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Abstract: In practice, many medical domain datasets are incomplete, containing a proportion of
incomplete data with missing attribute values. Missing value imputation can be performed to
solve the problem of incomplete datasets. To impute missing values, some of the observed data
(i.e., complete data) are generally used as the reference or training set, and then the relevant statistical
and machine learning techniques are employed to produce estimations to replace the missing values.
Since the collected dataset usually contains a certain number of feature dimensions, it is useful
to perform feature selection for better pattern recognition. Therefore, the aim of this paper is to
examine the effect of performing feature selection on missing value imputation of medical datasets.
Experiments are carried out on five different medical domain datasets containing various feature
dimensions. In addition, three different types of feature selection methods and imputation techniques
are employed for comparison. The results show that combining feature selection and imputation
is a better choice for many medical datasets. However, the feature selection algorithm should be
carefully chosen in order to produce the best result. Particularly, the genetic algorithm and information
gain models are suitable for lower dimensional datasets, whereas the decision tree model is a better
choice for higher dimensional datasets.

Keywords: missing values; imputation; feature selection; data mining; medical datasets

1. Introduction

In many real-world medical domain problems, the datasets collected for data mining purposes
are usually incomplete, containing missing (attribute) values or missing data, such as pulmonary
embolism data [1], DNA microarray data [2], metabolomics data [3], cardiovascular disease data [4],
lung disease data [5], food composition data [6], traffic data [7], and other medical data [8].

Many data mining and machine learning algorithms used in the data mining process are not
able to effectively analyze incomplete datasets. In addition, directly using incomplete datasets for the
purpose of data analysis can have a significant effect on the final conclusions that are drawn from
the data [9].

There are a number of different techniques that can be used to deal with missing values, such as
case deletion, mean substitution, and model-based imputation, to name a few [10–12]. Among them,
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the simplest solution is based on case deletion (or listwise deletion), in which data containing missing
values are deleted. However, it is problematic when missing data are not random or the missing rate
for the whole dataset is larger than a certain value, for example 10% [11,13].

Model-based imputation methods using machine learning techniques have been shown to
outperform many other statistical techniques [14–19]. In general, these types of model-based imputation
methods are based on machine learning techniques and involve training using a set of complete data
to produce estimations to replace the missing values in an incomplete dataset.

However, since a collected (incomplete) dataset must contain a number of features
(i.e., input variables) to represent the data, it is likely that some of the features will not be representative,
which can affect the discriminatory power of the data mining algorithms. In other words, redundant
and irrelevant features or unwanted features from the collected dataset must be filtered out; otherwise
the mining performance will be affected. This situation could be even worse when ultra-high or
hyperdimensional datasets containing a very large number of features are used, which is called the
curse of dimensionality [20].

For the purpose of missing value imputation, performing feature selection over the observed data
to filter out unrepresentative features could make the imputation process more efficient, since some
of the missing features, which may be regarded as unrepresentative, are not required for imputation.
Moreover, feature selection is able to make the imputation model trained by the lower dimensional
observed data provide better estimations for the rest of the missing features.

In literature, several studies have focused on this issue [21,22]. However, since feature selection
methods can be classified into filter, wrapper, and embedded methods [23], none of them consider all
three types of methods for missing value imputation, especially for medical datasets. Additionally,
the numbers of features in their chosen datasets are also very small (i.e., 13 to 105 and 6 to 9).

Therefore, the research objective in this study is to examine the effects of performing three
types of feature selection methods on model-based missing value imputation over different medical
domain datasets. For feature selection, three different types of feature selection methods are employed;
information gain (IG) as the filter-based method, genetic algorithm (GA) as the wrapper-based method,
and decision tree (DT) as the embedded-based method. In addition, three popular machine learning
techniques are used for the imputation process, namely the k-nearest neighbor (k-NN), multilayer
perceptron (MLP), and support vector machine (SVM) approaches.

The contribution of this paper is two-fold. First, the effect of performing feature selection on
missing value imputation is examined for various domain problems. Second, the best combinations of
feature selection and imputation methods are identified for datasets with different dimensionality scales.

The rest of this paper is organized as follows. A review of the related literature is given in Section 2,
including the types of missing values and the missing value imputation process. Section 3 describes
the experimental procedure, Section 4 presents the experimental results, and some conclusions are
provided in Section 5.

2. Literature Review

2.1. Types of Missing Values

According to [9], there are three types of missing values or missing data mechanisms: missing
completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR).

In MCAR, the missing values occur entirely at random, which means that the data are missing
independently of both observed and unobserved data. As an example of two attributes, represented by
x and y, missing value y neither depends on x nor y. In MAR, whether a data point is missing or not
is not related to the missing data, but rather related to some of the observed data; that is, given the
observed data, data are missing independently of the unobserved data. For example, the missing value
y depends on x but not y. In MNAR, the probability of a missing value depends on the variable that
is missing.
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Although real world data are rarely MCAR, it has often been assumed in past studies that the
data are MCAR or MAR. However, for MNAR data, imputation methods that assume MAR data can
often produce only small biases, and this depends on how well a MAR mechanism can approximate
the MNAR mechanism.

2.2. Missing Value Imputation

According to [24–26], the methods to deal with incomplete data containing missing values can
be classified into three categories, which are case deletion, learning without handling of missing
values, and missing value imputation. In case deletion, which is the simplest method, the data with
missing values are removed from the original incomplete dataset to make it become a complete dataset.
For the learning methods that do not involve handling of missing values, some learning techniques
can be employed, such as Bayesian networks [27] and cost-sensitive decision trees [28].

On the other hand, missing value imputation can be broadly classified into single imputation
and multiple imputation methods. In the single imputation methods, the focus is on substituting
each missing value, which is done using a statistical method, such as the mean and mode technique.
In addition, there are several machine-learning-based techniques, such as the k-nearest neighbor [29,30],
multilayer perceptron [14], and support vector machines [31] techniques, which can be used to estimate
the missing values. However, these can lead to biased estimates of variances and covariances
(i.e., underestimation of standard error) [32].

Multiple imputation methods are aimed at solving the limitations of single imputation methods
so that each missing value is replaced by two or more acceptable values, which represent a distribution
of possibilities. One representative method is the least absolute shrinkage and selection operator
(LASSO), which is a regression analysis method that performs variable selection and prediction [33].
It has been modified for specific domain problems, such as medical data [34] and high-dimensional
data [35]. However, there are limitations in that the computational complexity is larger than for single
imputation methods, and different estimations produced to replace a specific missing value may be
very different, which can lead to the situation where different values are obtained from the same data
using the same method at different times [32]. Therefore, the research objective of this paper is to
examine the feature selection effect on single imputation methods, especially by three widely used
machine learning methods —MLP, KNN, and SVM.

2.3. Feature Selection

Feature selection can be defined as a process of selecting a subset of relevant features (or variables)
from a given dataset. Since real-word datasets usually contain some features that are either redundant
or irrelevant, they can be removed without incurring much loss of information [36,37]. In other
words, feature selection can be regarded as a special case of dimensionality reduction, which aims to
reduce the number of random variables under consideration by obtaining a set of principal variables.
In particular, the difference between feature selection and dimensionality reduction is that the set made
by dimensionality reduction does not have to be a subset of the original set of features. For principal
component analysis, new synthetic features are made from a linear combination of the original ones,
and the less important ones are discarded.

In general, feature selection algorithms can be classified into three types of methods—filter,
wrapper, and embedded methods [36]. One major type of filter method used to select important
features is based on ranking techniques. Specifically, the input features are scored via a suitable ranking
criterion and features that fall below a certain threshold are removed. Many statistical techniques
belong to the filter type of method, including information gain and stepwise regression.

The wrapper methods are based on using a predictor (or learning model) as the objective function
to evaluate different feature subsets. The best feature subset is chosen, which is the one that can make
the predictor produce the highest accuracy rate. Evolutionary compaction techniques, such as the
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genetic algorithm and particle swarm optimization methods, have recently gained much attention and
shown some success [38,39].

The representative wrapper methods are the genetic algorithm and particle swarm optimization
methods. However, the wrapper methods have a large computational cost for model training and in
searching for the best subset.

The embedded methods perform feature selection during the model learning process [39–41].
In other words, feature selection is incorporated into the classifier training process. Specifically,
embedded methods not only measure the relations between the input features and the output features,
but also search for features that allow better classification accuracy. One representative embedded
method is the decision tree model, where the constructed tree contains a number of selected features
(i.e., decision nodes) that can distinguish well between different classes (i.e., leaf nodes). Besides decision
trees, there are some other types of embedded feature selection methods, such as l1-regularization
techniques, including LASSO (least absolute shrinkage and selection operator) [33] and l1-SVM
(L1-norm SVM) [42], and memetic algorithms [43].

3. Research Methodology

3.1. Combination of Feature Selection and Missing Value Imputation

The process combining feature selection and missing value imputation is illustrated in Figure 1.
The incomplete M dimension dataset D is composed of training and test sets, denoted by D_tr and
D_te, respectively. For feature selection, D_tr contains a number of complete (i.e., D_complete) and
incomplete (i.e., D_incomplete) data samples. The feature selection step is performed on the D_complete
subset, leading to a new subset that contains N dimensions (where N < M), denoted as D_complete’.
It should be noted that the feature selection process only considers the data in D_complete, since
each of these data contains no missing attribute values, which allow feature selection algorithms to
successfully select a subset of representative features. However, the issue of whether D_complete
represents the population is beyond the scope of this paper. Next, the D_incomplete subset is also
reduced to the same N dimensional subset, denoted as D_incomplete’.
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D_incomplete mean the compete and incomplete data samples in training dataset D. D_complete’ and
D_incomplete’ mean the reduced feature set of the original D_complete and D_incomplete, respectively.
D’ represents the reduced feature set of the original D without any missing value.

For missing value imputation, the D_complete’ subset is used to construct a learning model.
For the example of imputing the missing value of the i-th feature (i = 1, 2, . . . , N) in D_incomplete’,
the learning model is trained by the data samples of D_incomplete’, where the i-th feature of
D_incomplete’ is used as the output feature and the rest of the features are the input features.
Then, estimations are produced by the model to replace the missing values in the D_incomplete’ subset.

The same process is performed over the testing set D_te. That is, the M dimensional testing set
D_te is reduced to the N dimensional testing set, denoted by D_te’. Next, missing value imputation
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is performed by the learned model trained by D_complete’. Finally, the imputed dataset, denoted as
reduced data D_tr’, is used to train a classifier, and its classification performance is examined by the
reduced testing set (i.e., D_te’).

The baseline imputation process, without feature selection being performed, uses D_complete
directly with the model to produce estimations for the missing values of D_incomplete. The aim of this
study is to examine differences in performance between the combined feature selection and imputation
method and the baseline imputation method.

3.2. Experimental Setup

The experiment is based on five UCI (University of California, Irvine) datasets, in which three
datasets contain relatively lower dimensional features and the other two are of higher dimensions.
Choosing these datasets with different feature dimensions leads to make the final conclusion. The basic
information for the five datasets is listed in Table 1.

Table 1. Information for the five datasets.

Dataset No. of Instances No. of Features No. of Classes

Lymphography 148 18 4
Heart 270 13 2

SPECT (Single Proton Emission Computed Tomography) 267 22 2
Arrhythmia 238 279 6

Breast Cancer 5644 117 2

For each dataset, missing values are simulated by the MCAR mechanism. The results of calculations
with both imputation processes obtained with different missing rates, ranging from 10% to 50% at 10%
intervals, are compared in order to understand the performance trends. Note that for larger missing
rates with MCAR, each data sample in the training set is likely to become incomplete, which means that
there is no data sample in the D_complete subset. Therefore, the criterion for performing the missing
rate simulation is that at least 5 training data samples should be complete, without any missing values.

Moreover, each dataset is divided into 90% training and 10% testing datasets by the 10-fold cross
validation method [44]. The final classification performance of a classifier is based on the average of
10 test results. Specifically, for each missing rate, each of the 10-fold training sets is simulated 10 times,
resulting in 100 different training sets under a specific missing rate. Finally, the feature selection and
final classification performance is averaged by the 100 results in order to avoid the bias result produced
by the MCAR mechanism.

Three feature selection algorithms are compared, namely information gain (IG), a type of filter
method; the genetic algorithm (GA) as a type of wrapper method; and C4.5 decision tree (DT) as a type
of embedded method. They are implemented using Weka software (http://www.cs.waikato.ac.nz/ml/
weka/). In particular, for the IG the feature selection method, the top ranked 50%, 65%, and 80% of
features are kept and compared. Our results show that using the top ranked 80% of original features
outperforms the other two settings. Therefore, we only report the best result of IG in this paper.
For GA, the predictor and searcher functions are based on “WrapperSubsetEval” and “Genetic Search”
functions in Weka software, respectively. For DT, the J48 decision tree classifier is used, where the
nodes in the constructed tree are regarded as the selected features.

For missing value imputation, three deferent learning models are constructed, namely the k-nearest
neighbor (KNN), multilayer perceptron (MLP) neural network, and support vector machine (SVM)
models. As a result, there are nine different combinations of the three feature selection methods and
three imputation models. Note that the parameters for constructing these models are based on the
default parameters in Weka software. Note that since the aim of this paper is to examine whether
performing feature selection can affect the imputation result and classification performance, tuning the
parameters to find out the best classifier is not the research objective of this paper.

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
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Finally, SVM is considered for classifier design, since it is the most widely used technique for
pattern classification and has shown its effectiveness in many pattern recognition problems [45].

4. Experiments

4.1. Results of Lower Dimensional Datasets

Tables 2–4 list the classification results obtained with different combinations of feature selection
methods and the MLP, KNN, and SVM imputation models over the three lower dimensional datasets
with different missing rates, respectively. They are denoted as DT+MLP, GA+MLP, IG+MLP, DT+KNN,
GA+KNN, IG+KNN, DT+SVM, GA+SVM, and IG+SVM. Note that the best result for each missing
rate is underlined. Moreover, the number in the bracket followed by each dataset represents the
classification accuracy of the SVM trained and tested by the original complete dataset. As we can see
in most cases, the combined approaches perform better than the baseline models (i.e., MLP, KNN,
and SVM), except for the SPECT dataset.

Table 2. Classification results for the MLP imputation method.

Missing Rates DT+MLP GA+MLP IG+MLP MLP

Lymphography (77.43)
10% 75.53 76.26 76.2 73.68
20% 74.95 73.93 73.85 72.87
30% 75.22 74.49 74.15 73.01
40% 74.75 73.02 73.86 73.17
50% 74.06 72.54 71.96 70.31

Heart(75.11)
10% 77.26 76.89 77.85 55.41
20% 75.04 75.93 76.59 55.56
30% 75.78 74.67 76.3 55.41
40% 73.7 74.52 73.56 55.56
50% 73.48 72.3 74.96 55.41

SPECT (75.26)
10% 64.56 72.62 71.65 73.93
20% 64.47 72.54 72.48 74.52
30% 65.14 72.4 72.48 73.78
40% 65.07 71.94 71.51 74.67
50% 64.74 72.02 72.4 72.59

Table 3. Classification results for the KNN imputation method.

Missing Rates DT+KNN GA+KNN IG+KNN KNN

Lymphography (77.43)
10% 75.81 75.32 74.81 73.97
20% 76.49 73.56 73.61 73.11
30% 74.99 74.14 74.21 71.84
40% 75.04 73.32 73.54 72.16
50% 74.82 72.87 72.04 69.84

Heart(75.11)
10% 77.85 76.89 76.52 55.56
20% 75.70 75.56 76.74 55.56
30% 75.33 75.93 76.00 55.56
40% 75.70 74.37 75.48 56.00
50% 74.00 73.41 74.15 55.70

SPECT(75.26)
10% 64.1 72.62 71.65 74.37
20% 64.85 72.47 72.61 73.78
30% 65.14 72.4 72.18 73.33
40% 64.93 71.79 71.11 73.04
50% 64.97 72.39 71.56 73.63
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Table 4. Classification results for the SVM imputation method.

Missing Rates DT+SVM GA+SVM IG+SVM SVM

Lymphography(77.43)
10% 75.5 76.89 75.94 75.09
20% 74.41 75.76 74.16 74.48
30% 76.01 76.52 74.7 73.35
40% 75.57 74.6 74.76 74.45
50% 75.05 75.45 73.6 69.95

Heart(75.11)
10% 76.67 77.70 77.11 55.70
20% 75.93 76.96 77.11 55.41
30% 73.11 73.26 76.15 56.00
40% 72.96 67.41 75.04 55.70
50% 70.96 61.41 74.96 55.70

SPECT(75.26)
10% 64.33 72.62 71.5 73.78
20% 64.93 72.55 71.86 73.19
30% 65.51 72.63 72.02 73.48
40% 64.83 72.24 70.99 74.37
50% 64.37 72.31 71.11 72.89

Figures 2–4 show the average classification accuracies of different combined approaches
(i.e., DT/GA/IG+MLP, DT/GA/IG+KNN, and DT/GA/IG+ SVM). The baseline imputation models are
MLP, KNN, and SVM, which do not have feature selection.

It can be seen that the worst performance is obtained when using the baseline imputation models
without performing feature selection in all cases (i.e., missing rates). In particular, using GA and IG for
feature selection can make the classifier perform similarly. For the level of significance, the combined
models can provide significantly better performances than the baseline imputation models (p < 0.01).

Table 5 shows the numbers of features that are selected by DT, GA, and IG. Among them,
DT generally filters out most of the original features from the lower dimensional datasets. This indicates
that DT produces “over-selection” results from these datasets; that is, a number of useful features are
filtered out, which degrade the final classification performances. On the contrary, IG selects 80% of the
original features, where most of the original features are kept.
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Figure 4. The combined feature selection and missing value imputation process: DT+SVM, GA+SVM,
IG+SVM.

Table 5. The numbers of selected features by DT, GA, and IG.

Original Features DT GA IG

Lymphography 18 5 7 14
Heart 13 7 6 10

SPECT 22 5 7 18

In short, since using GA and IG to combine with different imputation models can make the
classifier produce similar classification accuracies, GA is recommended because it can filter out more
unrepresentative features while retaining the classification performance.



Appl. Sci. 2020, 10, 2344 9 of 12

4.2. Results of Higher Dimensional Datasets

Table 6 lists the classification results obtained with different combinations of feature selection
methods and the MLP, KNN, and SVM imputation models for the high dimensional datasets with the
30% missing rate. The results are interesting, showing that for the arrhythmia dataset, which contains
the largest number of features, performing feature selection by DT can allow the MLP, KNN, and SVM
imputation models to produce slightly better imputation results than the baseline imputation models
with feature selection.

Table 6. Classification results for the different methods.

Datasets
Imputation Methods

DT+MLP GA+MLP IG+MLP MLP
Arrhythmia (38.27) 29.32 29.13 29.13 29.13

Breast Cancer (85.17) 82.31 81.68 82.29 82.39

DT+KNN GA+KNN IG+KNN KNN
Arrhythmia (38.27) 29.32 29.13 29.13 29.13

Breast Cancer (85.17) 82.95 83.50 82.29 82.39

DT+SVM GA+SVM IG+SVM SVM
Arrhythmia (38.27) 29.32 29.13 29.13 29.13

Breast Cancer (85.17) 82.82 83.34 82.29 82.39

On the other hand, for the breast cancer dataset, the top two performances are based on GA+KNN
and GA+SVM. This result indicates that performing feature selection does not necessarily have
a positive effect on missing value imputation. However, based on the results of our experiments,
a specific feature selection method and imputation model combinations can be recommended for future
research, which is likely to outperform the baseline imputation models without feature selection.

Table 7 shows the numbers of features selected by DT, GA, and IG. The results show that DT is
a better choice for the higher dimensional datasets as large numbers of features can be filtered out,
while combining DT with the imputation models can provide the best result in the arrhythmia dataset
and reasonably good performance in the breast cancer dataset.

Table 7. The numbers of selected features for DT, GA, and IG.

Original features DT GA IG

Arrhythmia 279 30 70 223
Breast Cancer 117 46 47 94

5. Conclusions

Missing value imputation is a solution for the incomplete dataset problem. Given that the
imputation process requires a set of observed data for imputation modeling, regardless of whether
statistical or machine learning techniques are used to produce estimations to replace the missing values,
the quality of the observed data is critical. In this paper, we focus on the problem from the feature
selection perspective, assuming that some of the collected features may be unrepresentative and affect
the imputation results, leading in turn to degradation of the final performance of the classifiers when
compared with the ones where feature selection is performed.

For the experiments, five different medical domain datasets containing various numbers of feature
dimensions are used. In addition, three different types of feature selection methods are compared,
namely information gain (IG) as the filter method, genetic algorithm (GA) as the wrapper method,
and decision tree (DT) as the embedded method. For missing value imputation, the multilayer
perceptron (MLP) neural network, k-nearest neighbor (KNN), and support vector machine (SVM)
models are constructed individually.
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The experimental results show that the combination of feature selection and imputation can make
the classifier (i.e., SVM) perform better than the baseline classifier without feature selection for many
datasets with different missing rates. For lower dimensional datasets, using GA and IG for feature
selection is recommended, whereas DT is a better choice for higher dimensional datasets.

Some issues should be considered in future research work. First, other missingness mechanisms,
including MAR and MNAR, can be investigated for the feature selection effect. In addition, some
datasets that naturally have specific numbers of missing data (i.e., specific missing rates) can be used.
On the other hand, some other differences among the datasets that could influence the results can
also be used, for example binary or multiple differences, or even the difficulty in classification where
the datasets contain much higher dimensions or larger numbers of instances and classes. Second,
in performing feature selection and missing value imputation, the major limitation is that a number of
observed data (i.e., D_complete) must be provided for the feature selection methods to select some
representative features and imputation models to produce estimations to replace the missing values.
Therefore, the effect of using different numbers of observed data on the feature selection and imputation
results should be investigated. On the other hand, for datasets that do not contain a sufficient number
of complete data samples, the over-sampling techniques [46,47] used to create synthetic samples
can be employed. Lastly, very high dimensional datasets in specific domain problems containing
several hundreds of thousands of dimensions, such as text and sensor array data, should be further
investigated to assess the level of impact of performing feature selection over very high dimensional
incomplete datasets.

Author Contributions: Conceptualization, C.-H.L. and M.-W.H.; methodology, C.-H.L. and C.-F.T.; software,
K.-L.S.; validation, C.-H.L., C.-F.T., K.-L.S., and M.-W.H.; formal analysis, C.-H.L., C.-F.T., K.-L.S., and M.-W.H.;
resources, K.-L.S.; data curation, C.-F.T.; writing—original draft preparation, C.-H.L., C.-F.T., K.-L.S., and M.-W.H.;
writing—review and editing, M.-W.H.; visualization, X.X.; supervision, M.-W.H.; project administration, M.-W.H.;
funding acquisition, C.-F.T. All authors have read and agreed to the published version of the manuscript.

Funding: The work was supported by the Ministry of Science and Technology (MOST) of Taiwan under grant
MOST 103-2410-H-008-034-MY2.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Van der Heijden, G.J.M.G.; Donders, A.R.T.; Stijnen, T.; Moons, K.G.M. Imputation of missing values is
superior to complete case analysis and the missing-indicator method in multivariable diagnostic research:
A clinical example. J. Clin. Epidemiol. 2006, 59, 1102–1109. [CrossRef]

2. Troyanskaya, O.; Cantor, M.; Sherlock, G.; Brown, P.; Hastie, T.; Tibshirani, R.; Botstein, D.; Altman, R.B.
Missing value estimation methods for DNA microarrays. Bioinformatics 2001, 17, 520–525. [CrossRef]

3. Armitage, E.G.; Godzien, J.; Alonso-Herranz, V.; Lopez-Gonzalvez, A.; Barbas, C. Missing value imputation
strategies for metabolomics data. Electrophoresis 2015, 36, 3050–3060. [CrossRef]

4. Shah, A.D.; Bartlett, J.W.; Carpenter, J.; Nicholas, O.; Hemingway, H. Comparison of random forest and
parametric imputation models for imputing missing data using MICE: A caliber study. Am. J. Epidemiol. 2014,
179, 764–774. [CrossRef]

5. Liao, S.; Lin, Y.; Kang, D.D.; Chandra, D.; Bon, J.; Kaminski, N.; Sciurba, F.C.; Tseng, G.C. Missing value
imputation in high-dimensional phenomic data: Imputable or not, and how? BMC Bioinform. 2014, 15, 346.
[CrossRef]

6. Ispirova, G.; Eftimov, T.; Korosec, P.; Seljak, B.K. MIGHT: Statistical methodology for missing-data imputation
in food composition databases. Appl. Sci. 2019, 9, 4111. [CrossRef]

7. Choi, Y.-Y.; Shon, H.; Byon, Y.-J.; Kim, D.-K.; Kang, S. Enhanced application of principal component analysis
in machine learning for imputation missing traffic data. Appl. Sci. 2019, 9, 2149. [CrossRef]

8. Stekhoven, D.J.; Buhlmann, P. Missforest-non-parametric missing value imputation for mixed-type data.
Bioinformatics 2012, 28, 112–118. [CrossRef]

9. Rubin, D.B.; Little, R.J.A. Statistical Analysis with Missing Data, 2nd ed.; Wiley: Hoboken, NJ, USA, 2002.
10. Enders, C.K. Applied Missing Data Analysis; Guildford Press: New York, NY, USA, 2010.

http://dx.doi.org/10.1016/j.jclinepi.2006.01.015
http://dx.doi.org/10.1093/bioinformatics/17.6.520
http://dx.doi.org/10.1002/elps.201500352
http://dx.doi.org/10.1093/aje/kwt312
http://dx.doi.org/10.1186/s12859-014-0346-6
http://dx.doi.org/10.3390/app9194111
http://dx.doi.org/10.3390/app9102149
http://dx.doi.org/10.1093/bioinformatics/btr597


Appl. Sci. 2020, 10, 2344 11 of 12

11. Garcia-Laencina, P.J.; Sancho-Gomez, J.-L.; Figueiras-Vidal, A.R. Pattern classification with missing data:
A review. Neural Comput. Appl. 2010, 19, 263–282. [CrossRef]

12. Tsikriktsis, N. A review of techniques for treating missing data in OM survey research. J. Oper. Manag. 2005,
24, 53–62. [CrossRef]

13. Olinsky, A.; Chen, S.; Harlow, L. The comparative efficacy of imputation methods for missing data in
structural equation modeling. Eur. J. Oper. Res. 2003, 151, 53–79. [CrossRef]

14. Conroy, B.; Eshelman, L.; Potes, C.; Xu-Wilson, M. A dynamic ensemble approach to robust classification in
the presence of missing data. Mach. Learn. 2016, 102, 443–463. [CrossRef]

15. Pan, R.; Yang, T.; Cao, J.; Lu, K.; Zhang, Z. Missing data imputation by K nearest neighbours based on grey
relational structure and mutual information. Appl. Intell. 2015, 43, 614–632. [CrossRef]

16. Silva-Ramirez, E.-L.; Pino-Mejias, R.; Lopez-Coello, M. Single imputation with multilayer perceptron and
multiple imputation combining multilayer perceptron and k-nearest neighbours for monotone patterns.
Appl. Soft Comput. 2015, 29, 65–74. [CrossRef]

17. Valdiviezo, H.C.; Aelst, S.V. Tree-based prediction on incomplete data using imputation or surrogate decisions.
Inf. Sci. 2015, 311, 163–181. [CrossRef]

18. Bertsimas, D.; Pawlowski, C.; Zhuo, Y.D. From predictive methods to missing data imputation:
An optimization approach. J. Mach. Learn. Res. 2018, 18, 1–39.

19. Raja, P.S.; Thangavel, K. Missing value imputation using unsupervised machine learning techniques.
Soft Comput. 2020, 24, 4361–4392. [CrossRef]

20. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: New York, NY, USA, 2001.
21. Doquire, G.; Verleysen, M. Feature selection with missing data using mutual information estimators.

Neurocomputing 2002, 90, 3–11. [CrossRef]
22. Hapfelmeier, A.; Ulm, K. Variable selection by random forests using data with missing values. Comput. Stat.

Data Anal. 2014, 80, 129–139. [CrossRef]
23. Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3,

1157–1182.
24. Schafer, J.L.; Graham, J.W. Missing data: Our view of the state of the art. Psychol. Methods 2002, 7, 147–177.

[CrossRef]
25. Zhu, X.; Zhang, S.; Jin, Z.; Zhang, Z.; Xu, Z. Missing value estimation for mixed-attribute data sets. IEEE Trans.

Knowl. Data Eng. 2011, 23, 110–121. [CrossRef]
26. Lin, W.-C.; Tsai, C.-F. Missing value imputation: A review and analysis of the literature (2006–2017).

Artif. Intell. Rev. 2020, 53, 1487–1509. [CrossRef]
27. Wong, M.L.; Guo, Y.Y. Learning Bayesian networks from incomplete databases using a novel evolutionary

algorithm. Decis. Support Syst. 2008, 45, 368–383. [CrossRef]
28. Zhang, S.; Qin, Z.; Ling, C.X.; Sheng, S. “Missing is useful”: Missing values in cost-sensitive decision trees.

IEEE Trans. Knowl. Data Eng. 2005, 17, 1689–1693. [CrossRef]
29. Batista, G.; Monard, M. An analysis of four missing data treatment methods for supervised learning.

Appl. Artif. Intell. 2003, 17, 519–533. [CrossRef]
30. Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Wang, R. Efficient kNN classification with different numbers of nearest

neighbors. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 1774–1785. [CrossRef]
31. Pelckmans, K.; De Brabanter, J.; Suykens, J.A.K.; De Moor, B. Handling missing values in support vector

machine classifiers. Neural Netw. 2005, 18, 684–692. [CrossRef]
32. Allison, P.D. Missing Data—Quantitative Applications in the Social Sciences; SAGE Publications Inc.: New York,

NY, USA, 2001.
33. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58,

267–288. [CrossRef]
34. Sabbe, N.; Thas, O.; Ottoy, J.-P. EMLasso: Logistic lasso with missing data. Stat. Med. 2013, 32, 3143–3157.

[CrossRef]
35. Liu, Y.; Wang, Y.; Feng, Y.; Wall, M.M. Variable selection and prediction with incomplete high-dimensional

data. Ann. Appl. Stat. 2016, 10, 418–450. [CrossRef]
36. Tang, J.; Alelyani, S.; Liu, H. Feature selection for classification—A review. In Data Classification Algorithms

and Applications; Aggarwal, C.C., Ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2014.

http://dx.doi.org/10.1007/s00521-009-0295-6
http://dx.doi.org/10.1016/j.jom.2005.03.001
http://dx.doi.org/10.1016/S0377-2217(02)00578-7
http://dx.doi.org/10.1007/s10994-015-5530-z
http://dx.doi.org/10.1007/s10489-015-0666-x
http://dx.doi.org/10.1016/j.asoc.2014.09.052
http://dx.doi.org/10.1016/j.ins.2015.03.018
http://dx.doi.org/10.1007/s00500-019-04199-6
http://dx.doi.org/10.1016/j.neucom.2012.02.031
http://dx.doi.org/10.1016/j.csda.2014.06.017
http://dx.doi.org/10.1037/1082-989X.7.2.147
http://dx.doi.org/10.1109/TKDE.2010.99
http://dx.doi.org/10.1007/s10462-019-09709-4
http://dx.doi.org/10.1016/j.dss.2008.01.002
http://dx.doi.org/10.1109/TKDE.2005.188
http://dx.doi.org/10.1080/713827181
http://dx.doi.org/10.1109/TNNLS.2017.2673241
http://dx.doi.org/10.1016/j.neunet.2005.06.025
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1002/sim.5760
http://dx.doi.org/10.1214/15-AOAS899


Appl. Sci. 2020, 10, 2344 12 of 12

37. Li, Y.; Li, T.; Liu, H. Recent advances in feature selection and its applications. Knowl. Inf. Syst. 2017, 53,
551–577. [CrossRef]

38. De la lglesia, B. Evolutionary computation for feature selection in classification problems. Wiley Interdiscip.
Rev. Data Min. Knowl. Discov. 2013, 3, 381–407. [CrossRef]

39. Xue, B.; Zhang, M.; Browne, W.N.; Yao, X. A survey on evolutionary computation approaches to feature
selection. IEEE Trans. Evol. Comput. 2016, 20, 606–626. [CrossRef]

40. Zhao, Z.; Liu, H. Spectral feature selection for supervised and unsupervised learning. In Proceedings of the
International Conference on Machine Learning, Corvallis, OR, USA, 20–24 June 2007; pp. 1151–1157.

41. Zhu, X.; Zhang, S.; Hu, R.; Zhu, Y.; Song, J. Local and global structure preservation for robust unsupervised
spectral feature selection. IEEE Trans. Knowl. Data Eng. 2018, 30, 517–529. [CrossRef]

42. Bradley, P.; Mangasarian, O.L. Feature selection via concave minimization and support vector machines.
In Proceedings of the International Conference on Machine Learning, Madison, WI, USA, 24–27 July 1998;
pp. 82–90.

43. Zhu, Z.; Ong, Y.-S.; Dash, M. Wrapper-filter feature selection algorithm using a memetic framework.
IEEE Trans. Syst. Man Cybern. Part B Cybern. 2007, 37, 70–76. [CrossRef]

44. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Int. Jt. Conf.
Artif. Intell. 1995, 2, 1137–1143.

45. Byun, H.; Lee, S.-W. A survey on pattern recognition applications of support vector machines. Int. J. Pattern
Recognit. Artif. Intell. 2003, 17, 459–486. [CrossRef]

46. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling
technique. J. Artif. Intell. Res. 2002, 16, 321–357. [CrossRef]

47. Singh, B.; Toshniwal, D. MOWM-Multiple Overlapping Window Method for RBF based missing value
prediction on big data. Expert Syst. Appl. 2019, 122, 303–318. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10115-017-1059-8
http://dx.doi.org/10.1002/widm.1106
http://dx.doi.org/10.1109/TEVC.2015.2504420
http://dx.doi.org/10.1109/TKDE.2017.2763618
http://dx.doi.org/10.1109/TSMCB.2006.883267
http://dx.doi.org/10.1142/S0218001403002460
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1016/j.eswa.2018.12.060
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	Types of Missing Values 
	Missing Value Imputation 
	Feature Selection 

	Research Methodology 
	Combination of Feature Selection and Missing Value Imputation 
	Experimental Setup 

	Experiments 
	Results of Lower Dimensional Datasets 
	Results of Higher Dimensional Datasets 

	Conclusions 
	References

