rest
of this paper is organized as follows. Section 2 describes the details of the materials and methods used
in this work. Section 3 designs the proposed nodule detection and evaluates the experimental results.
Lastly, Section 4 summarizes the paper by discussing the scope of future works.

2. Materials and Methods

2.1. LIDC-IDRI Dataset

Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) [28–30]
is a well-known public dataset of thoracic CT scans for lung cancer. This dataset is comprised of
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1018 exams, and each exam contains sequential, two-dimensional (2D) CT slices in DICOM format.
Each slice has a 512 × 512 pixels dimension, and the number of slices per exam varied from 65 to
764. Moreover, each exam in the dataset contained an XML file that annotated the diagnosis results.
These results are accurate because four experienced thoracic radiologists confirmed them through
a two-phased reading process.

In our proposed nodule detection, we applied 888 exams of LIDC-IDRI because some exams
contained missing and inconsistent slices; thus, we excluded such exams from our experiments. We
applied the annotation files as the ground truths to train and evaluate our method. Instead of detecting
the pulmonary nodules directly from the 2D scans, we reconstructed three-dimensional volumetric
images by stacking all the 2D slices in a single exam, i.e., each exam gave a volume image, and it was
used as an input for our nodule detection.

2.2. Methods

Our proposed nodule detection has two fundamental steps: (i) suspicious nodules detection and
(ii) false reduction, as illustrated in Figure 1. The first step is conducted using three methods, namely,
(i) automated seeded region growing, (ii) three-directional chain code, and (iii) preliminary screening.
In the second step, there are two methods: (i) 2D and 3D feature extraction and (ii) an improved random
forest classifier. We discuss the technical details of these five methods in the following sub-sections.
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2.2.1. Automated Seeded Region Growing

The automated seeded region growing is an enhanced version of the original seeded region
growing (SRG) algorithm [32]. SRG is famous for segmentation due to its rapid, robust, and easy-to-use
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procedure. Unlike other region-based algorithms, SRG does not require homogeneity criterion to
determine the similarity between the voxels. Instead, it starts the segmentation by assigning sets
of voxels called the initial seed points, where each set represents a separate region in the image. In
each step of the algorithm, SRG assigns an unlabelled voxel vx,y,z into one of the initial regions.
The algorithm terminates when all the voxels in the image are labelled into different regions. For
example, assume a volume image I has initial seed regions (S1 , S2 , S3 . . . Sn ) and a set of unlabelled
voxels V. Then, we want to label each element of V to each Si , where i = 1, 2, 3, . . . n.

S1 , S2 , S3 , . . . Sn ⊂ I , V ∈ I (1)

V =
{

vx,y,z < ∪
n
i=1Si

∣∣∣∣ N
(
vx,y,z

)
∩ ∪

n
i=1Si , ∅

}
, (2)

where N
(
vx,y,z

)
is the 26 connected neighbors of vx,y,z. After the m step of the algorithm, N

(
vx,y,z

)
meets

just one of the initial seed regions Si, and N
(
px,y

)
∩ Si

(
px,y

)
, ∅ . Then, we calculate the difference

grey value between vx,y,z and its adjacent region by using the following equation.

∂
(
vx,y,z

)
=

∣∣∣∣g(vx,y,z
)
−meanr∈Si [g(r)]

∣∣∣∣, (3)

where g
(
vx,y,z

)
is the grey value of the unlabelled pixel, and the latter part of the equation is the mean

grey value of all the voxels in the adjacent region r. If vx,y,z is located on the boundary of two or more
regions, we assign vx,y,z into the region that has the minimum ∂ value.

∂(z) = minvx,y,z ∈P
(
∂
(
vx,y,z

))
. (4)

In this way, SRG allocates all the unlabelled voxels into separate regions. SRG is easy to use, even
for the unskilled user who does not have detailed knowledge about the input image. Nevertheless,
the segmentation result of SRG strongly depends on the initial seed regions. If the seed regions fall on
the noisy or outlier voxels, it will result in poor segmentation. Moreover, user-oriented seed selection
of SRG is also a flaw for fully automated detection.

Therefore, we propose an enhanced version of SRG, which can identify the initial seed points
automatically. Seed point selection is a vital task for SRG because correct segmentation results are
strongly correlated to the seed points. Each seed point should represent a typical grey value of its
region, but it should not be a noise or an outlier voxel. Fortunately, on a CT scan, specific organs exhibit
a range of grey values, depending on the radiographic density, which is measured by the Hounsfield
unit (HU). Based on this fact, we applied the HU value of the input CT scan for automatic seed
point selection.

As one instance, Figure 2a illustrates a histogram that shows the distribution of HU values in
the input CT volume. In this histogram, HU values are ranging from −1024 to 2513. Then, we can
calculate the mean HU value of the image to find the seed points. The mean HU of the CT volume in
this example is 147.78. Based on this mean HU value, we can assign the seed points automatically. In
our research, we identify two initial seed points. The first seed point is selected by finding the very
first voxel, which is less than the mean HU value. In Figure 2b, the first seed point is denoted by a blue
square, and it represents black regions (low-density regions). Likewise, the second seed point is set as
the very first voxel, which is higher than the mean HU (denoted by a red square in Figure 2b), and it
represents the grey region (high-density regions). Based on these two seed points, the segmentation of
the lungs can be performed by following the steps for SRG.



Appl. Sci. 2020, 10, 2346 7 of 25

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 25 

algorithm terminates when all the voxels in the image are labelled into different regions. For example, 221 
assume a volume image 𝐼 has initial seed regions (𝑆1 , 𝑆2  , 𝑆3  … 𝑆𝑛 ) and a set of unlabelled voxels  𝑉. 222 
Then, we want to label each element of V to each 𝑆𝑖 , where  𝑖 = 1, 2, 3, … 𝑛. 223 

𝑆1 , 𝑆2 , 𝑆3 , … 𝑆𝑛 ⊂  𝐼 ,  𝑉 ∈ 𝐼 (1) 

𝑉 =  { 𝑣𝑥,𝑦,𝑧 ∉   ⋃ 𝑆𝑖
𝑛
𝑖=1    | 𝑁(𝑣𝑥,𝑦,𝑧)  ∩   ⋃ 𝑆𝑖

𝑛
𝑖=1  ≠  ∅ }, (2) 

where 𝑁(𝑣𝑥,𝑦,𝑧) is the 26 connected neighbors of 𝑣𝑥,𝑦,𝑧. After the 𝑚 step of the algorithm, 𝑁(𝑣𝑥,𝑦,𝑧) 224 

meets just one of the initial seed regions Si , and  𝑁(𝑝𝑥,𝑦)  ∩   𝑆𝑖(𝑝𝑥,𝑦) ≠  ∅ . Then, we calculate the 225 

difference grey value between 𝑣𝑥,𝑦,𝑧 and its adjacent region by using the following equation. 226 

𝜕(𝑣𝑥,𝑦,𝑧) =  |𝑔(𝑣𝑥,𝑦,𝑧) − 𝑚𝑒𝑎𝑛𝑟∈𝑆𝑖 
[𝑔(𝑟)]|, (3) 

where 𝑔(𝑣𝑥,𝑦,𝑧) is the grey value of the unlabelled pixel, and the latter part of the equation is the 227 

mean grey value of all the voxels in the adjacent region 𝑟. If 𝑣𝑥,𝑦,𝑧  is located on the boundary of two 228 

or more regions, we assign 𝑣𝑥,𝑦,𝑧 into the region that has the minimum  𝜕 value. 229 

𝜕(𝑧) =  𝑚𝑖𝑛𝑣𝑥,𝑦,𝑧 ∈𝑃  ( 𝜕(𝑣𝑥,𝑦,𝑧)). (4) 

In this way, SRG allocates all the unlabelled voxels into separate regions. SRG is easy to use, 230 
even for the unskilled user who does not have detailed knowledge about the input image. 231 
Nevertheless, the segmentation result of SRG strongly depends on the initial seed regions. If the seed 232 
regions fall on the noisy or outlier voxels, it will result in poor segmentation. Moreover, user-oriented 233 
seed selection of SRG is also a flaw for fully automated detection.  234 

Therefore, we propose an enhanced version of SRG, which can identify the initial seed points 235 
automatically. Seed point selection is a vital task for SRG because correct segmentation results are 236 
strongly correlated to the seed points. Each seed point should represent a typical grey value of its 237 
region, but it should not be a noise or an outlier voxel. Fortunately, on a CT scan, specific organs 238 
exhibit a range of grey values, depending on the radiographic density, which is measured by the 239 
Hounsfield unit (HU). Based on this fact, we applied the HU value of the input CT scan for automatic 240 
seed point selection. 241 

 

(a) 

 

(b) 

Figure 2. Automatic seed points selection using HU values of input CT volume (a) Histogram 242 
showing the distribution of HU values (b) two seed points selected for seeded region growing. 243 

Figure 2. Automatic seed points selection using HU values of input CT volume (a) Histogram showing
the distribution of HU values (b) two seed points selected for seeded region growing.

2.2.2. Three Dimensional Chain Coding

The segmentation of the lung regions usually fails when the nodules adhere to the boundary of
the lungs. Such nodules are known as the juxta-pleural nodules and are exposed the intensities that
are similar to the lung wall. Thus, during segmentation, they are usually excluded, together with
the lung wall, and this produces an under-segmentation result. As an instance, Figure 3a demonstrates
a 2D CT slice containing a juxta-pleural nodule (denoted by a red rectangle), and Figure 3b shows
the segmentation result of the lungs in 3D, applying the automated SRG. From this image, we can
notice that the juxta-pleural nodule is under-segmented (denoted by a red rectangle).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 25 

As one instance, Figure 2a illustrates a histogram that shows the distribution of HU values in 244 
the input CT volume. In this histogram, HU values are ranging from -1024 to 2513. Then, we can 245 
calculate the mean HU value of the image to find the seed points. The mean HU of the CT volume in 246 
this example is 147.78. Based on this mean HU value, we can assign the seed points automatically. In 247 
our research, we identify two initial seed points. The first seed point is selected by finding the very 248 
first voxel, which is less than the mean HU value. In Figure 2b, the first seed point is denoted by a 249 
blue square, and it represents black regions (low-density regions). Likewise, the second seed point is 250 
set as the very first voxel, which is higher than the mean HU (denoted by a red square in Figure 2b), 251 
and it represents the grey region (high-density regions). Based on these two seed points, the 252 
segmentation of the lungs can be performed by following the steps for SRG. 253 

2.2.2. Three Dimensional Chain Coding 254 

The segmentation of the lung regions usually fails when the nodules adhere to the boundary of 255 
the lungs. Such nodules are known as the juxta-pleural nodules and are exposed the intensities that 256 
are similar to the lung wall. Thus, during segmentation, they are usually excluded, together with the 257 
lung wall, and this produces an under-segmentation result. As an instance, Figure 3a demonstrates a 258 
2D CT slice containing a juxta-pleural nodule (denoted by a red rectangle), and Figure 3b shows the 259 
segmentation result of the lungs in 3D, applying the automated SRG. From this image, we can notice 260 
that the juxta-pleural nodule is under-segmented (denoted by a red rectangle).  261 

 

(a)  

 

(b) 

Figure 3. Unsuccessful segmentation of a Juxta-pleural nodule. (a) A two-dimensional computer 262 
tomography (CT) scan with a juxta-pleural nodule, and (b) an under-segmentation of the juxta-pleural 263 
nodule in a three-dimensional view. 264 

Chain coding [4,5] is the most frequently used algorithm to solve the problem of juxta-pleural 265 
nodule segmentation. It traces the pixels/voxels along the contour of the lungs and determines 266 
whether there is a discrete path or not. If a discrete region is found, it is assumed to be the place of 267 
the juxta-pleural nodule and it is enclosed by connecting the lung border. The bi-directional chain 268 
coding method in [6] is an advancement to the original chain coding in [5]. It uses two-dimensional 269 
coordinate systems to trace the boundary pixels in both the horizontal and vertical directions. It 270 
works well for juxta-pleural nodule segmentation, but it needs to operate on each 2D slice of the input 271 
CT exams. As a negative consequence, it consumes a lot of processing time and effort. Additionally, 272 
it needs a supplementary algorithm, for example, the support vector machine (SVM) [6], to determine 273 
and connect the start-point and end-point of the discrete path. 274 

Unlike the chain codes in [4,5], we propose a three-dimensional chain code algorithm [33,34] for 275 
juxta-pleural nodule detection. The main difference is that the chain coding in [4,5] works in 2D 276 

Nodule 

Lung wall 

Under segmented 

Figure 3. Unsuccessful segmentation of a Juxta-pleural nodule. (a) A two-dimensional computer
tomography (CT) scan with a juxta-pleural nodule, and (b) an under-segmentation of the juxta-pleural
nodule in a three-dimensional view.

Chain coding [4,5] is the most frequently used algorithm to solve the problem of juxta-pleural
nodule segmentation. It traces the pixels/voxels along the contour of the lungs and determines
whether there is a discrete path or not. If a discrete region is found, it is assumed to be the place of
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the juxta-pleural nodule and it is enclosed by connecting the lung border. The bi-directional chain
coding method in [6] is an advancement to the original chain coding in [5]. It uses two-dimensional
coordinate systems to trace the boundary pixels in both the horizontal and vertical directions. It works
well for juxta-pleural nodule segmentation, but it needs to operate on each 2D slice of the input CT
exams. As a negative consequence, it consumes a lot of processing time and effort. Additionally, it
needs a supplementary algorithm, for example, the support vector machine (SVM) [6], to determine
and connect the start-point and end-point of the discrete path.

Unlike the chain codes in [4,5], we propose a three-dimensional chain code algorithm [33,34]
for juxta-pleural nodule detection. The main difference is that the chain coding in [4,5] works in 2D
segments of lung regions, but our proposed 3D chain coding works in the 3D segments of lung volume.
Firstly, we extract the voxelized edge V, i.e., a single voxel outline, of the segmented lungs. On that
boundary or edge, V, suppose there are N number of voxels. V(i) is the ith voxel of the boundary
where i = {1, 2, . . . N}. Then, Freeman’s F26 code word system [33] is applied to trace the directional
changes between V(i) and its adjacent voxel V(i + 1).

As illustrated in Figure 4, F26 views a boundary voxel as a cubic lattice, and there are three types
of adjacencies between neighborhood voxels. A cube is comprisesd of six faces, twelve edges, and
eight vertices; thus, there are twenty-six possible directions. The associated codeword values of these
directions are also described in Figure 4, using a to z characters.
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Figure 4. Codeword values for 26 possible directions of the three dimensional chain code [30].

The codeword values are assigned, depending on the direction of the movement between a voxel
to its adjacent one. A movement between two voxels is defined as a set of codeword values c (i),
and each c (i) contains three elements that represent a face, edge and vertex connection, such that
c (i) ∈ {0, 1,−1}. For a visual explanation, Figure 5 demonstrates a path of the voxelized edge, and its
associated codeword values can be assigned based on the adjacencies and directions between voxels
along that path. The path contains seven voxels; thus, there are six directional movements between its
voxels. Then, the associated codeword values of these movements can be defined by six sets, where
each set contains three elements, as described below.
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After assigning the codeword values for all voxels along the boundary, we need to detect the points
that have convexity changes. These points are called the inflection points (denoted by the red stars in
Figure 6b. They can be detected by calculating the differential operations of the codeword values.

f (i)← i i f ∇ c(i) , 0, (5)

where i is the ith voxel of the lung boundary and c(i) is the corresponding codeword value of that
voxel. The non-zero points after the differential operation of c(i) can then be defined as inflection
points f (i). Once inflection points are detected, we calculate and fill the volume of the gap surrounded
by the inflection points, as demonstrated in Figure 6. Unlike the hole filling using SE [4,7,10,12,20,21],
our border reconstruction using 3D chain coding can accurately fill the volume of the gap, i.e., the exact
region of juxta-pleural nodules is filled without resulting in under- or over-filling.
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 Figure 6. Border reconstruction. (a) Under-segmented juxta-pleural nodule, (b) inflection points along
the boundary voxels, and (c) segmented lung after boundary reconstruction.

2.2.3. Preliminary Screening

Preliminary screening is a strategy to remove potential false positives (FPs) from the image.
Generally, the automatic detection of nodules produces a relatively high number of non-nodule lesions,
called FPs, because most of the lung structures such as airways, bronchi, and blood vessels possess
a grey level that is similar to that of the real nodules. As a negative impact, these structures are usually
misclassified as nodules and results in a decline in classification accuracy. Additionally, being prone
to FPs can also increase the computational workload. Therefore, it is crucial to reduce FPs before
the classification process.

In this paper, we initially performed simple thresholding to segment all the structures inside
the lungs, such as nodules, airways, blood vessels, and fissures. These structures expose the attenuation
ranging from −910 HU to −500 HU [35] on the CT scans. We choose the low-density value of -910 HU
as a threshold and segment all the objects higher than that value. This helps to ensure the detection of
nodules with ground glass opacities that have very faint intensities.



Appl. Sci. 2020, 10, 2346 10 of 25

As an illustration, Figure 7a depicts the volumetric structure of the segmented lung regions using
the automated seeded region growing and 3D chain-coding methods. Figure 7b describes the initial
segmented lung structures using thresholding, and it contains a high number of FPs. To reduce these
FPs, we initially applied 3D connected component labeling [36] and analyzed the shape of each labeled
object. Generally, nodules are circular, while other lesions, especially vessels and fissures, are tubular
in their structure. Based on this fact, we calculated three criteria, namely, surface area, eccentricity, and
voxel remove rate (VRR) [13] in order to check the shape of each candidate object.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 25 
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Figure 7. Preliminary screening. (a) Volumetric structure of segmented lungs, (b) roughly segmented
lung structures, and (c) candidate nodules after removing FPs by three criteria.

Let l be a labeled object of a roughly segmented lung structure, and its surface area A can be
calculated by

A (l) =
∑

l (x, y, z), (6)

where l (x, y, z) is a voxel value of l at the three-dimensional coordinate point (x, y, z). By checking
the surface area, we can exclude huge and tiny objects that show a high probability of being non-nodules.
We empirically set two threshold values, T1 = 10 and T2 = 3700, to eliminate the FPs outside that
range.

FP = l
{

i f A(l) < T1
i f A(l) > T2

(7)



Appl. Sci. 2020, 10, 2346 11 of 25

Similarly, we calculated the eccentricity Ecc to check the roundness of each labeled object. The Ecc
value ranged from 0 (a circular object) to 1 (a tubular object), and we empirically applied the Ecc
threshold as 0.9 to remove the tubular objects.

Ecc (l) =
majoraxis (l)
minoraxis (l)

(8)

FP = l i f Ecc(l) > 0.9 (9)

Then, another criterion VRR was also calculated, based on the skeleton structure of the labeled
object. Skeletonization gives a topological structure by transforming the labeled object into a set in
the interconnected single-voxel centerline. By calculating the VRR, we could exclude the elongated
skeletal structures, such as the vessels and bronchioles.

VRR (l) = 1−
A (l)
A (ls)

(10)

where ls is the skeleton of l. Then, we empirically set the VRR threshold as 0.9 to remove the vessels
and bronchioles.

FP = l i f VRR(l) > 0.9 (11)

After a preliminary screening using these three criteria, the FPs could be eliminated, as illustrated
in Figure 7c. However, it could not guarantee the removal of all FPs because the nodules might have
attached to the adjacent pulmonary structures, particularly the vessels, in some cases. This type of
nodule is called a juxta-vascular nodule, and it may be excluded, together with the tubular structures
during preliminary screening. To prevent this, we set very high thresholds (0.9) for Ecc and VRR.
Nonetheless, it was not a perfect way to detect all the vessel-attached nodules. A more effective way
would be to cut the nodules from the attached vessels.

Fortunately, the nodules were in blob shapes in a three-dimensional structure, and hence,
a Hessian-based blob enhancement filter could help to discriminate them from the vessels. Let V be
the volumetric image, and H be its Hessian matrix, which can be calculated by the second-order partial
derivatives of the voxels in V.

H (V) =


∂2V
∂x2

∂2V
∂x∂y

∂2V
∂x∂z

∂2V
∂y∂x

∂2V
∂y2

∂2V
∂y∂z

∂2V
∂z∂x

∂2V
∂z∂y

∂2V
∂z2

 (12)

∇ (H − I ∗ λ) = 0, (13)

where I is the identity matrix and λ = {λ1 , λ2, λ3} is the associated eigenvalues of H. These three
eigenvalues can provide information about the shape of the objects as follows:

V = Blob i f λ1 < 0, λ2 < 0, λ3 < 0 (14)

V = Tube i f λ2 < 0 , λ3 < 0 (15)

V = Plate i f λ3 < 0. (16)

Depending on the shape that we want to enhance, different mathematical computations can
be done using these three eigenvalues. In our proposed method, we intend to detect pulmonary
nodules. Hence, we enhance the blob-like structures and suppress tube-like objects using the following
equations [37].

Blob = λ1
2λp

[
3

2λ1 + λp

]3

(17)
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λp =

{
λ3 i f λ3 < T ∗minxλ3(x, s),

T ∗minxλ3(x, s) otherwise,
(18)

where T is the cutoff threshold value (between 0 and 1); x is the coordinate points of the V and s
is the gaussian scales. Using these equations, we can discriminate the juxta-vascular nodules from
the attached vessel, as illustrated in Figure 8.
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2.2.4. Feature Extraction

The features are the fundamental factors to determine the nodules and non-nodules. Thus, they
must contain sufficient and relevant information in order to produce correct diagnosis results. In clinical
practice, radiologists manually detect and classify the nodules, depending on several radiological
criteria such as size, shape, margin, calcification, contrast, and density. Based on these characteristics,
we extract image features from each suspicious nodule. We assume that the features such as size, shape,
margin, and density are associated with the geometric image features. Similarly, the calcification and
contrast are associated with the intensity and contrast feature of the image.

We extracted 25 features in total from both 2D and 3D structures of the nodule candidates.
The extracted features and their mathematical calculations can be seen in Table 1. In the formulae, N
represents a suspicious nodule in a 2D or 3D structure. For 2D feature extraction, the median slice of
the suspicious nodule is used because it has the maximum number of pixels, as compared to the other
slices. Assume that the coordinate points are only x and y in 2D and x, y and z in 3D. dx, dy, and
dz represent the diameters of N; GN represents the grey value of N and n represents the total number
of pixels (voxels) in N.
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Table 1. Features extracted and the mathematical formulae.

Features Name Formula

Geometric
features (2D,3D)

Surface area sur f ace area =
∑

N(x, y, z)

Perimeter perimeter =
∑

edge(N)

Effective radius
radius (2D) = perimeter ∗

2
√

Sur f ace area
π

radius (3D) = perimeter ∗
3
√

3∗sur f ace area
4π

Centroid centroid = mean (N(x, y, z))

Minor axis length minor axis length = min (N(dx, dy, dz))

Minor axis length major axis length = max (N(dx, dy, dz))

Elongation elongation =
minor axis length
major axis length

Geometric
features (3D)

Volume volume =
sur f ace area ∗ xspacing ∗ yspacing ∗ zspacing

Sphericity sphericity = volume
sur f ace area

Compactness compactness = volume
number o f elements(N)

Intensity and
contrast features
(2D, 3D)

Mean mean = 1
n

∑
(x,y,x)∈N

GN(x, y, z)

Standard deviation σ =
√

1
n

∑
(x, y,z)∈N

[GN(x, y, z) −mean]2

Skewness skewness =
∑

(x, y,z)∈N[GN(x,y,z)−mean]3

nσ3

Kurtosis kurtosis =
∑

(x, y,z)∈N[GN(x,y,z)−mean]4

nσ4

2.2.5. Improved Random Forest

Several authors have proved that the random forest (RF) [38] is a significant machine
learning algorithm for the classification of pulmonary nodules. RF is computationally effective
in solving problems with noisy data and overfitting. It is a combination of multiple decision trees
h1(x), h2(x), . . . hK(x), where x is a group of input samples, and K is the total number of trees in
the forest. Each tree hi(x), i = {1, 2, . . . K} works in parallel and produces its own prediction pi
independently. The final prediction result of RF is decided by major voting and finding the winning
class among pi. Individual tree hi(x) is grown on a random subset of samples Ri , i = {1, 2, . . .K} from
the training data T with replacements. The number of sample n in each random subset Ri is the same.
RF does not use all the samples n in Ri for the training of individual tree. It only uses 36.8% of n for
training and the rest are used for internal validation.

Suppose Ri(x) is a random subset that has a group of samples x. Each sample in x has attributes
Ai , i = {1, 2, . . . .a}, where a is the total number of attributes. However, RF does not use all the attributes
Ai to grow the trees. Instead, it selects random attributes Ar by calculating the Gini values of Ai.

Gini (Ai) = −
c∑

i=1

p(yi)
2 +

mi∑
j=1

p
(
vi, j

) c∑
i=1

p
(
yi
∣∣∣vi, j

)2
(19)

where c is the total number of classes and p(yi) is the probability of the class yi . Each attribute Ai
has values v j where mi is the number of values and p

(
vi, j

)
is the probability that the attribute Ai has

the value v j. Then, p
(
yi
∣∣∣ vi, j

)
is the probability of the class yi conditioned by the attribute Ai having

value v j.
The Gini calculation is easy and fast because it evaluates the attributes separately without

considering the conditional dependencies and interactions with other attributes. As a negative impact,
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the performance of the RF may degrade when the attributes are strongly dependent on each other.
Moreover, using random attributes to grow each tree also makes the individual trees weaker because
random selection cannot be guaranteed to obtain the relevant and non-redundant attributes [39].

For this reasons, we aim to improve the conventional RF by combining it with attribute selection
algorithms. Instead of selecting random attributes by calculating the Gini value, we select optimal
ones to grow each decision tree. We apply four state-of-the-art attribute selection algorithms, namely
RELIEFF [40], genetic algorithm (GA) [41], particle swarm optimization (PSO) [42], and firefly algorithm
(FA) [43], to measure the quality of the attributes. Put simply, we use these four feature selection
algorithms as a pre-processing step before growing individual trees. Each algorithm estimates
the quality of the attributes and selects r number of attributes that have the highest quality. The decision
trees in the RF are then grown using these selected attributes. Figure 9 demonstrates the architecture of
our optimized RF, with i decision trees (i = 1, 2, 3 . . . , K). Unlike the random attribute selection of
the original RF, the attribute selection algorithms in our optimized RF take into account the conditional
dependencies between the attributes.
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3. Results and Discussions

To design and evaluate the performance of our proposed nodule detection, we randomly divided
the input materials (888 CT exams of LIDC-IDRI) into k subsets where k = 5 and performed k-fold
cross-validation. Unlike other validation methods that only use one training and one testing subset,
k-fold cross-validation makes our proposed nodule detection more robust. Among k subsets of
samples, it uses a single subset for testing and the remaining k-1 subsets for training. In this way,
cross-validation iterates the training and testing processes k times so that each of the k subsets have
appeared as a test set exactly once in order to validate the performance of the proposed method. Then,
the final assessment of cross-validation can be obtained by calculating the average. This idea helps to
provide more accurate assessments on the predictability of the proposed nodule detection on unknown
samples. Moreover, k-fold cross-validation helps our proposed nodule detection prevent overfitting.
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After preparing data for cross-validation, we try to set the hyperparameters of our proposed RF.
As the performance of RF strongly depends on the hyperparameters used, selecting appropriate values
of the hyperparameters is very important. Hyperparameters are the values that are predefined before
running the model. Generally, these values are manually set by the developer because they cannot be
estimated from the data. The common hyperparameters that are applied in RF are (i) the number of
decision trees in the forest, (ii) the maximum number of features selected to develop an individual
tree, (iii) the maximum number of depths of an individual tree, (iv) the minimum number of samples
required to split an internal node, and (v) the minimum number of samples at the leaf node. Proper
adjustment of these hyperparameter values can help the RF’s prediction results be more reliable
and robust.

In this experiment, we define the optimal hyperparameter values using the “trials and errors.”
We initially set a possible range of values that correspond to a specific hyperparameter and perform
cross-validation. The accuracy score generated by RF, using each value of the hyperparameter, is
measured, and the value that can provide the highest accuracy is picked as an optimal hyperparameter.

For the first hyperparameter, in regards to the number of decision trees used in RF, we define
a range from 100 to 500. Then, the accuracy scores, using each number of decision trees from the range,
is calculated. Subsequently, a validation curve is created to show and compare the accuracy scores that
are produced using the different number of decision trees, as illustrated in Figure 10a. From this curve,
we can see that the highest accuracy value (0.9304) is reached using (230) decision trees. Hence, we
choose (230) as an optimal hyperparameter value for the number of decision trees in RF.

In general, most RFs set the second hyperparameter, which is the maximum number of features, as
the square root of the total number of features. However, in our research, we tested using a range from
1 to 25 (total number of extracted features) and chose 15 as a hyperparameter because it could ensure
the highest accuracy (0.9232), as demonstrated in Figure 10b. As well as, the third hyperparameter,
the maximum number of depths of an individual tree is selected by finding the highest accuracy using
a range from 2 to 20. As we can see in Figure 10c, the FR reached the highest accuracy (0.9285) at
the depths (18); thus, we selected that number as the third hypermeter.

In the same way, the next hyperparameter, the minimum number of samples to split an internal
leaf node is selected as (5) by testing a range from 2 to 20, as depicted in Figure 10d. Finally, the last
hyperparameter, the minimum number of samples at the leaf node, is chosen as (2) as it could give
the highest accuracy score (0.9178), as shown in Figure 10e.
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Figure 10. Adjusting the hyperparameter values for RF. (a) Number of decision trees in the forest,
(b) maximum number of features selected for each tree, (c) maximum number of depths of an individual
tree, (d) minimum number of samples required to split an internal node, and (e) minimum number of
samples at the leaf node.

To summarize the hyperparameter adjustments, Table 2 lists the optimal values of each
hyperparameter used in our proposed RF. All of these hyperparameters are selected using an original
version of RF before combining any attribute selection algorithm.

Table 2. Hyperparameter adjusting for RF.

Hyperparameter Range Accuracy Selected Value

Number of decision trees 100 to 500 0.9304 230
Maximum number of features 1 to 25 0.9232 15
Maximum number of depth 2 to 20 0.9285 18
Minimum number of samples to split 2 to 20 0.9267 5
Minimum number of samples at the leaf node 1 to 5 0.9178 2

Using these hyperparameter values, we developed the five RFs (original and four improved
RFs). All of these RFs are implemented using the same setting of parameters and evaluated by
k-fold cross-validation. In each iteration of k, we assessed the following statistical measurements and
calculated the average for the final evaluation results.

Accuracy (Acc) =
TP + TN

TP + TN + FP + FN
(20)

Sensitivity (Sen) =
TP

TP + FN
(21)
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Speci f icity (Spec) =
TN

TN + FP
(22)

Fasle positive (FP) =
FP

Number o f exams
(23)

F1 score (F1) =
2TP

2TP + FP + FN
(24)

where TP, TN, FP, and FN are true positive, true negative, false positive, and false negative, respectively.
In addition to these measurements, we also provide a graphical method called the receiver

operating characteristics (ROC) curve to evaluate the performance of the proposed nodule detection
quickly. ROC is a two-dimensional graph showing the false-positive rate (FPR) (1-Specificity) in
the X-coordinate and the true-positive rate (TPR) (Sensitivity) in the Y-coordinate [44]. The continuous
outputs of the RFs, i.e., the scores that represent the probability of a sample belonging to a specific class,
are applied to generate the ROC curve. Firstly, the samples are sorted depending on the descending
order of their corresponding scores. Then, a threshold value is set as the maximum (α), and it decreases
until the minimum (- α). In every decrease, the threshold value is compared to the prediction scores. If
the score of a sample is equal to or higher than the threshold, that sample can be classified as a positive
class (1); otherwise, it is defined as a negative class (0).

At the maximum threshold value (α), the scores of all samples are less than α; therefore, all
the samples are classified as negative classes. As a result, the (FPR, TPR) at that threshold is (0,0), and
we plot it on the graph. Inversely, if the threshold value is minimum (- α), then the coordinate points
of (FPR, TPR) reach (1,1), meaning that all the samples are classified as positives. In this way, the ROC
curve is generated by plotting (FPR, TPR) for every threshold value.

Figure 11 demonstrates an example of ROC plotting based on different threshold values. Suppose
we have ten samples of two classes (five for positives and the rest for negatives), and they are arranged
according to their prediction scores. At first, the threshold value is set as α and calculates the FPR and
TPR. Then, the threshold value is reduced until it equals the score of the second sample, and (FPR, TPR)
is recomputed by comparing that threshold with the scores. In this way, the threshold is decreased,
and (FPR, TPR) is computed for all the samples. Finally, we can generate the ROC curve by plotting
the resulting (FPR, TPR) values on a 2D coordinate system (as shown in the right side of Figure 11).
The ROC in the figure exposes a step function because only ten samples are tested in this example.
The real ROC curves in practice are smoother and are more complex, as compared to the curve in
this example [44]. Based on this ROC, we can know that the highest performance of the classification
model in this example is reached at the point (0.2,0.8), which is the minimum FPR and maximum TPR.
If a ROC curve reaches the point (0,1), it means that the model produces an ideal performance because
it can correctly predict all positive and negative samples.
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Our experiment uses five classification models (original RF and four improved RFs), and each
iterates the training and testing process five times for five-fold cross-validations. Therefore, in
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every iteration, we generate an ROC of each RF. After that, the mean ROC curves are generated by
interpolating the single ROCs, as illustrated in Figure 12a–e. Finally, the comparison of the mean ROCs
of five RFs is shown in Figure 12f.Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 25 
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Figure 12. Comparison of ROC curves for five RFs. (a) Original RF, (b) improved RF using RELIEFF
attribute selection algorithm, (c) improved RF using genetic algorithm (GA) attribute selection algorithm,
(d) improved RF using particle swarm optimization (PSO) attribute selection algorithm, (e) improved
RF using firefly (FA) attribute selection algorithm, and (f) comparison of the mean ROCs of five RFs
with respected to five-fold cross-validation.
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However, comparing the ROC curves directly from the graph is very difficult as they are not scalar
values. For this reason, we add another assessment measurement called the area under the curve
(AUC) to ascertain the specific differences between the ROC curves. As the name implies, AUC can be
measured by calculating the area of the trapezoid region under the ROC curve. Table 3 summarizes all
the assessment values of each RF with respect to the five-fold cross-validation. From this table, we can
know that the optimized RF that applies the firefly attribute selection (RF+FA) can provide superior
performance, as compared to its counterparts.

Table 3. Performance assessment measurements of original RF and four improved RFs with respect to
five-fold cross-validation.

Classifiers Assessments
Five-fold Cross-Validation

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Mean

Original
RF

Accuracy 0.8986 0.9128 0.8899 0.9263 0.9037 0.9063
Sensitivity 0.8991 0.9358 0.9174 0.9444 0.8899 0.9173
Specificity 0.8981 0.8899 0.8624 0.9083 0.9174 0.8952
False Positive 0.1019 0.1101 0.1376 0.0917 0.0826 0.1048
F1-score 0.8991 0.9148 0.8929 0.9273 0.9023 0.9073
AUC 0.9413 0.9279 0.9249 0.9529 0.9383 0.9371

RELIEFF +
RF

Accuracy 0.9124 0.9174 0.9171 0.9358 0.9220 0.9209
Sensitivity 0.9352 0.9358 0.9174 0.9541 0.9358 0.9357
Specificity 0.8899 0.8991 0.9167 0.9174 0.9083 0.9063
False Positive 0.1101 0.1009 0.0833 0.0826 0.0917 0.0937
F1-score 0.9140 0.9189 0.9174 0.9369 0.9231 0.9221
AUC 0.9760 0.9632 0.9805 0.9786 0.9822 0.9761

GA + RF

Accuracy 0.9174 0.9174 0.9124 0.9263 0.8945 0.9136
Sensitivity 0.9725 0.9725 0.9444 0.9358 0.9174 0.9485
Specificity 0.8624 0.8624 0.8807 0.9167 0.8716 0.8787
False Positive 0.1376 0.1376 0.1193 0.0833 0.1284 0.1213
F1-score 0.9217 0.9217 0.9148 0.9273 0.8969 0.9165
AUC 0.9646 0.9690 0.9822 0.9761 0.9729 0.9730

PSO + RF

Accuracy 0.8853 0.9312 0.9174 0.8986 0.9217 0.9108
Sensitivity 0.9266 0.9633 0.9633 0.9266 0.9259 0.9411
Specificity 0.8440 0.8991 0.8716 0.8704 0.9174 0.8805
False Positive 0.1560 0.1009 0.1284 0.1296 0.0826 0.1195
F1-score 0.8899 0.9333 0.9211 0.9018 0.9217 0.9135
AUC 0.9532 0.9736 0.9697 0.9397 0.9718 0.9616

FA + RF

Accuracy 0.9078 0.9539 0.9266 0.9404 0.9266 0.9311
Sensitivity 0.9630 0.9633 0.9174 0.9817 0.9174 0.9486
Specificity 0.8532 0.9444 0.9358 0.8991 0.9358 0.9137
False Positive 0.1468 0.0556 0.0642 0.1009 0.0642 0.0863
F1-score 0.9123 0.9545 0.9259 0.9427 0.9259 0.9323
AUC 0.9862 0.9859 0.9838 0.9826 0.9649 0.9807

Some example of outputs of our proposed nodule detection are demonstrated in Figure 13.
Figure 13a shows the detection of a sharp solid nodule that resides inside the lung without touching
other lesions. Such nodules are easy to detect, and our proposed method well-detected them. However,
Figure 13b shows the results of an isolated ground glass nodule (GGO) that had a very faint intensity.
This type of nodules is hard to detect due to their hazy structures. However, the proposed method
can successfully detect them because we used a very low-intensity value (−910 HU) during nodule
candidate detection. Moreover, our method ensures the detection of juxta-pleural nodules that are
connected to the lung boundary. Figure 13c represents the detection of a small juxta-pleural nodule,
and Figure 13d represents the detection of a very big one, respectively. Our method can ensure
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the detection of juxta-pleural nodules, regardless of the size, which is beneficial to the use of the 3D
chain coding method for border reconstruction.Appl. Sci. 2020, 10, x FOR PEER REVIEW 20 of 25 
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Figure 13. Results of the proposed nodule detection. (a) Solid isolated nodule, (b) isolated ground
glass nodule, (c) small juxta-pleural nodule, (d) big juxta-pleural nodule, and (e) juxta-vascular nodule.
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Lastly, Figure 13e shows the detection of a juxta-vascular nodule, which is also challenging to
detect due to nearby pulmonary structures. Our method can successfully detect them with the help
of the blob enhancement filter in preliminary screening. Therefore, it is evident that our proposed
method can detect any variants of nodules.

Moreover, we compute execution time for our proposed nodule detection because it is an essential
factor in evaluating the performance of an algorithm. Table 4 describes the profile summary, which
shows the time complexity for each function to detect the pulmonary nodules from a single exam with
a maximum number of slices. From this table, we can see that our automated nodule detection takes
144.4 seconds (2.4 minutes) in maximum to predict a single CT exam on a standard processor with
Intel(R) Core (TM) i7-6500U CPU @2.6 GHz.

Table 4. The total execution time of our proposed nodule detection.

Function Name Total Time

Reading input images (Maximum: 764 slices) 1.53 s

Lung regions segmentation (Automated seeded region growing) 11.49 s

Border reconstruction (3D chain coding) 99.68 s

Preliminary screening 18.56 s

Feature extraction 10.40 s

False reduction (RF+FA) 2.74 s

Entire program 144.40 s

Lastly, we conduct the performance comparison of the proposed nodule detection with some
of the state-of-the-art techniques discussed in Section 2.1. While these techniques worked on
the same dataset (LIDC-IDRI), they used a different number of samples and different performance
assessment measurements. For a fair comparison, we quantitatively compared each method based on
the same assessment measurements, as demonstrated in Table 5. From the table, we can analyze that
the techniques in [13] and [25] achieved higher and the same accuracy values, compared to our proposed
method, but their performances were assessed using fewer samples. Moreover, the performance
of [24] is also quite high, using the same number of samples. However, [24] applied the CNN, which
consumes a high computation cost and is applicable in some specialized computers that have good
GPUs. Unlike their methods, our proposed method applied the improved random forest by firefly
(RF + FA), which is preferable and applicable in any standard computers. Moreover, the proposed
automated nodule detection is promising for the detection of variant size and type of nodules in a high
detection accuracy.

Table 5. Performance comparison of proposed nodule detection with previous methods.

References Method Exams Acc
(%)

Sen
(%)

Spec
(%)

FP
(per exam)

[9]

• Multiple thresholding
• Labeling
• Rule-based
• SVM (optimized by

particle swarm)

200 90.12 98.03 87.71 2.45
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Table 5. Cont.

References Method Exams Acc
(%)

Sen
(%)

Spec
(%)

FP
(per exam)

[13]

• Global optimal
active contour,

• Thresholding
• Morphological operations
• Labeling
• SVM

71 93.6 89.3 - 2.1

[24]
• Candidate detectors
• CNN 888 - 90.1 - 4

[25]

• Icosahedron sampling
• Thresholding based on

nodule radii
• CNN + FV features
• SVM

744 93.1 - - -

Proposed
Method

• Automated seeded
region growing

• 3D chain code
• Preliminary screening
• RF + FA

888 93.11 94.86 91.37 0.0863

4. Conclusions

In this paper, we presented a fully automated nodule detection for lung cancer diagnosis. Firstly,
we proposed an automated seeded region growing (SRG) to segment the lungs from the input CT
volume images. The strength of the proposed SRG is that it can select initial seed regions automatically
and perform the segmentation without requiring homogeneity criteria to determine the similarity
between the pixels. Secondly, we designed a 3D chain code algorithm for the detection of juxta-pleural
nodules. It traces the voxelized boundary of the segmented lungs to identify the concave regions
along the border and enclose them by detecting the inflection points. Compared to the 2D border
reconstruction methods, the use of 3D chain coding takes less effort and provides more accurate results.
Moreover, it does not require training data or other classification algorithms to find the start-point
and end-point of the nodule gap. Finally, we developed an optimized random forest (RF) classifier
using four attribute selection algorithms, namely, RELIEFF, genetic algorithm (GA), particle swarm
optimization (PSO), and firefly algorithm (FA), for false reduction. Our proposed nodule detection
was evaluated using 888 exams of LIDC-IDRI, and a favorable performance of 93.11% accuracy,
94.86% sensitivity, and 91.37% specificity with only 0.0863 false positives per scan was achieved using
optimized random forest by firefly algorithm. Moreover, our proposed nodule detection ensures
the detection of variant type and size of nodules using a standard machine. Therefore, it can be applied
as a supportive tool for physicians and radiologists to diagnose lung cancer. However, as a limitation,
the preliminary screening of our nodule detection depends on some empirical threshold values to
reduce false positives. In future work, the pulmonary nodules detected by our proposed method can
be further classified into different clinical stages to determine the severity of lung cancer.
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