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Abstract: A novel method to solve nonlinear contact between two bodies with plane strain behavior
is presented in this paper. This method is based on the Boundary Integral Equation (BIE) and the
Isogeometric Analysis (IGA). Unlike works that divide the boundary into elements, this method
evaluates it as a single element, reducing the degrees of freedom in the solution. Moreover, the
Particle Swarm Optimization Algorithm (PSO) was used in order to estimate the deformation when
two bodies are in contact and there is penetration between them. The obtained results were compared
with the Finite Element Method (FEM) and the Hertz contact equation.
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1. Introduction

This paper presents an alternative solution to overcome the drawbacks of the boundary element
method (BEM). The conventional BEM solves the continuum mechanics problems by using the
reciprocal work theorem also known as Betti’s theorem, the Navier–Cauchy equations, and the
divergence theorem. The divergence theorem simplifies the continuum mechanics equations solution
by modeling only at the boundaries [1]. Such modeling consists of dividing the boundary of the body
under analysis into a discrete set of functions, denominated “elements” with nodes, and describing
the displacements and tractions by polynomial functions. Since BEM is a consequence of the Betti’s
theorem, there are two sets of displacements and tractions. One set is known in advance through
entities called traction and displacement kernels, which are valid for any equilibrium geometry. The
other set belongs to the body under analysis which is the problem to be solved. Naturally, to obtain a
unique solution, boundary conditions such as prescribed tractions and displacements must be applied.
The calculated traction and displacement kernels depend on the normal of the surface, the geometric
variable, and the interpolation points that describe the boundary. However, the discretization process
produces a lack of continuity on the boundary.

An alternative to solve this problem is to use the Non-Uniform Rational B-Splines functions
(NURBS) from the CAD model instead of using interpolation functions. This concept was called
Isogeometric Analysis (IGA), and it was proposed by Hughes et al. [2] in 2005. Initially, the IGA was
used with the FEM framework, but eventually, it was combined with BEM and with the finite cell
method (FD).

Simpson et al. [3,4] proposed the Isogeometric Boundary Element Method (IGA-BEM) in 2012
and established the guidelines for combining IGA with BEM, e.g., how the elements are generated
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using the NURBS knot vector and the NURBS basis functions. They also used the Greville abscissae
scheme to get the collocation points and the displacement and traction kernels. Finally, they applied
the method to solve the L-plate, the hole-within-an-infinite-plate, and the L-shaped wedge problems.

Takahashi and Matsumoto [5] proposed an IGA-BEM combined with the fast multipole method
(FMM), to decrease the control points of the NURBS. They proved that this combination could achieve
the same accuracy as the conventional BEM but with fewer degrees of freedom and less computing time.
Peake et al. [6] presented an extended IGA-BEM using a partition-of-unity method on NURBS functions;
they applied it to solve a two-dimensional Helmholtz problem. Likewise, Scott et al. [7] refined the
IGA-BEM, using T-Splines instead of NURBS, to solve linear elastostatic problems; they showed
the performance of this method with a patch test and a propeller analysis. Moreover, Lian et al. [8]
continued the work of [3,4,7], and they used the T-Splines with IGA-BEM, to optimize the shape
of three-dimensional elastic bodies; they chose the control points as design variables to modify
the geometry.

The IGA-BEM combination was not only used to reduce the degrees of freedom, changing basis
functions, or solving linear problems. For example, Gong and Dong [9] developed a method to
calculate the singular integrals on a 3D potential problem and Heltai et al. [10] used IGA-BEM to
analyze 3D Stock flows. Peng et al. [11] used a geometric algorithm to propagate fractures, based on
the fatigue Paris law, and IGA-BEM to analyze them. Venas and Kvamsdal [12] used IGA-BEM to solve
the acoustic scattering problem of a submarine.

The applications of the IGA-BEM in a wide variety of problems have given good results.
Nevertheless, the solution depends on calculating the kernels at the interpolation points, restricting
the solution domain to the geometry discretization domain. In this work, a methodology based on
IGA-BEM is proposed. The method models the body boundary using a single continuous NURBS
function thus makes the geometry discretization independent of the evaluation points and separates
the kernels calculation from the interpolation functions. These properties allow us to modify the
boundary to solve problems like the contact between two bodies.

The mechanical contact has been extensively studied. Johnson [13] described the best-known
analytical contact models, such as the Hertz model, the JKR model, and the Bradley model, among
others. The Hertz model relates the contact area and the material properties; the JKR model uses the
same assumption but adds the interfacial interaction strength; and, finally, the Bradley model considers
the external Van der Waals interactions that add load to the contact.

In the numerical methods used in continuum mechanics, the most popular algorithm to analyze
the contact is the master–slave. This method consists in projecting the nodes of an elastic body (slave)
onto a rigid body (master) when a force is applied. If the slave-node penetrates the body of the
master, a force is used in the contact area to return the slave-node to the outer surface of the master.
Thereby, the deformation of two bodies in contact is found. This algorithm has been widely used with
FEM [14–16] and has recently been combined with IGA [17–24]. Nevertheless, the main disadvantage
of this method is that applied contact force is not a real force. Additionally, every time this force is
used, the contact zone must be found again and verified for penetration. In case penetration is found,
another force must be applied, so the algorithm iterates until there is no penetration.

When using BEM, the problem is solved differently [25]. The nodes that are in the contact zone
must satisfy two general conditions: there must be continuity between their displacements (not
overlapping), and their tractions must be the same but in the opposite direction [25–28]. As the contact
area is not known in advance, the analysis starts with a first contact zone, which is modified until the
nodes satisfy the contact conditions. Although the contact is more easily modeled with BEM than
with FEM, the analysis draws the disadvantages of BEM, such as the sensitivity to the analysis-points
selection that leads to errors in the numerical calculation of the integrals.

This investigation takes the best features of IGA and BEM to overcome the inconveniences of
the conventional BEM. The analysis points of the geometry are separated from the bodies in contact,
and the particle swarm optimization (PSO) algorithm is used to find the contact area. In this way, the
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control points of the NURBS are modified repeatedly, until a correct area is found. With the proposed
method, the solution domain is closed (not discrete), by defining the boundary with a single NURBS,
and with fewer analysis points in contrast to traditional FEM.

This paper is arranged as follows: Section 2 presents the basis to understand the isogeometric
boundary element method, such as the NURBS functions and conventional BEM. Section 3 sets
the guidelines to implement the modified IGA-BEM, and later, it details the methodology to be
implemented in conjunction with the optimization algorithm. The following section presents the
results and properties of the analyzed bodies, as well as a comparison with FEM and BEM. Finally,
Section 5 concludes the work and defines future work with the theory presented.

2. Background of Modeling with NURBS and Boundary elements

2.1. Modeling Geometric with NURBS

A NURBS is a parametric curve that can generate lines, conics, and circles accurately. Due to this
versatility, it has been widely adopted in computer-aided design programs (CAD). Mathematically,
a NURBS curve is defined by Equation (1), where n is the control points number, ξ symbolizes the
function parameter, B represents the control points, w the weights, N denotes the B-spline basis
functions, Equations (2) and (3), with order k (degree k − 1). Figure 1 shows the basis function as a
function of ξ.

C(ξ) =

∑n+1
i=1 BiwiNi,k (ξ)∑n+1

i=1 wiNi,k (ξ)
=

∑n+1

i=1
BiRi,k (ξ), (1)

Ni,1(ξ) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise
, (2)

Ni,k(ξ) =
(ξ− ξi)Ni,k−1(ξ)

ξi+k−1 − ξi
+

(ξi+k − ξ)Ni+1,k−1(ξ)

ξi+k − ξi+1
(3)

The parameter ξ gets its values from the knot vector Ξ = [ξmin . . . ξmax], which goes from a
minimum ξmin to a maximum value ξmax, and its length is n + 1 + k. If C is a closed curve, the values
at the ends of the knot vector are repeated k times. The weights, w, allow local control in the shape of
the curve; they move the curve closer or farther to the corresponding control point.
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The curve continuity can be controlled with the repeated values in the knot vector ξ. On the other
hand, a NURB curve is k times derivable, and its first derivate is shown in Equation (4).

C′(ξ) =
∑n+1

i=1
BiR′i,k (ξ), (4)
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where:

R′i,k (ξ) =
wiN′i,k(ξ)∑n+1

i=1 wiNi,k(ξ)
−

wiNi,k
∑n+1

i=1 wiN′i,k(ξ)(∑n+1
i=1 wiNi,k(ξ)

)2 , (5)

In the following sections, we can see that the displacements and tractions are a function of ξ
parameter. This causes the method to inherit the properties of the NURBS and accurately represents
the body to be analyzed.

2.2. Boundary Element Method

The boundary element method uses Betti’s theorem, which says that the work done by a force
system (a) on the displacements on a system (b) is equal to the work done by the forces of (b) on the
system displacements of (a), in a body in equilibrium for two different groups of stresses and strains,
Equation (6). ∫

V
σa

i ε
b
i =

∫
V
σb

i ε
a
i , (6)

Using the differential equations of Navier for displacements, the traction definition, and the
divergence theorem, Equation (6) turns into (7).∫

Γ
ta
i ub

i dS +

∫
V

f a
i ub

i dV =

∫
Γ

tb
i ua

i dS +

∫
V

f b
i ua

i dV, (7)

where ta
i and tb

i are tractions; ub
i and ua

i are displacements; and f a
i and f b

i are loads from set a and b,
respectively. Since the problem to be solved is about solid mechanics, the Kelvin’s solution was applied
in the previous equation, to arrive at the Somigliana identity for displacements, Equation (8).

ui(p) = −
∫

Γ
Ti j (p, Q)ui(Q)dS +

∫
Γ

Ui j (p, Q)ti(Q)dS +

∫
V

Ui j (p, Q) fi(q)dV, (8)

Ti j and Ui j represent the traction and displacement kernels from the Kelvin solution, which gives
us tractions and displacements on any point of the surface Q when a load is applied to an interior
point, p, and is applicable to any geometry. The variables ui, ti, and fi are the displacements, tractions,
and forces to be found. Equations (9) and (10) represent the displacement and traction kernels for
the two-dimensional elastostatic problem. These kernels depend on the values of the shear modulus
(µ), the Poisson coefficient (v), and the distance between the load point (p) and field point, Q, r(p, Q),
described by Equation (11). For each load point and field point, displacement and traction kernels
are calculated.

Ui j (p, Q) =
1

8πµ(1− v)
(3− 4υ)ln

[
1

r(p, Q)

]
δi, j +

dr(p, Q)

dxi

dr(p, Q)

dx j
, (9)

Ti j (p, Q) = − 1
8πµ(1−v)r(p,Q)

dr(p,Q)
dn x

[
(1− 2ν)δi, j + 2 dr(p,Q)

dxi

dr(p,Q)
dx j

]
+

1−2v
4π(1−v)r(p,Q)

[
dr(p,Q)

dx j
ni +

dr(p,Q)
dxi

n j

]
,

(10)

r(p, Q) =

√(
Xp − xQ

)2
+

(
Yp − yQ

)2
, (11)

As Equations (8)–(11) have the load point, p, in the interior of body and field point, Q, in the
boundary body, it is necessary to move the load point, p, to the boundary. Thus, Equation (7) is
transformed into Equation (12), with the absence of body forces:

C(P)ui(P) +
∫

Γ
Ti j (P, Q)ui(Q)dS =

∫
Γ

Ui j (P, Q)ti(Q)dS, (12)
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where C(P) is called “Jump Term”. This element moves the internal load point (p) to the boundary,
and now the load point is denoted as P. The numerical way to solve Equation (12) is to divide the
body contour under analysis into “elements”. Each element is composed of “nodes” (Figure 2). Shape
functions describe the geometry and displacement and traction variables.Appl. Sci. 2020, 10, x 5 of 20 
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To generate the kernels, a node is taken as the load point, P, and the field point, Q, is generated by
each element using shape functions. The diagonal of these kernels corresponds to the point P being
equal to the point Q, or P equal to any node of the element. When this happens, the values of the
kernels are singular or very close to being singular. A correct approximation of these values is detailed
in [25]. Then, a method as the Gaussian quadrature is applied to integrate the kernels on each element.
Given these conditions, Equation (12) can be rewritten as follows:

C(P)ui(P) +
ne∑

e=1

3∑
c=1

[∫ 1
−1 Ti j (P, Q(ζ))Sc(ζ)Je(ζ)dζ

]
ue

i

=
ne∑

e=1

3∑
c=1

[∫ 1
−1 Ui j (P, Q(ζ))Sc(ζ)Je(ζ)dζ

]
te
i

(13)

where ζ is the local coordinate to describe the geometry, ue
i denotes the displacement, te

i the traction at
the e element, ne is the total number of elements, S represents the quadratic shape functions, and Je

denotes the Jacobian element transformation to convert the variables from the boundary Γ to the local
coordinate. The integral range [−1, 1] is part of the Gaussian quadrature.

3. Method

3.1. The Proposed Isogeometric Boundary Element Method

The guidelines to use IGA-BEM were established by [3]. In such a way, Equation (13) remains the
same, except that the parameter ξ replaces the term ζ and the shape functions are the B-spline basis
functions N with order k:

C(P)ui(P) +
ne∑

e=1

k∑
c=1

[∫ 1
−1 Ti j (P, Q(ξ))Nc(ξ)Je(ξ)dζ

]
ue

i

=
ne∑

e=1

k∑
c=1

[∫ 1
−1 Ui j (P, Q(ξ))Nc(ξ)Je(ξ)dξ

]
te
i

(14)

However, unlike the method proposed by [3], our model generates the body boundary through
a single NURBS, that is, with one “macro-element”. In such a way, it is not necessary to integrate
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the kernels. Nevertheless, it is required to integrate the Jacobian because the element represents the
whole-body contour. The result is the body perimeter.

In addition to the boundary conditions, three sets define the problem to be analyzed:

• Parameter values ξ to get the nodes P and Q on the boundary and generate the values of the kernel.
• The control points (B) that define the shape of the body.
• Parameter values ξ to calculate the Jacobian of the macro-element.

The proposed integral boundary equation is given by Equation (15), where η represents the ξ
values that are used to calculate the Jacobian, which are different from the ξ values to find the P and
Q nodes.

C(P(ξ))ui(P(ξ)) +Ti j (P(ξ), Q(ξ))ui(Q(ξ))
∫

Γ J(η)dη
= Ui j (P(ξ), Q(ξ))ti(Q(ξ))

∫
Γ J(η)dη

(15)

In conventional BEM, the jump term C was calculated indirectly, using rigid body
considerations [25]. However, as Simpson et al. [4] described, these considerations are no longer valid,
because of the nature of NURBS so the jump term has to be calculated explicitly [29]. However, because
the geometry of the body-under-analysis is represented by a single element, the jump term equations
are reduced to Equation (16). This matrix only affects the diagonal of the traction kernel when the load
point, P coincides with the field point, Q.

C(P) =
[ 1

2 0
0 1

2

]
, (16)

On the other hand, because the boundary variable, Γ, is a function of ξ, the term of Jacobian
transformation, J(η), is described by the following:

J(η) =
dΓ
dη

=

√(
dx(ξ)

dξ

)2

+

(
dy(ξ)

dξ

)2

, (17)

The general flowchart of the isogeometric boundary method proposed is shown in Figure 3. The
first step is to read the properties of the material-under-analysis and the NURBS geometry data. That
is, the Young modulus (E), the Poisson coefficient (ν), the control points (B), the knot vector (Ξ), and the
curve order (k). Then, a quantity N of load/field points is chosen. The coordinates of the load points on
boundary are generated by replacing a value of ξ in the NURBS function.

The next step is to calculate the kernels for each combination of load points, P, and field points,
Q. Every Kernel is saved in a global matrix of displacement (U) and traction (T) kernels with size
(N × 2) × (N × 2). When the load point matches with the field point, the calculation of that traction
kernel is skipped and replaced by the jump term of Equation (14). In the case of the displacement
kernel, a tolerance is added or subtracted from the field point, to prevent the term (1/r) from going to
infinity. The obtained global kernels are multiplied by the integral of the body boundary Equation (17);
if a more exact value of the integral is desired, more ξ values may be added and may be different from
the ξ values for the load and field points.

Following the flowchart in Figure 3, the next step is to apply the boundary conditions to generate
a unique solution. Thus, it is necessary to accommodate the unknown variables, either displacements
or tractions, on the left side, and those known on the right side, to arrive at the system of equations
of the form Ax = b. The kernels would be the matrix “A,” and the displacement and the tractions
prescribed would be “b”. Finally, by solving the equation system, the unknown values of displacement
and tractions are obtained.

The next equations represent some additional elements to compute the kernels; the dy(ξ)
dξ and dx(ξ)

dξ
terms are gotten by Equation (5).

dr
dx

=
XQ(ξ) −XP(ξ)

r(P(ξ), Q(ξ))
, (18)
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dr
dy

=
YQ(ξ) −YP(ξ)

r(P(ξ), Q(ξ))
, (19)

nx =
dx
dn

=
1

J(ξ)

[
dy(ξ)

dξ

]
, (20)

ny =
dy
dn

= −
1

J(ξ)

[
dx(ξ)

dξ

]
, (21)

dr
dn

=
dr
dx

dx
dn

+
dr
dy

dy
dn

, (22)
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3.2. Application: Contact between Two Bodies

The contact is analyzed by following the unilateral equations described in the Sognirini problem
(contact between a rigid and an elastic body) and the Winkler–Westergaard problem (contact between
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elastic bodies). One of these equations, Equation (23), establishes that the normal displacements of
one body, with respects to the other, are less than or equal to zero; therefore, there is no penetration
between both bodies.

u(x)·n|Γ ≤ 0 (23)

If the contact is analyzed with the proposed modified IGA-BEM, there would be two bodies that
share a common area that, after applying a load, reach equilibrium, as observed in Equations (24) and
(25):

ui(p) +
∫

Γ1
Ti j(p, Q)ui(Q)dS +

∫
ΓAB

Ti j(p, Q)ui(Q)dS
=

∫
Γ1

ti(Q)Ui j(p, Q)dS +
∫

ΓAB
ti(Q)Ui j(p, Q)dS

(24)

ui(p)+
∫

Γ2
Ti j(p, Q)ui(Q)dS +

∫
ΓAB

Ti j(p, Q)ui(Q)dS
=

∫
Γ2

ti(Q)Ui j(p, Q)dS +
∫

ΓAB
ti(Q)Ui j(p, Q)dS

(25)

Γ1 and Γ2 represent the boundaries of body 1 and body 2, respectively, that are not in contact.
ΓAB represents the region of the common boundary between the two bodies, that is, the contact zone,
(Figure 4). Since this region is unknown, an optimization algorithm will be applied to find it. The
flowchart of the contact methodology can be seen in Figure 5.
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Figure 4. Contact zone between bodies.

The first stage of the flowchart consists of executing the complete diagram of Figure 3. The second
stage is to find the intersection between the two bodies (points A and B). If these elements had the
same Young’s modulus and the applied force is large enough, the nature of the IGA-BEM would create
penetration between both bodies. This situation is not real; what physically happens is that these
elements are deformed without penetration. The deformation value depends on the applied force and
the materials properties.

The third stage is to modify the control points, using the PSO algorithm to create new body
geometries with the same area as the originals but fixing the contact area. To ensure that the contact
area is correct, the same load is reapplied. If the contact zone changes, then the cycle is repeated; if
it does not change, or the difference between one iteration and another is minimal, then the contact
algorithm is stopped. The details of the PSO algorithm are described in the next section.
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3.3. The Particle Swarm Optimization

An optimization algorithm is a method to find the maximum or minimum of a given function. For
the contact problem of Figure 4, the objective function is shown in Equation (26), where I corresponds
to the perimeter of the deformed body, and Ior corresponds to the body perimeter before applying the
load. The algorithm varies the NURBS control points that define the bodies, and the contact zone is
assumed to be a straight line (Figure 6).
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There is a wide variety of optimization algorithms, but those algorithms based on nature stand
out. For example, the genetic algorithms, the particle swarm optimization, the ant colony optimization,
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and the differential evolution, among others. In this paper, the particle swarm algorithm was chosen
because it is easy to implement and has fast convergence [30].

The PSO is inspired by how animal herds behave. The flowchart of this method is shown in
Figure 7. The first step is to set the population size or “swarm” (Nswarm). Each “individual” of the
community has a set of optimization variables or design variables that represent their position (X).
These elements move in the solution space by adjusting their speeds (V). However, the individual speed
depends on their previous position and speed values. Moreover, it depends on the best individual
location (L) and the best position of all individuals (G). The algorithm runs until the maximum
number of iterations (Ni) is reached. The last best global position values correspond to the design
optimized variables.

The function to be optimized is the initial perimeter of the bodies, and the design variables are
the control points (B) that are outside of the contact zone. The next position Xi and velocity Vi values
of each particle are calculated by using Equations (27) and (28), respectively, where the best particle
position is Li, and the best position of all particles is GN.

Vi+1 = C1Vi + Cmaxrand(0, 1)(Li −Xi) + Cmaxrand(0, 1)(GN −Xi), (27)

Xi+1 = Xi + Vi (28)

To update the best local and global values, the function to be optimized must be analyzed. This
means the perimeter of the body for each Xi value must be calculated. The elements of Xi are the new
control points. If the perimeter is higher or less than the original, then a penalization is applied by
adding or subtracting an amount from the obtained perimeter value, Equations (29) and (30), where k
represents a proportional constant to the difference between the value of I and Ior. To update the best
local position, Li, the penalized I is compared with the best saved local perimeter; if the new I value is
better than the saved, the best local position Li is updated. The same procedure is done to update the
best global location.

i f I > Ior ⇒ I = I + abs(kI) (29)

i f I < Ior ⇒ I = I − (kI) (30)
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4. Results

The methodology described in Section 3.1 was programmed to solve a plane strain problem, and
its results were compared with FEM and the conventional BEM. Figure 8 represent the problem: A load
was applied on the top of the cylinder, and the opposite side was fixed. Being a plane problem, it is
not necessary to create the cylinder model; instead, only the cross-section is required. The cylinder
dimensions and the material properties can be found in Table 1, likewise the load value. The results of
this problem are presented in Sections 4.1–4.3.

Table 1. Material properties of the body under analysis.

Load P Young’s Modulus E Poisson’s Coefficient v Circle Diameter

−4500 N,
Y component 2× 1011 Pa 0.3 6 mm
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The proposed modified IGA-BEM was used to analyze the contact between two cylinders. The
contact problem was also analyzed as a plane strain problem. Both cylinders have the material
properties defined in Table 1. The load was applied as shown in Figure 9, and a displacement restriction
was placed at the bottom of the cylinders. A symmetric behavior in the deformation is assumed as
the contact zone is the same for both circles. The results of this problem are presented in Sections 4.4
and 4.5.
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4.1. Plane Strain Problem-Solve with FEM

A commercial FEM software was used to solve the problem presented in Figure 8. First, a load
was set on the upper side, and the load was distributed between two neighboring nodes. Next,
displacement restrictions on the nodes were added on the opposite side. A fine mesh was made,
generating 2566 nodes and 827 elements (Figure 10a). The result of this problem is shown in Figure 10b.
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4.2. Plane Strain Problem-Solve with Conventional BEM

The strain problem of Figure 8 was solved with a program based on BEM and the algorithm
proposed by [25]. To solve the problem, the following data was used: 71 nodes, 36 elements distributed
on the boundary (Figure 11a), 6 integration points for Gaussian Quadrature, quadratic shape functions
to describe tractions and displacements, and the data from Table 1. The result can be found in Figure 11b.
To generate the internal displacements, 13 internal points were chosen using the guidelines described
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4.3. Plane Strain Problem Solve with the Isogeometric-Boundary Integral Element Method Proposed

To create the circle with NURBS, the curve order, the control points, and the knot vector were
first calculated. Those values are shown in Table 2. As seen in Section 3.2, the load points have to be
generated on the boundary. Therefore, 24 values of ξ were chosen, to generate the coordinates of the
load/field points, using Equation (1). Table 3 specifies the additional elements to use the proposed
method. The used load/field points and control points are shown in Figure 12a. The deformed cylinder
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is shown in Figure 12b. Like the conventional BEM, the internal displacements are calculated by
adding internal points.

Table 2. Data to create NURBS curve from the plane strain problem.

Knot Vector Ξ = [0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4]
Control points B = [0 0; 3 0; 3 3; 3 6; 0 6;−3 6;−3 3;−3 0; 0 0]

Weight vector W =
[
1,
√

2
2 , 1,

√
2

2 , 1,
√

2
2 , 1,

√
2

2 1
]

Curve order k = 3

Table 3. Data to analyze the plane strain problem with the proposed method.

Load/field points number 24
Elements number 1

Control points number (for NURBS geometry) 9
Jacobian points number 50
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4.4. Contact Problem Solve with Hertz Theory

According to [31], the width of the rectangular contact area between two cylinders can be found
by Equation (28) when they have the same elasticity modulus (E = E1 = E2) and the same Poisson
coefficient (v = 0.3). In Equation (31), p represents the load per unit length (P/L), KD is the relative
curvature ( D1·D2

D1+D2
) and, b is the width of the rectangular of contact area. More detailed information

about Hertz theory can be found at [13]. The length of the cylinder is 100 mm.

b = 2.15

√
pKD

E
(31)

If the values described in Table 1 and in the previous paragraph are substituted in Equation (31),
the width of the contact area is b = .056 mm. Following Hertz’s theory, the maximum Hertzian contact
pressure, the maximum shear stress, and its depth can be found. These values are shown in Table 4.

Table 4. Results obtained with the Hertz theory.

Width of the contact area 0.056 mm
Maximum Hertzian contact pressure 1024.4 MPa

Maximum shear stress 308 MPa
Depth of maximum shear stress 0.022 mm
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4.5. Contact Problem Solve with FEM

The contact problem was also solved with FEM software. The parameters used in the simulation
are described in Table 5. A fine mesh was chosen to obtain greater results’ precision (Figure 13a). To
avoid penetration between the bodies, the augmented Lagrange method was chosen. The behavior of
this algorithm was briefly described in the introduction section. Figure 13b shows the deformed bodies,
and the color map represents the displacements in Y. The maximum deformation is located in the load
application area. The contact zone has a length of approximately 0.65 mm, as seen in Figure 14.

Table 5. Parameters to solve the contact problem with FEM.

Element order Quadratic
Contact type Frictionless

Behavior Symmetric
Method to solve the contact Augmented Lagrange

Detection method Nodal-normal to target
Nodes number 2184

Elements number 696
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4.6. Contact Problem Solved with Proposed IGA-BEM.

To use the proposed contact algorithm from Section 3.2, some control points were added near to
the common point (0, 0). The NURBS data to create the two cylinders in contact are in Table 6. As seen,
weights were also changed to maintain the circular shape of the cylinders. Table 7 specifies the data to
solve the problem with the proposed IGA-BEM. The load points were generated by selecting 24 values
of ξ distributed between the minimum and maximum value of this variable. Unlike the problem in
Section 4.3, the control points increased 9–13 (Figure 6). Finally, the number of points to calculate the
Jacobian was set to 50, to obtain a more accurate value; however, this value is only calculated once.
Figure 15 shows the two cylinders deformed after applying the load. Figure 16 is a close-up to the
contact area and shows the interference between the bodies. Table 8 details the input parameters of
the optimization algorithm. The values of C1 and C2 were set according to the recommendation of
Clerc [31].

Table 6. Data to create NURBS curve from the plane strain problem.

Knot Vector Ξ = [0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6]
Control points,
upper cylinder

B = [0 0; 0.2625 0; 0.5209 0.0456; 3 0.04827; 3 3; 3 6; 0 6;−3 6;−3 3;
−3 0.4827;−0.5209 0.0456;−0.2625 0; 0 0]

Control points,
lower cylinder

B = [0 0; 0.2625 0; 0.5209− 0.0456; 3− 0.04827; 3− 3; 3− 6; 0− 6;
−3− 6;−3 − 3;−3− 0.4827;−0.5209 − 0.0456;−0.2625 0; 0 0]

Weight vector W = [1, 0.9962, 1, 0.7660, 1, 0.7071, 1, 0.7071, 1, 0.7660, 1, 0.9962, 1]
Curve order k = 3

Table 7. Data to analyze the contact problem with the proposed method.

Load/field points number 24
Elements number 1

Control points number (for NURBS geometry) 13
Jacobian points number 50

Appl. Sci. 2020, 10, x 16 of 20 

problem in Section 4.3, the control points increased 9–13 (Figure 6). Finally, the number of points to 
calculate the Jacobian was set to 50, to obtain a more accurate value; however, this value is only 
calculated once. Figure 15 shows the two cylinders deformed after applying the load. Figure 16 is a 
close-up to the contact area and shows the interference between the bodies. Table 6 details the input 
parameters of the optimization algorithm. The values of C1 and C2 were set according to the 
recommendation of Clerc [31]. 

Table 4. Data to create NURBS curve from the plane strain problem. 

Knot Vector Ξ = [0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6] 
Control points,  
upper cylinder 

𝐵 = [0  0; 0.2625  0; 0.5209  0.0456; 3  0.04827; 3  3; 3  6; 0  6; −3  6; −3   3; −3 0.4827; −0.5209   0.0456; −0.2625  0; 0  0] 
Control points,  
lower cylinder 

 𝐵 = [0  0; 0.2625  0; 0.5209 − 0.0456; 3 − 0.04827; 3 − 3;  3 − 6; 0 − 6; −3 − 6; −3  − 3; −3 − 0.4827; −0.5209  − 0.0456; −0.2625  0; 0  0] 
Weight vector 𝑊 = [1, 0.9962, 1, 0.7660, 1, 0.7071, 1, 0.7071, 1, 0.7660, 1, 0.9962, 1] 
Curve order 𝑘 = 3 

Table 5. Data to analyze the contact problem with the proposed method. 

Load/field points number 24 
Elements number 1 

Control points number (for NURBS geometry)  13 
Jacobian points number 50 

Table 6. Data to run the PSO algorithm. 

Generation number 300 
Swarm size 25 𝐶  0.8 𝐶  1.62 

 
Figure 15. Contact between two bodies analyzed with proposed IGA-BEM. Figure 15. Contact between two bodies analyzed with proposed IGA-BEM.



Appl. Sci. 2020, 10, 2345 16 of 19
Appl. Sci. 2020, 10, x 17 of 20 

 
Figure 16. Close-up to the contact area between two bodies analyzed with proposed IGA-BEM before 
optimization. 

Figure 17 shows the bodies in contact without penetration, after having implemented the 
algorithm proposed in Section 3.2. As can be seen, in Figure 18, the contact area is a straight line. This 
zone has a length of approximately 62 mm. 

 
Figure 17. Contact between two bodies analyzed with the IGA-BEM and the optimization proposed. 

 
Figure 18. Close-up to the contact area between two bodies analyzed with the IGA-BEM and the 
optimization proposed. 

Figure 16. Close-up to the contact area between two bodies analyzed with proposed IGA-BEM
before optimization.

Table 8. Data to run the PSO algorithm.

Generation number 300
Swarm size 25

C1 0.8
Cmax 1.62

Figure 17 shows the bodies in contact without penetration, after having implemented the algorithm
proposed in Section 3.2. As can be seen, in Figure 18, the contact area is a straight line. This zone has a
length of approximately 62 mm.
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5. Discussion

As seen in the previous section, the three methods generated similar deformed bodies when
solving the plane strain problem. With a fine mesh, the maximum displacement in the Y-axis with
FEM was −0.094 mm, while with the conventional BEM, it was −0.023 mm, and with the proposed
IGA-BEM method, it was −0.073 mm. The maximum displacement was seen where the P load was
applied. To solve the problem, the FEM software used 2566 nodes or analysis points, while BEM used
71 analysis points, and the proposed IGA-BEM used 24 analysis points. Internal points were added in
BEM and proposed IGA-BEM to obtain the internal displacements. In contrast, given the nature of
FEM, the analysis did not require adding additional points.

Regarding the contact problem, Table 9 shows a comparison of the contact area widths obtained
with the Hertz model, the FEM software, and the proposed IGA-BEM of contact. Taking the analytical
solution as a reference, the error obtained with FEM was 16%, while the proposed method was 10%. In
both cases, interference between the bodies was eliminated after applying the load. With FEM, the
problem was solved by using a total of 2184 nodes, equivalent to 4368 Degrees of Freedom (DOF). With
the proposed IGA-BEM, the problem was solved using 24 analysis points (48 DOF), but the control
points that define the bodies’ shape increased 9–13. On the other hand, the deformed figure was
obtained after the PSO algorithm converged in a value gap.

Although the proposed method solves the problems with fewer degrees of freedom compared to
FEM, it requires more robustness to avoid sensitivity problems in the calculation of nx and ny; The
same issue was also observed with the conventional BEM.

Table 9. Comparison of contact area widths.

Method Contact Area Width
(mm)

Variation with Respect to
the Analytical Method

DOF to Solve the
Problem

Analytical (Hertz model) 0.56 0 -

FEM 0.65 16% 4368

Proposed IGA-BEM of
contact 0.62 11% 48

6. Conclusions

The proposed IGA-BEM got consistent results, while solving the problem of Figure 8, compared
to those obtained from the proven methods FEM and BEM. Although the displacement values were
different, the deformation generated was similar in all three methods. However, fewer degrees
of freedom were required in proposed IGA-BEM, because a single NURBS was used to model the
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completed body. Moreover, the load/field points used in the conventional BEM were separated from
the points, to represent the geometry.

Regarding the nonlinear contact problem, the contact-zone widths obtained with FEM and with the
proposed contact method varied 16% and 10%, respectively, compared to the one obtained analytically,
with the Hertz method. Nevertheless, the DOF used by FEM to solve the contact problem were 4368,
while the proposed method only used 48 DOF.

Decreasing degrees of freedom is very significant, for example, when solving multiphysics
problems, where it is required to invert matrices. Furthermore, as seen in [32], the propagation error is
tied to the size of the matrix: The more elements the matrix has, the higher the error.

Although the results are promising, future work is required to prove that the methodology is
valid in other situations where displacements are not symmetrical or additional factors, such as friction,
are considered.
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