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Featured Application: This paper proposes one novel transition-based control policy to solve the
deadlock problem of flexible manufacturing systems. This paper contains some acronyms. For
easy tracking, their corresponding meaning is present in Appendix A.

Abstract: In the third and fourth industrial revolutions, smart or artificial intelligence flexible
manufacturing systems (FMS) seem to be the key machine equipment for capacity of factory
production. However, deadlocks could hence appear due to resources competition between robots.
Therefore, how to prevent deadlocks of FMS occurring is a very important and hot issue. Based
on Petri nets (PN) theory, in existing literature almost all research adopts control places as their
deadlock prevention mean. However, under this strategy the real optimal reachable markings are
not achieved even if they claimed that their control policy is maximally permissive. Accordingly,
in this paper, the author propose one novel transition-based control policy to solve the deadlock
problem of FMS. The proposed control policy could also be viewed as deadlock recovery since it can
recover all initial deadlock and quasi-deadlock markings. Furthermore, control transitions can be
calculated and obtained once the proposed three-dimension matrix, called generating and comparing
aiding matrix (GCAM) in this paper, is built. Finally, an iteration method is used until all deadlock
markings become live ones. Experimental results reveal that our control policy seems still the best
one among all existing methods in the literature regardless of whether these methods belong to places
or transitions based.

Keywords: Petri nets; flexible manufacturing systems; deadlock recovery; deadlock prevention;
optimal controllers; control transition; maximally permissive.

1. Introduction

In the third and fourth industrial revolutions, smart or artificial intelligence flexible manufacturing
systems (FMS) are much adopted for capacity of factory production. However, deadlocks could hence
appear due to resources competition between robots [1]. Therefore, how to prevent FMS deadlocks
occurring is a very important and hot issue. In the existing literature, automata theory [2,3], queueing
theory [4,5], Petri nets theory [6], and state chart/flow [7] are all used as mathematical tools to process
above deadlock problems of FMS. Among them, Petri nets (PN) have been recognized as the most
powerful semantic-based tool to solve FMS’s deadlock problem. The reason is that it is well suited to
represent such discrete event dynamic system (DEDS) [8] characteristics such as precedence relations,
concurrence, conflict and synchronization. Especially for FMS, the complexity resulting from the
inherent nonlinearity and state space dimension found in most of these systems leads to unusual
difficulty in design and analysis.
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Traditionally, in existing literature, two main analysis technologies are applied to develop deadlock
prevention policy for FMS: system structural analysis [9–22] and reachability graph analysis [23–34].
The former one depends on some structural analysis, such as siphon control, to design proper control
subnet to solve deadlock problems. Under this technology, computation is often simple but suffering
from explosion problems since the number of siphons exponentially increases as the model becomes
larger and more complicated.

Reachability graph analysis can be used to design the optimal or maximally permissive deadlock
prevention policy. In this approach, all reachable states of PN model are needed firstly to compute
reachability graph. Although this technology could be a NP-hard problem since it needs to generate
the reachability graph of a PN, it is still widely used to solve the deadlock problem of FMS. Whatever,
this analysis owns maximally permissive controllers.

Under the method, Uzam firstly adopts the theory of regions [23] to design one optimal (maximally
permissive) deadlock prevention based on the novel concepts of deadlock zone (DZ) and deadlock-free
zone (DFZ). In the following, Ghaffari et al. [24] also design one optimal (maximally permissive)
deadlock prevention by giving a redefinition of the theory of regions based on forbidden marking,
dangerous marking, legal marking, and the set of marking/transition-separation instances (MTSI). For
enhancing computational efficiency of the above two kinds of traditional theory of regions, Huang and
Pan [31], and Huang et al. [32] propose one new optimal deadlock prevention using the concept of
crucial marking/transition-separation instances (CMTSI).

For reducing computing time of the theory of regions, Uzam and Zhou [35] propose a reduction
technique to simplify large FMS models. Huang and Pan also adopted the reduction approach to [36]
so that the computational efficiency of CMTSI can be further enhanced.

On the other hand, Pirrodi et al. [37] consider selective siphons with reachability graph to reduce
redundancy problems and provide small-size controllers. The control policy solves deadlock problems
of FMSs successfully. It also makes FMSs optimal. However, as indicated by [38], the process of
eliminating all critical markings is time consuming, since all legal markings must be checked in
each iterative step. According to the above descriptions, it is clear that determining how to obtain
optimal (maximally permissive) controllers for solving the FMS deadlock problem seems an extremely
time-consuming and difficult issue.

For improving above disadvantage, Chen et al. [39–41] proposed one novel technology called
MFFP (i.e., the maximal number of forbidding first bad marking (FBM) problem) to obtain maximally
permissive reachable markings with very a smaller number of controllers based on Place Invariant
(PI) [17] and reachability graph analysis methods. It successfully solves the problem of the excessive
consumption of time. It is so pity, when the complexity of one flexible manufacturing system increases,
the computational burden raises rapidly. Besides, under our survey the MFFP could just be applied in
some special net, outside S3PR (The Systems of Simple Sequential Processes with Resources) [10] the
method would be failed. Therefore, in author’s previous paper [42] the author proposes one iterative
deadlock prevention policy to circumvent its disadvantage of conventional MFFP. Besides, the author
also proposes one computational improved deadlock concept called IMFFP [43] to enhance MFFP’s
computational efficiency.

Huang et al. [44] firstly introduced the concept of transition-based deadlock prevention policy
in their paper, but not the optimal method yet, due to its manual designing process and low control
efficiency documented in the expansion literature [45]. Both have the same feature, which helps little
in larger and more complicated system [44,45].

In the following, Chen et al. [46] developed another transition-based control policy to obtain
proper supervisors and propose two different kinds of concepts to recover the deadlock problem of
FMS. The first one adopts iteration approach. At each iterative step, one integer linear programming
problem (ILPP) is calculated to obtain a transition-based controller until all deadlock markings are
recovered. The second stage is one-time skill that can find and pick up all transition-based controllers.
Although Chen et al. claim that the policy can be applied to all classes of FMS, according to [47],
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it suffers from the computation complexity problem, since there are too many constraints and variables
in the formulated ILPPs.

Besides, Bashir et al. [48] presented an iteration procedure to design a deadlock prevention
policy via control transition constraints. In their work, the structural property of Petri net models
is considered for preventing the state explosion problem in reachability graph analysis. Then the
controlling transitions are generated and attached to the model to raise up system activity. Nevertheless,
this method is still suboptimal since it does not recover system completely.

Row and Pan [49] propose one improved concept to solve system’s deadlock problem based
on [44]. This article presents an optimal transition-based recovering policy rather than existing method
via control places, which just forbids undesirable deadlock states with disadvantage of reducing system
liveness. The brand-new method helps accessing all reachable system states and each of them has
activated-able transition, implying enough resources for providing competing process.

Dong et al. [47] also adopt the transition-based controllers to solve deadlock problem of FMS
based on a vector intersection approach. Next, an iteration is used to calculate one small number of
recovery controllers to recover all illegal markings.

On the other hand, many experts devote some new concept for the deadlock prevention domain
of flexible manufacturing systems [50–62].

Rather than preventing the system from accessing to undesirable state, in this paper the author
firstly presents a new method to recover all deadlock markings by attaching control transitions (CT)
to deadlock system. Within reachability graph analysis, transitions connect all reachable markings,
in other words, a deadlock state could be re-directed to another legal state by adding a computed CT
to the system rather than forbidding the deadlock state.

In order to recover deadlock system states, the author adopted the most effective CT for the system.
To build the corresponding CT, one deadlock marking and one legal marking must be determined
before the main computation, which denotes start and end points of CT in several systems. After two
points have being chosen, CT could be calculated out with some simple processes. Experimental results
reveal that the new method proposed in this paper is as good as existing methods in the literature.

Section 2 describes the definitions of PNs and the properties of the reachability graph analysis.
Sections 3 and 4 present the proposed theory and policy. Section 5 shows examples and relative
experimental data. Finally, conclusions are made in Section 6.

2. Preliminary

2.1. Petri Nets (PN)

A Petri Net model is a five tuple N = (P, T, F, W, M0), which is also a kind of directed model.
P and T are two finite, nonempty and disjoint sets. P is a set of places and T is a set of transitions.
F ⊆ (P× T) ∪ (T × P) implies the set of arcs of this net, which is symbolized by arrows going from
places to transitions or from transitions to places denotes a flow relation in the Petri Net model.
W : (P× T)∪ (T × P)→ N is a mapping that assigns a weight to an arc: W(x, y) > 0 for each (x, y) ∈ F,
where x, y ∈ (P∪ T) and N is the set of non-negative integers. •x =

{
y ∈ P∪ T|(y, x) ∈ F

}
is called the

preset of x, and x• =
{
y ∈ P∪ T|(x, y) ∈ F

}
is called the postset of x. A marking M is a multiset of Petri

nets places, which allocates tokens to each place of a Petri net model. M(p) denotes the number of
tokens in place p. M0 is the initial marking of N. A net is pure if ∀(x, y) ∈ (P× T)∪ (T × P), W(x, y) > 0,
implying that W(y, x) = 0. The incidence matrix [N] of the pure net N is a |P| × |T| integer matrix with
[N](p, t) = W(t, p) −W(p, t).

A transition t ∈ T is enabled at marking M if ∀p ∈ •t, M(p) ≥ W(p, t), which is denoted as
M[t

〉
. Once an enabled transition t fires, it generates a new marking M′, denoted as M[t

〉
M′, where

M′(p) = M(p) −W(p, t) + W(t, p). M[
〉

represents the set of all markings reachable from M by firing
any possible sequence of transitions. M0[

〉
is the set of reachable markings of net N with initial marking

M0, often denoted as R(N, M0). It can be graphically represented by a reachability graph, which can,
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in turn, be denoted as G(N, M0). It is a directed graph in which each node represents a marking in
R(N, M0), and arcs are labeled by the fired transitions.

Let (N, M0) be a net system with N = (P, T, F, W). A transition t ∈ T is live at M0 if
∀M ∈ R(N, M0),∃M′ ∈ R(N, M0), M′[t

〉
. (N, M0) is live if ∀t ∈ T, t is live at M0. It is dead at M0

if @t ∈ T, M0[t
〉
.

A P-vector is a column vector I : P→ Z indexed by P. P-vector I is called a P-invariant (place
invariant, PI for short) if I , 0 and IT[N] = 0T. P-invariant I is said to be a P semi flow if I ≥ 0. Let I be
a PI of (N, M0) and M be a reachable marking from M0. Then, ITM = ITM0.

2.2. Reachability Graph (RG) Analysis

In reachability graph (RG) analysis, all reachable markings can be divided into two main groups:
legal and illegal markings. Illegal markings include deadlock and quasi-dead markings. In the above,
the legal, illegal, deadlock, and quasi-dead markings can be defined as follows:

Definition 1. The set of deadlock markingsMD = {M∈ R(N, M0)| at M, no transition can be enabled}.

Further, the quasi-dead marking is defined as follows:

Definition 2. The set of quasi-dead markingsMQ = {M∈R(N, M0)| M must eventually evolve to a dead one
regardless of transition firing sequences}.

The reachable markings except quasi-deadlock and deadlock markings are called legal markings.
The set of legal markingsML in conventional deadlock prevention means the maximal number of
reachable markings of one system, from which the initial marking M0 is reachable without leaving
ML. However, in this paper, it just represents the group of legal markings outside deadlock and
quasi-deadlock markings. The set of legal markingsML can be defined as follows:

Definition 3. ML =
{
M ∈ R(N, M0)∧M <

(
MD ∪MQ

)}
In fact,

(
MD ∪MQ

)
of Definition 3 means the set of illegal markings. Therefore, the set of illegal

markingsMI can be defined as:

Definition 4. MI =
{
M ∈ R(N, M0)∧M ∈

(
MD ∪MQ

)}
Besides,

Definition 5. A zone consisting of all dead markings is called a dead zone, denoted by ZD.

Definition 6. A zone consisting of all quasi-dead markings is called a quasi-dead zone, denoted by ZQ.

Definition 7. A zone consisting of all quasi-dead and dead markings, i.e., ZI = ZD ∪ ZQ, is called an illegal zone.

All markings except quasi-dead and dead markings are legal ones. Once a legal marking is
enforced into the illegal zone, the net will eventually become deadlock.

Definition 8. A zone consisting of all legal markings is called a legal zone, i.e., ZL = R(N, M0) - ZI.

Please notice again, that in this paper, deadlock markings and legal markings are used in the
proposed deadlock recovery policy. Besides, all markings will be identified in reachability graph
analysis stage. Further, in the traditional deadlock prevention domain, the maximal permissive or
optimal control means the maximal number of legal markings in a live system. In our recovery policy,
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our controllers will make all markings live including deadlock and quasi-dead markings. In other
words, our designed policy recovers one deadlock system.

3. Basic Theory

Before designing CT, it is essential to spread out whole RG and determine the set of legal and
deadlock markings. According to these two groups of markings, a three-dimensional matrix, called
the generating and comparing aiding matrix (GCAM), is created to list all possible and effective CT.
There are certainly two dimensions in GCAM, deadlock and legal markings. Note that only deadlock
markings are considered in DZ, which includes deadlock and illegal markings, since trying to recover
the latter will make more computational cost which is not necessary. This three-dimensional GCAM
can be simplified as two-dimensional by regarding each transition as a single element. Creating GCAM
helps numerating all effective CT, and the size of GCAM relies on the size of the model. The objective
in this section is to find out the most effective CT in GCAM, hence, we have to compare every CT
with each other. During creating GCAM, we define row as deadlock markings and column as legal
markings. Note that the CTs in same row must be different, due to their same start point. Within
process of comparing CTs, if a CT matches any ones in the chosen row, this CT can also connect
corresponding deadlock marking to else legal marking, then the rest of this row will be skipped. After
whole comparing process, we choose the most recovered CT as supervisor in this iteration and do next
one, until DZ becomes empty.

3.1. Leading Transitions

In reachability graph analysis, all reachable states are needed to be identified and connected by
enabled transitions. Therefore, all enabled transitions play one important role in a Petri nets model.
One marking changes to another marking by firing any enabled transition.

For example, there are two different markings belonging to the same reachability graph of a Petri
nets model of FMS, which is shown in Figure 1. These two markings are connected by one arc labelling
transition tx. Under one marking Mi, this model may have one or more enabled transitions including tx.
Note that the transition tx must be enabled in Mi, or the arc labeled with transition tx, which is shown
in Figure 1, could not be generated within the reachability graph. When transition tx is activated in
Mi, the state will be fired to another marking M j, which is presented as the terminal of the arc tx in
Figure 1. Therefore, in the reachability graph, Mi and M j are connected with a single-direction arrow
leading from Mi to M j. Figure 2 is a PN model of FMS and its reachable graph is shown in Figure 3.
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For easy tracking, the detailed information of all markings are shown in Table 1. Each marking
in reachability graph is connected with existing transition, and each of its deadlock marking has no
reachable marking. For example, in Figure 3, there are two markings, the legal marking M7 and the
dead marking M14, which are linked by transition t5. In other words, the legal marking M7 through
the transition t5 is fired to the dead marking M14. In this case, i = 7, j = 14 and tx = t5 is shown in
Equation (1) as below:

M7 + t5 = M14 (1)

Table 1. The detailed information of all markings of Figure 3.

Marking No. Information of Marking Marking No. Information of Marking

M1 3p1 + 3p8 + p9 + p10 + p11 M11 3p1 + p5 + p6 + p8 + p9
M2 2p1 + p2 + 3p8 + p10 + p11 M12 3p1 + p7 + 2p8 + p10 + p11
M3 3p1 + p5 + 2p8 + p9 + p10 M13 p1 + p2 + p4 + 3p8 + p10
M4 2p1 + p3 + 3p8 + p9 + p11 M14 p1 + p2 + p3 + p5 + 2p8
M5 2p1 + p2 + p5 + 2p8 + p10 M15 2p1 + p2 + p5 + p6 + p8
M6 3p1 + p6 + 2p8 + p9 + p11 M16 3p1 + p5 + p7 + p8 + p10
M7 p1 + p2 + p3 + 3p8 + p11 M17 p1 + p3 + p4 + 3p8 + p9
M8 2p1 + p4 + 3p8 + p9 + p10 M18 3p1 + p6 + p7 + p8 + p11
M9 2p1 + p3 + p5 + 2p8 + p9 M19 p2 + p3 + p4 + 3p8
M10 2p1 + p2 + p6 + 2p8 + p11 M20 3p1 + p5 + p6 + p7

Equation (1) can be present in Equation (2):

t5 = M14 −M7 (2)

Similarly, some transition tc can also change the dead marking M14 to the legal marking M7 shown
in Equation (3) as below:

tc = M7 −M14 (3)

Therefore, a generated control transition tc can lead MD to ML and the computation can be simply
presented shown in Equation (4) as below:

tc = ML −MD (4)
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Definition 9. One added transition tc between one legal marking ML and one deadlock marking MD is called
the leading transition if tc = ML −MD.

3.2. Generating and Comparing Aiding Matrix (GCAM)

Huang et al. [44] control the PN model of FMS by adding control transition to recover all deadlock
markings, though the control policy cannot afford too huge system and has more structural complexity.
The proposed method can solve these two problems and either of the possibly occurring live-lock
situations. This method compares all possible generated control transitions to find out the optimal
one in each iteration until DZ becomes empty. A three-dimension matrix, also called the generating
and comparing aiding matrix (GCAM), is built and helps comparing computation a lot. According
to the set of legal and deadlock markings, GCAM is created, where the first dimension is deadlock
markings, the second dimension is legal ones and the third dimension is ML −MD. Before building
GCAM, the reachability graph analysis hence has to be done to partition the RG into legal, illegal and
deadlock markings. For easy tracking, GCAM can be represented in simple model called simplified
GCAM (SGCAM) in this paper. For example, the uncontrolled PN model of FMS shown in Figures 2
and 3 has two deadlock markings, 15 legal markings and 11 places, then the size of its GCAM is
2 × 15 × 11. Tables 2 and 3 show its GCAM and SGCAM, respectively. Please notice that only the
deadlock markings are adopted to build up the first dimension of GCAM rather than all illegal ones,
because only deadlock ones need to be recovered and other illegal ones in DZ still have enough liveness.
All control transitions in GCAM are compared with each other, and the computation complexity
depends on the scale of the size of reachability graph and GCAM, precisely, about (MD ×ML)
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leading transition since  𝑡 , 𝑡 , 𝑝 𝑝 𝑝 𝑝 𝑝 𝑝 . In other words, it means that the set 

of  leading transition can make the two deadlock markings M14 and M15  live and make this system recovery. 

Further, this system will be optimal controlled once the control transition tc is equal to [𝑝 𝑝 𝑝 𝑝
𝑝 𝑝 ]. Figure 4 shows that the control transition is added into the system. Further, all illegal (i.e., quasi‐
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M14 :
p1 + p2 + p3 + p5 + 2p8

M15 :
2p1 + p2 + p5 + p6 + p8
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2p1 − p2 − p3 − p5 + p8 + p9 + p10 + p11
p1 − p2 − p5 − p6 + 2p8 + p9 +

p10 + p11
M2 : 2p1 + p2 + 3p8 + p10 + p11 p1 − p3 − p5 + p8 + p10 + p11 −p5 − p6 + 2p8 + p10 + p11
M3: 3p1 + p5 + 2p8 + p9 + p10 2p1 − p2 − p3 + p9 + p10 p1 − p2 − p6 + p8 + p9 + p10

M4 : 2p1 + p3 + 3p8 + p9 + p11 p1 − p2 − p5 + p8 + p9 + p11
−p2 + p3 − p5 − p6 + 2p8 + p9 +

p11
M6 : 3p1 + p6 + 2p8 + p9 + p11 2p1 − p2 − p3 − p5 + p6 + p9 + p11 p1 − p2 − p5 + p8 + p9 + p11
M7 : p1 + p2 + p3 + 3p8 + p11 −p5 + p8 + p11 −p1 + p3 − p5 − p6 + 28 + p11

M8 : 2p1 + p4 + 3p8 + p9 + p10 p1 − p2 − p3 + p4 − p5 + p8 + p9 + p10
−p2 + p4 − p5 − p6 + 2p8 + p9 +

p10
M11 : 3p1 + p5 + p6 + p8 + p9 2p1 − p2 − p3 + p5 − p8 + p9 p1 − p2 + p9

M12 : 3p1 + p7 + 2p8 + p10 + p11 2p1 − p2 − p3 − p5 + p7 + p10 + p11
p1 − p2 − p5 − p6 + p7 + p8 +

p10 + p11
M13 : p1 + p2 + p4 + 3p8 + p10 −p3 + p4 − p5 + p8 + p10 −p1 + p4 − p5 − p6 + 2p8 + p10
M16 : 3p1 + p5 + p7 + p8 + p10 2p1 − p2 − p3 + p7 − p8 + p10 p1 − p2 − p6 + p7 + p10

M17 : p1 + p3 + p4 + 3p8 + p9 −p2 + p4 − p5 + p8 + p9
−p1 − p2 + p3 + p4 − p5 − p6 +

2p8 + p9
M18 : 3p1 + p6 + p7 + p8 + p11 2p1 − p2 − p3 − p5 + p6 + p7 − p8 + p11 p1 − p2 − p5 + p7 + p11
M19 : p2 + p3 + p4 + 3p8 −p1 + p4 − p5 + p8 −2p1 + p3 + p4 − p5 − p6 + 2p8
M20 : 3p1 + p5 + p6 + p7 2p1 − p2 − p3 + p6 + p7 − 2p8 p1 − p2 + p7 − p8
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Table 3. Simplified GCAM (SGCAM) of Example 1.

M14 M15

M1 t14,1 t15,1
M2 t14,2 t15,2
M3 t14,3 t15,3
M4 t14,4 t15,4
M6 t14,6 t15,6
M7 t14,7 t15,7
M8 t14,8 t15,8
M11 t14,11 t15,11
M12 t14,12 t15,12
M13 t14,13 t15,13
M16 t14,16 t15,16
M17 t14,17 t15,17
M18 t14,18 t15,18
M19 t14,19 t15,19
M20 t14,20 t15,20

4. Algorithm

The proposed deadlock control policy is presented in this section, which aims to raise up system
liveness by recovering all undesired deadlock situations. Aforementioned techniques are summed up
to designed effective supervisors. PN model in Figure 2 and its reachability graph shown in Figure 3
help demonstrating proposed method as following.

Definition 10. Let function R(tc) denote the recovering efficiency of tc, which is used to recognize the most
effective control transition in GCAM. The values of R(tc) are possible zero or positive integer, and initially reset
as zero before comparing comparison from tc to others. The value of R(tc) increases by one when a deadlock is
identified being solved by tc. After whole computation of tc, the value of R(tc) indicates the number of deadlocks
recovered by tc.

Algorithm 1 based on reachability graph analysis accordingly illustrates its maximally reachable
graph at first. Notice that reachability graph will be calculated at each iteration, due to the LZ and DZ
changes after attaching generated supervisors to system. Under provided control policy, generally,
LZ extends and DZ reduces after every iteration. The presented approach aims to recover all existing
deadlock markings, the set of legal and deadlock markings, are therefore, recognized in the reachability
graph at the beginning within each loop.

After attaching new control transition (usually the most effective one) to PN model, a brand new
reachability graph is illustrated due to its updated model. Although repeating analysis to generate
reachability graph makes more computation heavy, the following process of designing supervisors is
much more timesaving and systematic than other methods, such as MFFP (ILPP) [40], which is a kind
of NP-hard problem.

Finally, please notice that building GCAM and SGCAM is extremely essential for the main
comparing computation process. Viewing the entire recovery possibility of the whole system is clearer
than generating a leading transition before each comparing process.
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Algorithm 1: GCAM-based Recovery Control Transition Designing

Input: One PN model of a FMS with deadlock and quasi-deadlock markings.
Output: One optimal controlled FMS with control transitions

1. Illustrate reachability graph with all reachable markings.
2. Identify the set of legal markingsML and the set of deadlock markingsMD.
3. Build GCAM and SGCAM including all possible control transitions.
4. Comparing computation.

while (MD , ∅) do
for

(
i, j ∈ Nandti, j ∈ GCAM

)
do

R
(
ti, j

)
← 0

for (k ∈ N , Mk ∈MD) do
for (l ∈ N , Ml ∈ML) do

if
(
ti, j = tk,l

)
then

R
(
ti, j

)
← R

(
ti, j

)
+ 1

k← k + 1
let l be 1 /*reset the value of k and l to skip the rest of column Mk
and start the next column. */

end if
end for

end for
end for

Add the control transition tc with the maximal R(tc) to the PN model.
if (MD , ∅) then

Do reachability graph analysis and build GCAM for next loop.
end if

end while
5. Output completely recovered system with MD = ∅ and all markings reachable.

5. Experimental Results

This section will demonstrate our proposed deadlock recovery policy which is proposed in
Section 4 through two classic S3PR [10] (the system of simple sequential process with resources)
examples. Besides, for easy checking, the two examples used INA [63] and PN-Tools [64] to run their
reachability graph, respectively.

Definition 11. An S3PR [10] is defined as the union of a set of nets Ni sharing common places, called resource
idle places (i.e., called resource places in this paper) PRi, such that Ni =

(
Pi ∪

{
p0

i

}
∪ PRi, Ti, Fi

)
, where (1) Pi ,

∅, pi
0 < Pi (2) N′i is a strongly connected state machine where N′i =

(
Pi ∪

{
p0

i

}
, Ti, F′i

)
is the resultant net after

PRi is removed from Ni; (3) every circuit of N′i contains the place p0
i and (4) any two N′i are composable when

they share a set of common resource idle places. In the above definition, p0
i is called the process idle place and Pi

the set of operation places. The N′i shall be called a process net. An S3PR has an important characteristic that
only one shared resource is allowed at each operation state, i.e., a place in Pi is marked. The resource used in a
state is released when the system moves to the next state.

5.1. Examples

Example 1. Firstly, please refer to Figure 2, there are two idle places, six operation places and three resource
places, which are denoted as P0 =

{
p1, p8

}
, PA =

{
p2, p3, p4, p5, p6, p7

}
and PR =

{
p9, p10, p11

}
. Since there are

two prebuilt process competing resources in this example, deadlock states hence occur. Further, according to
reachability graph analysis, the system’s reachability graph consists of 20 reachable states in total, shown in
Figure 3, including fifteen legal and five illegal markings (three quasi-dead markings, i.e., M5, M9 and, M10, and
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two deadlock markings, i.e., M14 and M15). Please notice that under our proposed transition-based recovery
control policy, only deadlock and legal markings are needed to be considered, and are adopted to build its GCAM
and SGCAM matrixes. Therefore, we show both of them in Tables 2 and 3, respectively. Furthermore, for easy
tracking we show the GCAM matrix in PN places form. Based on Equation (3), each leading (control) transition
can then be obtained under two deadlock markings and fifteen legal ones. For instance, t14,1 can be built by the
two markings, {M14, M1}, shown in Equation (5) as follows:

t14,1 = M1 −M14 (5)

In Equation (5), it is worthy note that the marking M1 belongs toML and the marking M14 belongs to
MD. Further, Equation (5) can then be Equation (6) as follows:

t14,1 = M1 −M14 = [3p1 + 3p8 + p9 + p10 + p11] − [p1 + p2 + p3 + p5 + 2p8] (6)

After the computation in Equation (6), the leading transition of t14,1 is equal to
[2p1 − p2 − p3 − p5 + p8 + p9 + p10 + p11]. It is also present in Table 2 (please refer to bold face). Note
that all leading transitions in GCAM can be viewed as control transitions since they can recover their
corresponding (relative) dead markings simultaneously. Furthermore, it means that they can recover the same
dead markings once two sets or more of markings (one legal with one dead markings) in GCAM have the same
leading transition.

Accordingly, one can recognize that the two sets of markings [M14, M4] and [M15, M6] have the same
leading transition since t14,4 = t15,6 = [p1 − p2 − p5 + p8 + p9 + p11]. In other words, it means that the set of
leading transition can make the two deadlock markings M14 and M15 live and make this system recovery. Further,
this system will be optimal controlled once the control transition tc is equal to [p1 − p2 − p5 + p8 + p9 + p11].
Figure 4 shows that the control transition is added into the system. Further, all illegal (i.e., quasi-dead and
deadlock) markings are recovered and become live as shown in Figure 5. In summary, the system has real maximal
permissive states since all original 20 reachable markings are held totally.Appl. Sci. 2020, 10, x 10 of 19 
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Here is another classical example used to evaluate our policy and presented in Figure 6, with 
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and M277) and 205 legal ones based on PN-tools [18]. Please note that due to the space limitation of 

this paper, we will not present the detailed information of CGAM, SCGAM, and all detailed process 

of seeking leading transitions. We just show the key information. Firstly, the properties of deadlock 

and legal markings in matrix form are present in Tables 4 and 5, respectively.  

Table 4. The detailed information of all deadlock markings of Example 2. 
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Figure 4. The controller for Figure 2.
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Figure 5. The real maximally permissive reachability graph of Figure 4.

Example 2. Here is another classical example used to evaluate our policy and presented in Figure 6, with
totally 19 places and 14 transitions. In this PN model, there are two idle places, eleven operation places and
six resource places, denoted as P0 =

{
p1, p8

}
, PA =

{
p2 − p7, p9 − p13

}
and PR =

{
p14 − p19

}
. After reachability

graph analysis, there are 282 markings identified totally, including 16 deadlock markings (M89, M107, M154,
M162, M170, M174, M198, M202, M205, M211, M227, M249, M256, M257, M261, and M277) and 205 legal ones
based on PN-tools [18]. Please note that due to the space limitation of this paper, we will not present the detailed
information of CGAM, SCGAM, and all detailed process of seeking leading transitions. We just show the key
information. Firstly, the properties of deadlock and legal markings in matrix form are present in Tables 4 and 5,
respectively.
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Table 5. The detailed information of all legal markings of Example 2. 

Marking 

No. 
Information of markings [p1~p19] 

Marking 

No. 
Information of markings [p1~p19] 

1 6 0 0 0 0 0 0 6 0 0 0 0 0 1 1 1 1 1 1 120 3 0 1 1 0 1 0 5 1 0 0 0 0 0 0 0 1 1 0 

2 5 1 0 0 0 0 0 6 0 0 0 0 0 1 1 1 1 0 1 121 3 1 1 0 0 1 0 5 0 1 0 0 0 1 0 0 0 0 1 

3 6 0 0 0 0 0 0 5 1 0 0 0 0 1 1 1 1 1 0 122 4 0 0 0 0 1 1 6 0 0 0 0 0 1 1 0 1 1 0 

4 5 0 1 0 0 0 0 6 0 0 0 0 0 1 0 1 1 1 1 123 4 0 0 0 1 1 0 5 0 1 0 0 0 1 1 0 0 0 1 

5 5 0 0 1 0 0 0 6 0 0 0 0 0 0 1 1 1 1 1 124 4 0 1 0 0 0 1 5 0 1 0 0 0 1 0 1 0 1 0 

6 5 1 0 0 0 0 0 5 1 0 0 0 0 1 1 1 1 0 0 127 3 1 0 1 0 1 0 5 0 1 0 0 0 0 1 0 0 0 1 

7 6 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 0 1 1 128 4 0 0 1 0 0 1 5 0 1 0 0 0 0 1 1 0 1 0 

8 4 1 1 0 0 0 0 6 0 0 0 0 0 1 0 1 1 0 1 129 4 0 0 1 0 1 0 4 1 1 0 0 0 0 1 0 0 1 0 

9 5 0 0 0 1 0 0 6 0 0 0 0 0 1 1 1 1 0 1 130 4 0 0 1 0 1 0 5 0 0 1 0 0 0 1 0 1 0 1 

10 5 0 1 0 0 0 0 5 1 0 0 0 0 1 0 1 1 1 0 132 5 0 0 0 0 0 1 5 0 0 0 1 0 1 0 1 1 1 0 

11 4 1 0 1 0 0 0 6 0 0 0 0 0 0 1 1 1 0 1 133 5 0 0 0 0 1 0 4 0 1 1 0 0 1 1 0 0 0 1 

12 5 0 0 1 0 0 0 5 1 0 0 0 0 0 1 1 1 1 0 134 5 0 0 0 0 1 0 4 1 0 0 1 0 1 0 0 1 1 0 

13 5 1 0 0 0 0 0 5 0 1 0 0 0 1 1 1 0 0 1 135 4 1 0 0 0 1 0 5 0 0 0 1 0 1 0 0 1 0 1 

14 6 0 0 0 0 0 0 4 1 1 0 0 0 1 1 1 0 1 0 136 5 0 0 0 0 1 0 5 0 0 0 0 1 1 1 0 1 0 1 

15 6 0 0 0 0 0 0 5 0 0 1 0 0 1 1 1 1 0 1 137 5 0 0 1 0 0 0 3 1 1 0 1 0 0 0 1 0 1 0 

16 4 0 1 1 0 0 0 6 0 0 0 0 0 0 0 1 1 1 1 139 5 0 0 0 1 0 0 4 0 1 0 1 0 1 0 1 0 0 1 

17 4 1 1 0 0 0 0 5 1 0 0 0 0 1 0 1 1 0 0 141 5 0 0 1 0 0 0 4 0 1 0 0 1 0 1 1 0 0 1 

18 5 0 0 0 0 1 0 6 0 0 0 0 0 1 1 0 1 1 1 145 3 0 1 0 1 0 1 6 0 0 0 0 0 1 0 1 1 0 0 

19 5 0 0 0 1 0 0 5 1 0 0 0 0 1 1 1 1 0 0 146 3 0 1 0 1 1 0 5 1 0 0 0 0 1 0 0 1 0 0 

20 5 0 1 0 0 0 0 5 0 1 0 0 0 1 0 1 0 1 1 147 3 0 0 1 1 0 1 6 0 0 0 0 0 0 1 1 1 0 0 

21 4 1 0 1 0 0 0 5 1 0 0 0 0 0 1 1 1 0 0 148 3 0 0 1 1 1 0 5 1 0 0 0 0 0 1 0 1 0 0 

22 5 0 0 1 0 0 0 5 0 1 0 0 0 0 1 1 0 1 1 149 3 0 1 1 0 1 0 5 0 1 0 0 0 0 0 0 0 1 1 

23 5 1 0 0 0 0 0 4 1 1 0 0 0 1 1 1 0 0 0 150 3 1 1 0 0 0 1 5 0 1 0 0 0 1 0 1 0 0 0 

24 6 0 0 0 0 0 0 4 1 0 1 0 0 1 1 1 1 0 0 152 3 1 0 0 0 1 1 6 0 0 0 0 0 1 1 0 1 0 0 

25 6 0 0 0 0 0 0 5 0 0 0 1 0 1 0 1 1 1 1 153 4 0 0 0 1 0 1 5 0 1 0 0 0 1 1 1 0 0 0 

27 4 0 1 0 1 0 0 6 0 0 0 0 0 1 0 1 1 0 1 157 3 1 0 1 0 0 1 5 0 1 0 0 0 0 1 1 0 0 0 

28 4 0 0 1 1 0 0 6 0 0 0 0 0 0 1 1 1 0 1 159 4 0 0 1 0 0 1 5 0 0 1 0 0 0 1 1 1 0 0 

29 4 0 1 1 0 0 0 5 1 0 0 0 0 0 0 1 1 1 0 160 4 0 0 1 0 1 0 4 1 0 1 0 0 0 1 0 1 0 0 

30 4 1 1 0 0 0 0 5 0 1 0 0 0 1 0 1 0 0 1 161 4 0 0 1 0 1 0 5 0 0 0 1 0 0 0 0 1 1 1 

31 4 1 0 0 0 1 0 6 0 0 0 0 0 1 1 0 1 0 1 163 4 1 0 0 0 0 1 5 0 0 0 1 0 1 0 1 1 0 0 

32 5 0 0 0 0 0 1 6 0 0 0 0 0 1 1 1 1 1 0 164 5 0 0 0 0 0 1 5 0 0 0 0 1 1 1 1 1 0 0 

33 5 0 0 0 0 1 0 5 1 0 0 0 0 1 1 0 1 1 0 165 5 0 0 0 0 0 1 4 0 1 1 0 0 1 1 1 0 0 0 

34 5 0 0 0 1 0 0 5 0 1 0 0 0 1 1 1 0 0 1 166 5 0 0 0 0 1 0 3 1 1 1 0 0 1 1 0 0 0 0 

35 5 0 1 0 0 0 0 4 1 1 0 0 0 1 0 1 0 1 0 167 5 0 0 0 0 1 0 4 0 1 0 1 0 1 0 0 0 1 1 

37 4 1 0 1 0 0 0 5 0 1 0 0 0 0 1 1 0 0 1 168 4 1 0 0 0 1 0 4 1 0 0 1 0 1 0 0 1 0 0 

38 5 0 0 1 0 0 0 4 1 1 0 0 0 0 1 1 0 1 0 169 5 0 0 0 0 1 0 4 1 0 0 0 1 1 1 0 1 0 0 

Figure 6. Another classical and complex Petri net model of FMS.
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Table 4. The detailed information of all deadlock markings of Example 2.

Marking No. Information of Markings [p1~p19] Marking No. Information of Markings [p1~p19]

M89 3 1 1 1 0 0 0 4 1 1 0 0 0 0 0 1 0 0 0 M205 3 0 0 1 1 1 0 4 1 1 0 0 0 0 1 0 0 0 0
M107 5 0 1 0 0 0 0 3 1 1 1 0 0 1 0 1 0 0 0 M211 4 0 1 0 0 1 0 3 1 1 1 0 0 1 0 0 0 0 0
M154 4 0 0 0 1 1 0 4 1 1 0 0 0 1 1 0 0 0 0 M227 5 0 0 1 0 0 0 2 1 1 1 1 0 0 0 1 0 0 0
M162 4 0 1 1 0 0 0 3 1 1 1 0 0 0 0 1 0 0 0 M249 3 0 1 1 0 1 0 3 1 1 1 0 0 0 0 0 0 0 0
M170 4 1 0 1 0 0 0 3 1 1 0 1 0 0 0 1 0 0 0 M256 3 1 0 1 0 1 0 3 1 1 0 1 0 0 0 0 0 0 0
M174 6 0 0 0 0 0 0 2 1 1 1 1 0 1 0 1 0 0 0 M257 4 0 0 0 1 1 0 3 1 1 0 1 0 1 0 0 0 0 0
M198 2 1 1 1 0 1 0 4 1 1 0 0 0 0 0 0 0 0 0 M261 5 0 0 0 0 1 0 2 1 1 1 1 0 1 0 0 0 0 0
M202 3 0 1 0 1 1 0 4 1 1 0 0 0 1 0 0 0 0 0 M277 4 0 0 1 0 1 0 2 1 1 1 1 0 0 0 0 0 0 0

Table 5. The detailed information of all legal markings of Example 2.

Marking
No. Information of markings [p1~p19] Marking

No. Information of markings [p1~p19]

1 6 0 0 0 0 0 0 6 0 0 0 0 0 1 1 1 1 1 1 120 3 0 1 1 0 1 0 5 1 0 0 0 0 0 0 0 1 1 0
2 5 1 0 0 0 0 0 6 0 0 0 0 0 1 1 1 1 0 1 121 3 1 1 0 0 1 0 5 0 1 0 0 0 1 0 0 0 0 1
3 6 0 0 0 0 0 0 5 1 0 0 0 0 1 1 1 1 1 0 122 4 0 0 0 0 1 1 6 0 0 0 0 0 1 1 0 1 1 0
4 5 0 1 0 0 0 0 6 0 0 0 0 0 1 0 1 1 1 1 123 4 0 0 0 1 1 0 5 0 1 0 0 0 1 1 0 0 0 1
5 5 0 0 1 0 0 0 6 0 0 0 0 0 0 1 1 1 1 1 124 4 0 1 0 0 0 1 5 0 1 0 0 0 1 0 1 0 1 0
6 5 1 0 0 0 0 0 5 1 0 0 0 0 1 1 1 1 0 0 127 3 1 0 1 0 1 0 5 0 1 0 0 0 0 1 0 0 0 1
7 6 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 0 1 1 128 4 0 0 1 0 0 1 5 0 1 0 0 0 0 1 1 0 1 0
8 4 1 1 0 0 0 0 6 0 0 0 0 0 1 0 1 1 0 1 129 4 0 0 1 0 1 0 4 1 1 0 0 0 0 1 0 0 1 0
9 5 0 0 0 1 0 0 6 0 0 0 0 0 1 1 1 1 0 1 130 4 0 0 1 0 1 0 5 0 0 1 0 0 0 1 0 1 0 1

10 5 0 1 0 0 0 0 5 1 0 0 0 0 1 0 1 1 1 0 132 5 0 0 0 0 0 1 5 0 0 0 1 0 1 0 1 1 1 0
11 4 1 0 1 0 0 0 6 0 0 0 0 0 0 1 1 1 0 1 133 5 0 0 0 0 1 0 4 0 1 1 0 0 1 1 0 0 0 1
12 5 0 0 1 0 0 0 5 1 0 0 0 0 0 1 1 1 1 0 134 5 0 0 0 0 1 0 4 1 0 0 1 0 1 0 0 1 1 0
13 5 1 0 0 0 0 0 5 0 1 0 0 0 1 1 1 0 0 1 135 4 1 0 0 0 1 0 5 0 0 0 1 0 1 0 0 1 0 1
14 6 0 0 0 0 0 0 4 1 1 0 0 0 1 1 1 0 1 0 136 5 0 0 0 0 1 0 5 0 0 0 0 1 1 1 0 1 0 1
15 6 0 0 0 0 0 0 5 0 0 1 0 0 1 1 1 1 0 1 137 5 0 0 1 0 0 0 3 1 1 0 1 0 0 0 1 0 1 0
16 4 0 1 1 0 0 0 6 0 0 0 0 0 0 0 1 1 1 1 139 5 0 0 0 1 0 0 4 0 1 0 1 0 1 0 1 0 0 1
17 4 1 1 0 0 0 0 5 1 0 0 0 0 1 0 1 1 0 0 141 5 0 0 1 0 0 0 4 0 1 0 0 1 0 1 1 0 0 1
18 5 0 0 0 0 1 0 6 0 0 0 0 0 1 1 0 1 1 1 145 3 0 1 0 1 0 1 6 0 0 0 0 0 1 0 1 1 0 0
19 5 0 0 0 1 0 0 5 1 0 0 0 0 1 1 1 1 0 0 146 3 0 1 0 1 1 0 5 1 0 0 0 0 1 0 0 1 0 0
20 5 0 1 0 0 0 0 5 0 1 0 0 0 1 0 1 0 1 1 147 3 0 0 1 1 0 1 6 0 0 0 0 0 0 1 1 1 0 0
21 4 1 0 1 0 0 0 5 1 0 0 0 0 0 1 1 1 0 0 148 3 0 0 1 1 1 0 5 1 0 0 0 0 0 1 0 1 0 0
22 5 0 0 1 0 0 0 5 0 1 0 0 0 0 1 1 0 1 1 149 3 0 1 1 0 1 0 5 0 1 0 0 0 0 0 0 0 1 1
23 5 1 0 0 0 0 0 4 1 1 0 0 0 1 1 1 0 0 0 150 3 1 1 0 0 0 1 5 0 1 0 0 0 1 0 1 0 0 0
24 6 0 0 0 0 0 0 4 1 0 1 0 0 1 1 1 1 0 0 152 3 1 0 0 0 1 1 6 0 0 0 0 0 1 1 0 1 0 0
25 6 0 0 0 0 0 0 5 0 0 0 1 0 1 0 1 1 1 1 153 4 0 0 0 1 0 1 5 0 1 0 0 0 1 1 1 0 0 0
27 4 0 1 0 1 0 0 6 0 0 0 0 0 1 0 1 1 0 1 157 3 1 0 1 0 0 1 5 0 1 0 0 0 0 1 1 0 0 0
28 4 0 0 1 1 0 0 6 0 0 0 0 0 0 1 1 1 0 1 159 4 0 0 1 0 0 1 5 0 0 1 0 0 0 1 1 1 0 0
29 4 0 1 1 0 0 0 5 1 0 0 0 0 0 0 1 1 1 0 160 4 0 0 1 0 1 0 4 1 0 1 0 0 0 1 0 1 0 0
30 4 1 1 0 0 0 0 5 0 1 0 0 0 1 0 1 0 0 1 161 4 0 0 1 0 1 0 5 0 0 0 1 0 0 0 0 1 1 1
31 4 1 0 0 0 1 0 6 0 0 0 0 0 1 1 0 1 0 1 163 4 1 0 0 0 0 1 5 0 0 0 1 0 1 0 1 1 0 0
32 5 0 0 0 0 0 1 6 0 0 0 0 0 1 1 1 1 1 0 164 5 0 0 0 0 0 1 5 0 0 0 0 1 1 1 1 1 0 0
33 5 0 0 0 0 1 0 5 1 0 0 0 0 1 1 0 1 1 0 165 5 0 0 0 0 0 1 4 0 1 1 0 0 1 1 1 0 0 0
34 5 0 0 0 1 0 0 5 0 1 0 0 0 1 1 1 0 0 1 166 5 0 0 0 0 1 0 3 1 1 1 0 0 1 1 0 0 0 0
35 5 0 1 0 0 0 0 4 1 1 0 0 0 1 0 1 0 1 0 167 5 0 0 0 0 1 0 4 0 1 0 1 0 1 0 0 0 1 1
37 4 1 0 1 0 0 0 5 0 1 0 0 0 0 1 1 0 0 1 168 4 1 0 0 0 1 0 4 1 0 0 1 0 1 0 0 1 0 0
38 5 0 0 1 0 0 0 4 1 1 0 0 0 0 1 1 0 1 0 169 5 0 0 0 0 1 0 4 1 0 0 0 1 1 1 0 1 0 0
39 5 0 0 1 0 0 0 5 0 0 1 0 0 0 1 1 1 0 1 171 5 0 0 0 1 0 0 3 1 1 0 1 0 1 0 1 0 0 0
40 6 0 0 0 0 0 0 4 0 1 1 0 0 1 1 1 0 0 1 173 5 0 0 1 0 0 0 3 1 1 0 0 1 0 1 1 0 0 0
41 6 0 0 0 0 0 0 4 1 0 0 1 0 1 0 1 1 1 0 176 3 0 1 0 0 1 1 6 0 0 0 0 0 1 0 0 1 1 0
42 5 1 0 0 0 0 0 5 0 0 0 1 0 1 0 1 1 0 1 177 3 0 1 0 1 1 0 5 0 1 0 0 0 1 0 0 0 0 1
43 6 0 0 0 0 0 0 5 0 0 0 0 1 1 1 1 1 0 1 178 3 0 0 1 0 1 1 6 0 0 0 0 0 0 1 0 1 1 0
45 4 0 1 0 0 1 0 6 0 0 0 0 0 1 0 0 1 1 1 179 3 0 0 1 1 1 0 5 0 1 0 0 0 0 1 0 0 0 1
46 4 0 1 0 1 0 0 5 1 0 0 0 0 1 0 1 1 0 0 180 3 0 1 1 0 0 1 5 0 1 0 0 0 0 0 1 0 1 0
47 4 0 0 1 0 1 0 6 0 0 0 0 0 0 1 0 1 1 1 183 4 0 0 0 0 1 1 5 0 1 0 0 0 1 1 0 0 1 0
48 4 0 0 1 1 0 0 5 1 0 0 0 0 0 1 1 1 0 0 185 4 0 0 1 0 0 1 5 0 0 0 1 0 0 0 1 1 1 0
49 4 0 1 1 0 0 0 5 0 1 0 0 0 0 0 1 0 1 1 186 4 0 0 1 0 1 0 4 0 1 1 0 0 0 1 0 0 0 1
50 4 1 1 0 0 0 0 4 1 1 0 0 0 1 0 1 0 0 0 187 4 0 0 1 0 1 0 4 1 0 0 1 0 0 0 0 1 1 0
51 4 1 0 0 0 0 1 6 0 0 0 0 0 1 1 1 1 0 0 189 4 0 0 0 1 1 0 5 0 0 0 1 0 1 0 0 1 0 1
52 4 1 0 0 0 1 0 5 1 0 0 0 0 1 1 0 1 0 0 190 4 0 0 1 0 1 0 5 0 0 0 0 1 0 1 0 1 0 1
53 5 0 0 0 0 1 0 5 0 1 0 0 0 1 1 0 0 1 1 191 5 0 0 0 0 0 1 4 0 1 0 1 0 1 0 1 0 1 0
54 5 0 0 0 1 0 0 4 1 1 0 0 0 1 1 1 0 0 0 192 5 0 0 0 0 1 0 3 1 1 0 1 0 1 0 0 0 1 0
56 4 1 0 1 0 0 0 4 1 1 0 0 0 0 1 1 0 0 0 193 4 1 0 0 0 1 0 4 0 1 0 1 0 1 0 0 0 0 1
57 5 0 0 1 0 0 0 4 1 0 1 0 0 0 1 1 1 0 0 195 5 0 0 0 0 1 0 4 0 1 0 0 1 1 1 0 0 0 1
58 5 0 0 1 0 0 0 5 0 0 0 1 0 0 0 1 1 1 1 199 2 1 1 0 0 1 1 6 0 0 0 0 0 1 0 0 1 0 0
59 6 0 0 0 0 0 0 3 1 1 1 0 0 1 1 1 0 0 0 200 3 0 0 0 1 1 1 6 0 0 0 0 0 1 1 0 1 0 0
60 6 0 0 0 0 0 0 4 0 1 0 1 0 1 0 1 0 1 1 201 3 0 1 0 1 0 1 5 0 1 0 0 0 1 0 1 0 0 0
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Table 5. Cont.

Marking
No. Information of markings [p1~p19] Marking

No. Information of markings [p1~p19]

61 5 1 0 0 0 0 0 4 1 0 0 1 0 1 0 1 1 0 0 203 2 1 0 1 0 1 1 6 0 0 0 0 0 0 1 0 1 0 0
62 6 0 0 0 0 0 0 4 1 0 0 0 1 1 1 1 1 0 0 204 3 0 0 1 1 0 1 5 0 1 0 0 0 0 1 1 0 0 0
64 3 1 1 0 0 1 0 6 0 0 0 0 0 1 0 0 1 0 1 208 3 1 0 0 0 1 1 5 0 1 0 0 0 1 1 0 0 0 0
65 4 0 0 0 1 1 0 6 0 0 0 0 0 1 1 0 1 0 1 209 4 0 0 0 0 1 1 5 0 0 1 0 0 1 1 0 1 0 0
66 4 0 1 0 0 0 1 6 0 0 0 0 0 1 0 1 1 1 0 213 4 0 0 0 1 0 1 5 0 0 0 1 0 1 0 1 1 0 0
67 4 0 1 0 0 1 0 5 1 0 0 0 0 1 0 0 1 1 0 214 4 0 0 1 0 0 1 5 0 0 0 0 1 0 1 1 1 0 0
68 4 0 1 0 1 0 0 5 0 1 0 0 0 1 0 1 0 0 1 215 4 0 0 1 0 0 1 4 0 1 1 0 0 0 1 1 0 0 0
69 3 1 0 1 0 1 0 6 0 0 0 0 0 0 1 0 1 0 1 216 4 0 0 1 0 1 0 3 1 1 1 0 0 0 1 0 0 0 0
70 4 0 0 1 0 0 1 6 0 0 0 0 0 0 1 1 1 1 0 217 4 0 0 1 0 1 0 4 0 1 0 1 0 0 0 0 0 1 1
71 4 0 0 1 0 1 0 5 1 0 0 0 0 0 1 0 1 1 0 219 4 0 0 0 1 1 0 4 1 0 0 1 0 1 0 0 1 0 0
72 4 0 0 1 1 0 0 5 0 1 0 0 0 0 1 1 0 0 1 220 4 0 0 1 0 1 0 4 1 0 0 0 1 0 1 0 1 0 0
73 4 0 1 1 0 0 0 4 1 1 0 0 0 0 0 1 0 1 0 221 4 1 0 0 0 0 1 4 0 1 0 1 0 1 0 1 0 0 0
75 4 1 0 0 0 1 0 5 0 1 0 0 0 1 1 0 0 0 1 223 5 0 0 0 0 0 1 4 0 1 0 0 1 1 1 1 0 0 0
76 5 0 0 0 0 0 1 5 0 1 0 0 0 1 1 1 0 1 0 224 4 1 0 0 0 1 0 3 1 1 0 1 0 1 0 0 0 0 0
77 5 0 0 0 0 1 0 4 1 1 0 0 0 1 1 0 0 1 0 226 5 0 0 0 0 1 0 3 1 1 0 0 1 1 1 0 0 0 0
78 5 0 0 0 0 1 0 5 0 0 1 0 0 1 1 0 1 0 1 228 2 0 1 1 0 1 1 6 0 0 0 0 0 0 0 0 1 1 0
80 5 0 0 1 0 0 0 4 0 1 1 0 0 0 1 1 0 0 1 229 3 0 1 0 0 1 1 5 0 1 0 0 0 1 0 0 0 1 0
81 5 0 0 1 0 0 0 4 1 0 0 1 0 0 0 1 1 1 0 230 3 0 0 1 0 1 1 5 0 1 0 0 0 0 1 0 0 1 0
83 5 0 0 0 1 0 0 5 0 0 0 1 0 1 0 1 1 0 1 232 4 0 0 0 0 1 1 5 0 0 0 1 0 1 0 0 1 1 0
84 5 0 0 1 0 0 0 5 0 0 0 0 1 0 1 1 1 0 1 233 4 0 0 1 0 0 1 4 0 1 0 1 0 0 0 1 0 1 0
85 6 0 0 0 0 0 0 3 1 1 0 1 0 1 0 1 0 1 0 234 4 0 0 1 0 1 0 3 1 1 0 1 0 0 0 0 0 1 0
86 5 1 0 0 0 0 0 4 0 1 0 1 0 1 0 1 0 0 1 236 4 0 0 0 1 1 0 4 0 1 0 1 0 1 0 0 0 0 1
88 6 0 0 0 0 0 0 4 0 1 0 0 1 1 1 1 0 0 1 238 4 0 0 1 0 1 0 4 0 1 0 0 1 0 1 0 0 0 1
90 3 0 1 1 0 1 0 6 0 0 0 0 0 0 0 0 1 1 1 241 2 0 1 0 1 1 1 6 0 0 0 0 0 1 0 0 1 0 0
91 3 1 1 0 0 0 1 6 0 0 0 0 0 1 0 1 1 0 0 242 2 0 0 1 1 1 1 6 0 0 0 0 0 0 1 0 1 0 0
92 3 1 1 0 0 1 0 5 1 0 0 0 0 1 0 0 1 0 0 243 2 1 1 0 0 1 1 5 0 1 0 0 0 1 0 0 0 0 0
93 4 0 0 0 1 0 1 6 0 0 0 0 0 1 1 1 1 0 0 244 3 0 0 0 1 1 1 5 0 1 0 0 0 1 1 0 0 0 0
94 4 0 0 0 1 1 0 5 1 0 0 0 0 1 1 0 1 0 0 246 2 1 0 1 0 1 1 5 0 1 0 0 0 0 1 0 0 0 0
95 4 0 1 0 0 1 0 5 0 1 0 0 0 1 0 0 0 1 1 247 3 0 0 1 0 1 1 5 0 0 1 0 0 0 1 0 1 0 0
97 3 1 0 1 0 0 1 6 0 0 0 0 0 0 1 1 1 0 0 250 3 1 0 0 0 1 1 5 0 0 0 1 0 1 0 0 1 0 0
98 3 1 0 1 0 1 0 5 1 0 0 0 0 0 1 0 1 0 0 251 4 0 0 0 0 1 1 5 0 0 0 0 1 1 1 0 1 0 0
99 4 0 0 1 0 1 0 5 0 1 0 0 0 0 1 0 0 1 1 253 4 0 0 0 1 0 1 4 0 1 0 1 0 1 0 1 0 0 0

100 4 0 0 1 1 0 0 4 1 1 0 0 0 0 1 1 0 0 0 255 4 0 0 1 0 0 1 4 0 1 0 0 1 0 1 1 0 0 0
102 4 1 0 0 0 0 1 5 0 1 0 0 0 1 1 1 0 0 0 259 4 0 0 1 0 1 0 3 1 1 0 0 1 0 1 0 0 0 0
103 4 1 0 0 0 1 0 4 1 1 0 0 0 1 1 0 0 0 0 262 2 0 1 1 0 1 1 5 0 1 0 0 0 0 0 0 0 1 0
104 5 0 0 0 0 0 1 5 0 0 1 0 0 1 1 1 1 0 0 263 3 0 0 1 0 1 1 5 0 0 0 1 0 0 0 0 1 1 0
105 5 0 0 0 0 1 0 4 1 0 1 0 0 1 1 0 1 0 0 264 4 0 0 0 0 1 1 4 0 1 0 1 0 1 0 0 0 1 0
106 5 0 0 0 0 1 0 5 0 0 0 1 0 1 0 0 1 1 1 267 2 0 1 0 1 1 1 5 0 1 0 0 0 1 0 0 0 0 0
108 5 0 0 1 0 0 0 3 1 1 1 0 0 0 1 1 0 0 0 268 2 0 0 1 1 1 1 5 0 1 0 0 0 0 1 0 0 0 0
109 5 0 0 1 0 0 0 4 0 1 0 1 0 0 0 1 0 1 1 271 3 0 0 0 1 1 1 5 0 0 0 1 0 1 0 0 1 0 0
111 5 0 0 0 1 0 0 4 1 0 0 1 0 1 0 1 1 0 0 272 3 0 0 1 0 1 1 5 0 0 0 0 1 0 1 0 1 0 0
112 5 0 0 1 0 0 0 4 1 0 0 0 1 0 1 1 1 0 0 273 3 1 0 0 0 1 1 4 0 1 0 1 0 1 0 0 0 0 0
113 5 1 0 0 0 0 0 3 1 1 0 1 0 1 0 1 0 0 0 275 4 0 0 0 0 1 1 4 0 1 0 0 1 1 1 0 0 0 0
115 6 0 0 0 0 0 0 3 1 1 0 0 1 1 1 1 0 0 0 278 3 0 0 1 0 1 1 4 0 1 0 1 0 0 0 0 0 1 0
117 3 0 1 0 1 1 0 6 0 0 0 0 0 1 0 0 1 0 1 280 3 0 0 0 1 1 1 4 0 1 0 1 0 1 0 0 0 0 0
118 3 0 0 1 1 1 0 6 0 0 0 0 0 0 1 0 1 0 1 282 3 0 0 1 0 1 1 4 0 1 0 0 1 0 1 0 0 0 0
119 3 0 1 1 0 0 1 6 0 0 0 0 0 0 0 1 1 1 0

In this example, we cannot merely use only one leading (control) transition to solve the system’s
deadlock problem and make the system recovery due to the complexity of this system. Under this
situation, therefore, we must try to identify the least number of leading (control) transitions so that
they can recover maximal number of deadlock markings.

Accordingly, in the first iteration, there are 40 sets of leading transitions identified and they all can
recover maximal eight same deadlock markings (i.e., M107, M172, M174, M211, M227, M249, M261, and
M277), which are listed as follows (refer to Table 6):
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Table 6. The detailed information of all leading transition of Example 2 in first iteration.

Leading Transition ti, j
The Number of

Deadlock Markings The Property of Leading Transition

t107,4 8 3p8 − p9 − p10 − p11 + p17 + p18 + p19
t107,10 8 2p8 − p10 − p11 + p17 + p18
t107,20 8 2p8 − p9 − p11 + p18 + p19
t107,66 8 −p1 + p7 + 3p8 − p9 − p10 − p11 + p17 + p18
t107,124 8 −p1 + p7 + 2p8 − p9 − p11 + p18
t162,16 8 3p8 − p9 − p10 − p11 + p17 + p18 + p19
t162,29 8 2p8 − p10 − p11 + p17 + p18
t162,49 8 2p8 − p9 − p11 + p18 + p19
t162,119 8 −p1 + p7 + 3p8 − p9 − p10 − p11 + p17 + p18
t162,180 8 −p1 + p7 + 2p8 − p9 − p11 + p18
t174,25 8 3p8 − p9 − p10 − p11 + p17 + p18 + p19
t174,41 8 2p8 − p10 − p11 + p17 + p18
t174,60 8 2p8 − p9 − p11 + p18 + p19
t174,132 8 −p1 + p7 + 3p8 − p9 − p10 − p11 + p17 + p18
t174,191 8 −p1 + p7 + 2p8 − p9 − p11 + p18
t211,45 8 3p8 − p9 − p10 − p11 + p17 + p18 + p19
t211,67 8 2p8 − p10 − p11 + p17 + p18
t211,95 8 2p8 − p9 − p11 + p18 + p19
t211,176 8 −p1 + p7 + 3p8 − p9 − p10 − p11 + p17 + p18
t211,229 8 −p1 + p7 + 2p8 − p9 − p11 + p18
t227,58 8 3p8 − p9 − p10 − p11 + p17 + p18 + p19
t227,81 8 2p8 − p10 − p11 + p17 + p18
t227,109 8 2p8 − p9 − p11 + p18 + p19
t227,185 8 −p1 + p7 + 3p8 − p9 − p10 − p11 + p17 + p18
t227,233 8 −p1 + p7 + 2p8 − p9 − p11 + p18
t249,90 8 3p8 − p9 − p10 − p11 + p17 + p18 + p19
t249,120 8 2p8 − p10 − p11 + p17 + p18
t249,149 8 2p8 − p9 − p11 + p18 + p19
t249,228 8 −p1 + p7 + 3p8 − p9 − p10 − p11 + p17 + p18
t249,262 8 −p1 + p7 + 2p8 − p9 − p11 + p18
t261,106 8 3p8 − p9 − p10 − p11 + p17 + p18 + p19
t261,134 8 2p8 − p10 − p11 + p17 + p18
t261,167 8 2p8 − p9 − p11 + p18 + p19
t261,232 8 −p1 + p7 + 3p8 − p9 − p10 − p11 + p17 + p18
t261,264 8 −p1 + p7 + 2p8 − p9 − p11 + p18
t277,161 8 3p8 − p9 − p10 − p11 + p17 + p18 + p19
t277,187 8 2p8 − p10 − p11 + p17 + p18
t277,217 8 2p8 − p9 − p11 + p18 + p19
t277,263 8 −p1 + p7 + 3p8 − p9 − p10 − p11 + p17 + p18
t277,278 8 −p1 + p7 + 2p8 − p9 − p11 + p18

Please notice that above all leading transitions can be viewed as the first control transition
of this example. Besides, anyone of them can recover all eight deadlock markings. Under
the proposed algorithm, the first one of all leading transition is chosen. Accordingly, t107,4 =

[3p8 − p9 − p10 − p11 + p17 + p18 + p19] is chosen as the first control transition since it is the first one
identified from CGAM. After the controller is added into this system eight deadlock markings are still
left (i.e., 16− 8 = 8). Therefore, we must run second iteration for recovering the other deadlock markings.

In second reachability graph, eight deadlock markings and 246 legal markings are identified.
Therefore, the new GCAM’s size is: 8× 246× 19. In the following, accordingly, 25 sets of all leading
transitions are identified since they all can recover the maximal five same deadlock markings, which
are listed as follows (refer to Table 7):
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Table 7. The detailed information of all leading transition of Example 2 in second iteration.

Leading Transition ti, j
The Number of

Deadlock Markings The Property of Leading Transition

t89,8 5 p1 − p4 + 2p8 − p9 − p10 + p14 + p17 + p19
t89,17 5 p1 − p4 + p8 − p10 + p14 + p17
t89,30 5 p1 − p4 + p8 − p9 + p14 + p19
t89,91 5 −p4 + p7 + 2p8 − p9 − p10 + p14 + p17
t89,150 5 −p4 + p7 + p8 − p9 + p14
t170,42 5 p1 − p4 + 2p8 − p9 − p10 + p14 + p17 + p19
t170,61 5 p1 − p4 + p8 − p10 + p14 + p17
t170,86 5 p1 − p4 + p8 − p9 + p14 + p19
t170,163 5 −p4 + p7 + 2p8 − p9 − p10 + p14 + p17
t170,221 5 −p4 + p7 + p8 − p9 + p14
t198,64 5 p1 − p4 + 2p8 − p9 − p10 + p14 + p17 + p19
t198,92 5 p1 − p4 + p8 − p10 + p14 + p17
t198,121 5 p1 − p4 + p8 − p9 + p14 + p19
t198,199 5 −p4 + p7 + 2p8 − p9 − p10 + p14 + p17
t198,243 5 −p4 + p7 + p8 − p9 + p14
t205,65 5 p1 − p4 + 2p8 − p9 − p10 + p14 + p17 + p19
t205,94 5 p1 − p4 + p8 − p10 + p14 + p17
t205,123 5 p1 − p4 + p8 − p9 + p14 + p19
t205,200 5 −p4 + p7 + 2p8 − p9 − p10 + p14 + p17
t205,244 5 −p4 + p7 + p8 − p9 + p14
t256,135 5 p1 − p4 + 2p8 − p9 − p10 + p14 + p17 + p19
t256,168 5 p1 − p4 + p8 − p10 + p14 + p17
t256,193 5 p1 − p4 + p8 − p9 + p14 + p19
t256,250 5 −p4 + p7 + 2p8 − p9 − p10 + p14 + p17
t256,273 5 −p4 + p7 + p8 − p9 + p14

Again, under the proposed algorithm, the first leading transition is chosen. Accordingly,
t89,8 = [p1 − p4 + 2p8 − p9 − p10 + p14 + p17 + p19] is chosen as the second control transition since it is
the first one identified from CGAM. After the controller is added into this system, three deadlock
markings are still left (i.e., 8 − 5 = 3). Therefore, we must run third iteration for recovering the other
deadlock markings.

In the third iteration, three deadlock markings and 276 legal markings are identified. Therefore,
the GCAM′s scale is: 3× 276× 19. Further, there are 81 sets of leading transitions identified and they
all can recover final three deadlock markings. Due to the space limitation of this paper, the author
just shows the first leading transition and it is [2p1 − p5 − p6 + 2p8 − p9 − p10 + p16 + p17 + p18 + p19].
Further, it is chosen as the third control transition. When the third control transition is added into the
system with previous two controllers the system is deadlock free. Most importantly, the total reachable
legal markings are 282. In other words, the three controllers recover the system. Figure 7 presents the
controlled system of Figure 6 when the above three controllers is added into Example 2.
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5.2. Comparison

In this subsection, the author will make comparison with all existing transition-based methods
based on above two classical examples. Firstly, we discuss the computational efficiency in Example 1.
From Table 8, the five methods, including the one proposed in this paper, all adopt control transition
to recover the system. It is obvious that the four methods from the literature [44,49,62] all need two
controllers to make system live and optimal. However, in this paper we just need one controller to
achieve the same optimal result. Therefore, in other words, the computation efficiency of our method
is the best among existing ones.

Table 8. Comparisons with existing literature in Example 1.

Policy The Number of
Control Transitions

The Numberof
Control Arcs

Total Number of
Reachable States

Huang et al. [44] 2 16 20
Row and Pan -1 [49] 2 16 20
Row and Pan -2 [49] 2 12 20

Row et al. [62] 2 12 20
This paper 1 6 20

In the following, we discuss the Example 2. In existing literature, there are eight methods adopting
control transition to solve the deadlock problem of Example 2. From Table 9, one can realize that
the computation efficiency of the proposed method is still best with respect to Chen et al.-2 [46] and
Dong et al. [47] since we all merely need just three control transitions and 25 control arcs to make
system recovered and optimal.
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Table 9. Comparisons with existing literature in Example 2.

Policy The Number of
Control Transitions

The Numberof
Control Arcs

Total Number of
Reachable States

Huang et al. [44] 7 69 282
Row and Pan [49] 6 53 282

Row et al. [62] 5 36 282
Bashir et al. [48] 4 14 282
Chen et al.-1 [46] 3 27 282
Chen et al.-2 [46] 3 25 282
Dong et al. [47] 3 25 282

This paper 3 25 282

6. Conclusions

In existing research, the deadlock prevention policy seems to be the best technology among all
strategies and is almost used to solve the FMS ’deadlock problems since it can check the deadlock
situation in advance. Almost all of the research adopts places based as system controllers regardless of
it they use structure methods or reachability graph analysis. However, all of them cannot make the
optimal control even if they claimed that they can obtain maximally permissive controllers. Based on
the above reason, in previous works [44,49,62], our teammates start to develop all kinds of control
transitions deadlock prevention policies to solve the deadlock problem of flexible manufacturing
systems. This research [44] is the first paper which adopted the concept of control transitions to
solve the deadlock problem. The advantage of these strategies is that it can obtain more live states
by adopting state equations. It is a pity that they cannot identify the optimal number of maximally
permissive markings of the reachability graph of one FMS in advance although it does recover the
deadlock system. In [49], the author proposed two different algorithms (i.e., “the all reachability
graph viewpoint” and “the first deadlock marking viewpoint”) to obtain recovery controllers. The
two algorithms can not only obtain the correct optimal number of maximal reachable states firstly,
but recovers all original illegal ones and makes them alive whatever these states initially belong to
deadlock or quasi-deadlock ones. Besides, the number of controllers becomes six. It is better than [44].
In [62], the developed method can identify the maximal saturated tokens of idle places of one deadlock
FMS in advance and still reserves all kinds of original markings. The really maximal permissive
number of markings of one system’s reachability graph can then be examined, once the saturated
number of tokens in idle places is identified. Furthermore, the number of controllers is less with
respect to [44,49]. Further, in this paper, the author adopts the developed CGAM to further reduce the
number of controllers and relative arcs. Undoubtedly, this new policy in this research is evident better
than almost existing literature. Preciously, the new policy is very simple and easy. In future work, the
author will propose a new algorithm to further reduce the number of control arcs to make the real best
one among existing literature.
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Appendix A

This paper contains some acronyms. For easy tracking, we show them in alphabetical order
as follows: CMTSI (crucial marking/transition-separation instances); CT (control transitions); DEDS
(discrete event dynamic system); DFZ (deadlock-free zone); DZ (deadlock zone); FBM (first bad
marking); FMS (flexible manufacturing systems); GCAM (generating and comparing aiding matrix);
ILPP (integer linear programming problem); IMFFP (improved MFFP); MFFP (the maximal number
of forbidding FBM problem); MTSI (marking transition separation instance); PI (place invariant);



Appl. Sci. 2020, 10, 2332 18 of 20

PN (Petri nets); RG (reachability graph); SGCAM (simplified GCAM); S3PR (the system of simple
sequential process with resources).
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