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Abstract: As oil prices continue to rise internationally, shipping costs are also increasing rapidly. In
order to reduce fuel costs, an economical shipping route must be determined by accurately predicting
the estimated arrival time of ships. A common method in the evaluation of ship speed involves
computing the total resistance of a ship using theoretical analysis; however, using theoretical equations
cannot be applied for most ships under various operating conditions. In this study, a machine learning
approach was proposed to predict ship speed over the ground using the automatic identification
system (AIS) and noon-report maritime weather data. To train and validate the developed model, the
AIS and marine weather data of the seventy-six vessels for a period one year were used. The model
accuracy result shows that the proposed data-driven model has a satisfactory capability to predict the
ship speed based on the chosen features.

Keywords: ship speed over the ground; machine learning; ship fuel consumption; decision tree
regression; ensemble methods

1. Introduction

Due to the increase in oil prices, shipping industries have been struggling to reduce fuel expenses.
According to Stopford [1], the cost of fuel oil consumption is nearly two-thirds of the overall voyage
costs and more than one-fourth of the total running costs of a ship. Because of this, shipping industries
have been striving to employ measures for fuel efficiency. Based on previous studies that examined
the route planning of ships, it was found that the economic efficiency of a ship can be managed by
choosing a suitable route with a consideration of the sea state (weather data) [2]. To find the proper
ship route, an accurate prediction of ship speed is necessary. Previous studies showed that ship speed
can be estimated by evaluating ship speed loss based on its resistance.

The total resistance of a ship can be obtained from the summation of resistance due to wind
and waves, the rudder effect, drift, water temperature, surface pressure, and salinity. The resistance
of a ship can also be estimated using analytical or numerical methods. Roh [3] proposed a method
of finding an economical shipping route to reduce fuel expenses by considering the resistance of a
ship using analytical equations from ISO 15016 (ISO, 2015) [4]. Kim et al. [5] estimate ship speed loss
using both 2-D and 3-D potential flow methods and computational fluid dynamics with an unsteady
Reynolds-averaged Navier–Stokes approach. They also compared simulation results with analytical
approaches to the ship resistance in calm water and with added resistance due to wind and irregular
waves corresponding to the Beaufort scale.
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However, due to the difficulty in modelling actual sea surfaces and estimating the total energy
system of a ship, inaccuracies are anticipated in the calculated results. To overcome this problem, a
data-driven model has been proposed. Yoo and Kim [6] investigated ship performance in terms of
ship speed and engine power using the Gaussian process and polynomial regression models for single
container ship data. Gan et al. [7] proposed an algorithm to build an improved multilayer perceptron
network for predicting long-term ship speed, by applying particle swarm optimization to optimize
the hidden neurons of the multilayer perceptron. Lui et al. [8] conducted a comparison study on a
recurrent neural network, back propagation neural network, and support vector regression model to
investigate the trajectory of a ship using a single ship in a certain area using automatic identification
system (AIS) sensor data.

Choosing the right machine learning model to evaluate ship speed and assess ship performance
while sailing is always challenging, especially when applied to big data [9–11]. Applying a simple
model, such as a linear regression, may not be precise enough [12]. In addition, it might be difficult to
determine the features necessary to train the model and to tune the hyperparameters [13,14]. This study
proposes a maritime data analysis framework based on AIS and marine weather data to predict
ship speed over the ground (SOG), which determines the most economical shipping route that can
reduce fuel expenses. This framework includes data acquisition, preprocessing such as denoising,
feature extraction, and model generation. To generate the model for SOG, various machine learning
regression techniques are employed, such as, linear regression (LR), polynomial regression, decision
tree regressors (DTRs), gradient boosting regressors (GBRs), extreme gradient boosting regressors
(XGBRs), random forest regressors (RFRs), and extra trees regressors (ETRs) where their parameters
are optimized through hyperparameter tuning. Using real ship route data, the computational time
and accuracy of each method were compared through model validation, and the most accurate and
efficient method was validated for various ship routes and ship types. The developed methodology in
this study is expected to be used to train the best models for the SOG prediction of ships, which aims
to track the performance of ships, and finally be used for actual ship route optimization purposes.

The remaining sections of this study are organized as follows. Section 2 describes the suggested
methodology which includes data pre-processing, formulation of the regression models, parameter
tuning methods, and model verifications. Section 3 explains the details of the case study and offers a
discussion of the results. Section 4 provides the overall conclusions of the study.

2. Material and Methodology

This section provides the details of data acquisition, a proper pre-processing method, and feature
selection for the given dataset. Details are also provided of the development and implementation of
various models following various modelling methodologies, the optimization of the hyperparameter of
the potential models, and finally, a comparison of the models to determine the most efficient modelling
method. A graphical depiction of the developed methodology is shown in Figure 1.

2.1. Data Acquisition

A 2018 AIS satellite data and noon-report weather data of 14 tanker and 62 cargo ships were
collected. The AIS data and noon-report marine weather data was provided by Lab021, and the AIS
data collected within an average of 3 min time intervals. The resolution of the weather data is 0.5
degrees in the latitude and longitude directions. In this study, the proposed framework was validated
by using five datasets with different types of routes and ships among the total data. The description of
both the AIS and weather data is shown in Table 1. The AIS data consist of static information, dynamic
information, and navigation information. Static information includes the identification numbers of the
ship such as its Maritime Mobile Service Identity (MMSI) and International Maritime Organization
(IMO) number, call sign and name, ship’s types and dimensions (dimension A-D), and location of the
electronic fixing device antenna. Since static information is rarely changed, the data are manually
updated. Dynamic data include operational information related to the navigation of a ship. The data
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are collected with some time interval (data time stamp) and automatically updated according to the
navigational status of the ship.
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Figure 1. Scheme of the suggested methodology.

Table 1. Parameters of the automatic identification system (AIS) and weather data.

No Parameter Unit Remark No Parameter Unit Remark

1 MMSI −

AIS data for static
info (Msg. type 5)

24 Total wave height m

Weather data
(0.5◦ resolution)

2 IMO number − 25 Total wave direction deg.

3 Call sign − 26 Total wave period sec

4 Name − 27 Wind wave height m

5 Type of ship − 28 Wind wave direction deg.

6~9 Dimension A~D m 29 Wind wave period sec

10 Electronic fixing device − 30 Swell wave height m

11 ETA sec 31 Swell wave direction deg.

12 Max draught m 32 Swell wave period sec

13 Msg type − 33 Wind UV m/s

14 Date time stamp KST 34 Wind VV m/s

15 MMSI −

AIS data for
dynamic info

(Msg. type 123)

35 Mean sea pressure level hPa

16 Latitude DMS 36 Pressure surface hPa

17 Longitude DMS 37 Ambient temperature ◦C

18 SOG knot 38 Sea surface salinity Psu

19 ROT deg/min 39 Sea surface temperature ◦C

20 COG deg. 40 Current UV m/s

21 True heading deg. 41 Current VV m/s

22 Navigational status −

23 Msg type −

Similarly, weather data considerably affect ship speed, such that it must include main features to
predict the performance of a ship (SOG). For example, as the hull of a vessel goes to the sea, it highly
induces resistance when it is sailing due to friction and wave-making [15]. Frictional resistance only
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occurs at the drawn part of the body, and thus, the loading condition of the ship and the roughness of
the hull have an effect on the hull resistance of a vessel. Waves also cause additional resistance due to
the pitch and heave motions of the vessel and the reflection of the short waves on the hull [16]. Since
wave resistance is continually varying over time and will be added to the total resistance obtained at
each specific location, it must be considered when predicting the performance of a ship over its voyage.
The total resistance of a vessel also depends on the properties of the water and is directly proportional
to the viscosity and density of the seawater [15]. A higher viscosity or a higher density of the water
will increase the resistance of the vessel. The viscosity and density of seawater depend on the salinity
and temperature of the water, which may change based on the body of water, location, and period of
the year. Likewise, the relative ship speed such as SOG is highly dependent on the ocean current [17].
Based on the studies of Chen [17] and Calvent [18], ship heading and speed are influenced by the
ocean current; these studies also suggested that the actual SOG is the vector summation of the current
and heading direction where UV and VV are the speeds for the longitudinal axis (u-axis) and lateral
axis (v-axis) directions of the earth, correspondingly. If the ocean current movement comes from the
heading direction, the ship sailing will be against it; but if it is in the opposite direction, the ocean
current will increase the SOG of the ship.

Among all features, some features related to the static and dynamic information are single-valued
and non-numeric features that have no effect on the results and are removed. The remaining features
are listed in Table 2, which also includes the length, width, gross-tonnage, and deadweight of the ship
which may have an effect on ship speed based on the information mentioned above. Next, because of
the potential existence of missing and outlier data, the identification of anomalies and undesirable
data points and pre-processing are needed in the following dataset acquisition stage.

Table 2. Chosen features.

Remark No. Features Units

Input Features

1 Max draught m

2 Course over the ground (COG) deg.

3 True heading deg.

4 Total wave height m

5 Total wave direction deg.

6 Total wave period sec

7 Wind wave height m

8 Wind wave direction deg.

9 Wind wave period sec

10 Swell wave height m

11 Swell wave direction deg.

12 Swell wave period sec

13 Wind UV m/sec

14 Wind VV m/sec

15 Pressure at mean sea level (MSL) hPa

16 Pressure surface hPa

17 Ambient temperature ◦C

18 Sea surface salinity Psu

19 Sea surface temperature ◦C

20 Current UV m/s

21 Current VV m/s

22 Ship length m

23 Ship width m

24 Dead weight tons

25 Gross tonnage tons

Output 1 SOG knots
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2.2. Data Preprocessing

In this section, the pre-processing for the acquired dataset is presented.

1. To investigate only the operating periods of the ship, this study extracted the “Underway using
engine” data from the Navigational Status features, which meant the mooring and anchoring
periods were rejected.

2. Shipping speed can decrease due to different sea state resistances; however, there is also a
probability that it may be reduced by the operator, especially around the port at the start and end
of the voyage. To reduce this kind of measurement error, this study discarded the data with less
than 5 knots of SOG, which is considered as maneuvering.

3. From the AIS data report [19], if the data value is not-available (missed data), there is a default
outlier value for each feature such as 102.2 for SOG, 511 for heading, 91 for latitude and 181 for
longitude [20]. Those values were observed in our data and used to discard the missed data.

4. The scatter plot of the features can be used to show that the data may have noise/outliers because
of the inconsistencies in the measurement of the sensors or human errors which must be rejected
before training the models. Z-score is a parametric outlier detection method for different numbers
of dimensional feature space [21]. However, this method assumed that the data had a Gaussian
distribution; hence, the outliers were considered to be distributed at the tails of the distribution,
which meant that the data point was far from the mean value. Before deciding a threshold that
we set as Zthr, the given data point xi was normalized as Zi using the following equation.

Zi =
xi − µ

σ
, (1)

where µ and σ are the mean and standard deviation of all xi
′s, respectively. An outlier is then a

data point that has an absolute value greater than or equal to Zthr:|Zi| ≥ Zthr.

Usually, the threshold value is set to ±3 [22]; however, our data is extremely non-linear and this
study only aims to remove extreme cases. Therefore, the study used a threshold value of ±5 for all
features to reject values which were extremely far from the mean value on both tails. Figures 2 and 3
show examples of the data distribution of SOG, including normal and outlier data, which are detected
using the Z-score.
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2.3. Feature Selection and Extraction

Feature selection was needed to remove unnecessary features. Before feature selection was
conducted, some features were converted to a more convenient format. For example, the data for wind
and current were collected in vector form, but for convenience, it was converted to a scalar form that
still well captures the information enclosed in the dataset. Wind and current speed was converted to
its magnitude and direction angles where the magnitude of speed was obtained using the equation
|V| = π

180 ×
√

u2 + v2, and the direction was calculated using θ = 180 + 180
π atan2(u, v).
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To remove unnecessary features, a high correlation filter was conducted. The definition of high
correlation filter [23] in this study is that, if the observed values of two input features are always the
same, it means that they represent the same entity. Thus, highly correlated variables are considered as
one variable. The result of the correlation matrix of 25 input features is shown in Figure 4. Pairs of
features with a correlation coefficient higher than 0.7 were taken as one, thereby reducing the number
of input features to 13. The acquired weather data of total wave (height, direction, and period) was
obtained from the square roots of the sum of wind and swell (height, direction, and period), and thus,
they were expected to have a high correlation. Since the ship COG is the actual direction of the vessels,
it is highly correlated with true heading. Gross tonnage is calculated by multiplying length, width,
and breadth, and thus, it is highly correlated the dimensions of the ship and with the dead weight,
which is the weight of everything aboard the ship. The final selected features are shown in Table 3,
as mentioned in Section 2.1 all the chosen features have an effect on the ship speed performance while
the ship is sailing.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 18 
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Table 3. Final selected features.

Remark No. Features Units

Input Features

1 Max draught m

2 COG deg.

3 Total wave height m

4 Total wave direction deg.

5 Total wave period sec

6 Wind speed m/sec

7 Wind speed m/sec

8 Pressure MSL hPa

9 Ambient temperature ◦C

10 Sea surface salinity Psu

11 Current speed m/s

12 Current speed m/s

13 Gross tonnage tons

Output 1 SOG knots

2.4. Prediction Models

The SOG value of a ship involves environmental disturbance, which is difficult to model using
conventional parametric approaches. In view of this complexity, this section describes the modeling
techniques and the general method followed in this study to build potential machine learning models
for ship speed prediction, such as DTR, and ensemble models, such as GBR, XGBR, RFR, and ETR.

2.4.1. Decision Tree Regressor

DTR is a non-parametric supervised learning regression method [24] in the form of a tree structure
with nodes and branches. In DTR, the features are partitioned into a rectangle space and a simple
model (tree) is trained for each feature. The models are learned using a training dataset on a continuous
range. Their output ends up being the mean value of the observations of training sets that are located
on the same node. Classification and Regression Trees (CART) is one of the most common methods for
tree-based regression methods. In CART, the feature space will be split into two regions after choosing
the optimal split point to obtain the best model fit. This will execute recursively until the stopping
rules are activated.

To develop the model, for a given n number of dataset samples and d number of features,
D

{
(xi, yi)

} (
|D| = n, xi ∈ Rd, yi ∈ R

)
the feature space is assumed to be split into K-number of regions,

called RK and the prediction value of the model is obtained from the average value of the observation
which lies in the kth region:

ŷi = ave(yi
∣∣∣xi ∈ Rk). (2)

The best ŷi can be obtained by minimizing the least square error of
∑(

yi − yi

)2
. Though optimal

ŷi values can be simply calculated, however, it is not easy to split the region. To overcome this, a
greedy algorithm is applied recursively to determine the optimal splitting nodes until the stopping
point is triggered. Usually, this depends on the hyperparameters and the difficulty of the fundamental
problem. The selectable hyperparameters are:

• The maximum depth of the tree (max_depth) which indicates how deep the built tree can be. The
deeper the tree, the more splits it has, and it captures more information about the data; however,
increasing depth could increase the computation time.
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• min_samples_split represents the minimum number of samples required to split an internal node.
This can vary between considering only one sample at each node to considering all of the samples
at each node. When this parameter is increased, the tree becomes more constrained as it has to
consider more samples at each node.

• The minimum number of samples required to exist at each leaf node (min_samples_leaf ). This
is similar to min_samples_splits, however, this describes the minimum number of samples at
the leaves.

• In addition, the number of features (max_features) to consider while searching for the best split
should be specified.

2.4.2. Ensemble Methods

The basic idea of the ensemble learning method is developing a prediction model by integrating a
number of simple models. The two most common ensemble learning methods are boosting [25] and
bagging [26].

Bagging is a method that integrates several individual base models into one to generate an
inclusive ensemble model. A new prediction model can be developed from separate prediction models
to form an ensemble, for instance, by averaging regression. Averaging individual models means
reducing the variance; and thus, bagging can be applied for a model with high variance and low bias.
As opposed to bagging, boosting is a common method to generate an ensemble model from a single
model such as, decision trees. It is a sequential technique that integrates a set of weak learners and
provides a more accurate model estimation. The boosting model produces strong models with low
bias. The new outcomes of the developed model have weights based on the earlier outputs of the
model. If the outputs are predicted properly, a smaller weight is assigned; otherwise, the assigned
weight will be higher.

Random Forest Regressor

RFR has been proposed by Breiman [27] and was developed based on the bagging technique.
To construct the RFR model, a number of decorrelated decision tree regressors (n_estimators) are
generated using the presented training dataset. The response of the RFR model is considered by
averaging the outcomes of individual decision trees:

ŷi(x) =
1
M

M∑
m=1

fm(xi) (3)

where M is the number of decision trees (n_estimators). To construct a decision tree, the method
uses a bootstrap replica of the training sample and the CART algorithm. An optimal split over a
subsample of features at each test node is obtained by searching a random subsample with the size
of the contender features. This means that a subsample without replacement is selected from the
contender features with the smallest sample size to split the node. In scikit-learn implementation,
similar to DTRs, the minimum number of samples required to split an internal node is controlled by a
min_samples_split parameter.

Extra Trees Regressor

The ETR algorithm develops an ensemble of unpruned regression trees based on the standard
top-down process. The difference between ETR and RFR is that the selected cut-points of the split
nodes in ETR are extremely random to grow the tree, in addition, ETR uses the whole training sample
instead of a bootstrap replica [28].

As for its numerical features, the splitting procedure of ETR has two basic parameters, which
are the number of features randomly chosen at each node and the minimum sample size for splitting a
node. To obtain the final result, ETR formulates the predictive models of the individual trees, as in
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RFR, and the predicted models are combined to produce the final prediction result, such as averaging
in regression problems. The basic hyperparameters are the number of features to govern the strength of
the feature selection procedure, the minimum sample size to strengthen the averaging of the outcome
noise, and the number of trees to strengthen the variance reduction of the ensemble model combination.

In a scikit-learn implementation, the hyperparameters are similar to those of DTR, with additional
information about the number of trees (n_estimators) in the forest. Usually, a higher number of trees
better trains the data. However, adding a lot of trees can slow down the training process considerably,
therefore a parametric search to find the optimal configuration is necessary.

Gradient Boosting Regressor

GBRs are based on the boosting meta-algorithm, which yields an estimation model in the form of
an ensemble of weak prediction models usually using decision trees [29]. GBRs construct an additive
model in a stage-wise fashion, and it allows the optimization of arbitrary differentiable loss functions.
To formulate the GBRs a tree ensemble model uses M additive functions to estimate the output.

ŷi(x) =
M∑

m=1

fm(xi), fm ∈ F (4)

where F denotes the function space which includes the whole regression trees F ={
f (x) = wq(x), w ∈ RT, q : Rd

→ T
}
. q denotes the structure of each tree that maps the corresponding

leaf index. T denotes the number of leaves in the tree. Each fm corresponds to an independent tree
structure q and leaf weight w. Unlike DTRs, each regression tree contains a continuous score on each
leaf, and here, w j represents the score on the jth leaf. The leaf weight is calculated by minimizing the
loss function:

L =
∑

i

l(ŷi, yi) +
1
2
λ

T∑
j=1

w2
j , (5)

where, l represents a differentiable loss function that measures the difference between the prediction
ŷi and the target yi. λ denotes a regularization constant value to penalizes the complexity of the
model, and the optimal w j can be obtained using a second-order Taylor series approximation of
Equation (6) [30].

w j =

∑
i∈I j

∂l(yi,ŷi)

∂(ŷi=0)∑
i∈I j

(
∂2l(yi,ŷi)

∂(ŷi=0)2

)
+ λ

, (6)

where I j is a dataset contained at a leaf j.
In scikit-learning implementation, a GBR also has the same main hyperparameters as a DTR with

the addition of n_estimotors and learning _rate which may help the model shrink the contribution of
each tree.

Extreme Gradient Boosting Regressor

XGBRs are an optimized distributed GBR, which are designed to be efficient, flexible, and
portable [31]. XGBR provides additional regularization hyperparameters as shown in Equation (7),
which can help reduce the chances of overfitting, decrease prediction variability and, therefore, improve
accuracy. The predicted output ŷi is obtained by minimizing the regulation function L:

L =
∑

i

l(ŷi, yi) +
∑

m
Ω( fm) , where Ω( f ) = γT +

1
2
λ‖w‖2 + α|w| (7)

Here, Ω represents the regularization parameter that penalizes the complexity of the model like
regression tree functions and smooth the final learned weights to avoid overfitting. T represents the
number of leaf nodes and w is the score of the leaf node. γ, λ, and α are used to define the level of



Appl. Sci. 2020, 10, 2325 10 of 17

regularization. α and λ also known as L1 and L2 regularization, respectively, have different influences
on weight; α inspires sparsity, encouraging the weight to be zero, while λ inspires the weight to be
small. γ is a commonly implemented pseudo-regularization hyperparameter known as a Lagrangian
multiplier which controls the complexity of a given tree. γ specifies the minimum loss reduction
required to make further partitions on a leaf node, which means that a higher value leads to fewer
splits. In addition to the use of a regularization term, predictor subsampling was used to prevent
overfitting [30].

The prediction process adds the results of each tree to obtain the final results in the XGBR model.
The parameters of each tree ( ft), which includes the structure of the tree and the scores obtained by each
leaf node, have to be determined. The additive training method adds the result of a tree to the model at
a given time. The predicted value ( ŷi

(t)) obtained in step t can be used to obtain the algorithm process:

ŷi
(t) =

M∑
m=1

fm(xi) = ŷi
(t−1) + ft(xi) (8)

In a scikit-learn implementation, the additional parameters in GBRs are γ, λ, and α, as mentioned
above. These regularization parameters limit how extreme the weights (or influence) of the leaves in a
tree can become.

2.5. Model Hyperparameter Tuning

As mentioned in Section 2.4, there are numerous hyperparameters in a model and the change
in hyperparameter values can affect the performance of the constructed model. Since the optimal
hyperparameter values are not identified at first, optimization should be carried out to select the
proper values for each model. The most commonly used method of optimization is the grid searching
method [32], which involves all the potential combinations of the chosen hyperparameters and a
profound assessment of each hyperparameter to choose the best combination. However, this brings
about a substantial cost because of the absolute number of combinations that may have to be evaluated
(particularly if the model has several tunable hyperparameters).

Another optimization method is the random search method [32]; in this case, all the hyperparameter
ranges are sampled randomly. This method also requires a long-running time because some time may
be spent evaluating unpromising areas of the search space.

A model-based method to find the minimum function is called Bayesian optimization [33]. It has
lately been used for hyperparameter tuning in machine learning. Bayesian optimization is an algorithm
that uses the Bayesian theorem to adaptively generate data for hyperparameters and find the optimum
hyperparameter values using surrogate models. It can attain a better performance on a test set with
less iterations than a random search or a grid search [10]. To avoid the overfitting of the model and
to ensure that the chosen hyperparameter combination values are near the optimal values, a k-fold
cross-validation [24] technique is applied. The training dataset was split into k- subsamples, which
means that the model will run k times iteratively, using k−1 subsamples to train the model and the rest
of the subsamples for testing. During each iteration of a combined hyperparameter setup, a number of
model accuracy results are obtained and averaged.

2.6. Model Validation

To ensure the accuracy of the constructed prediction model, most commonly used error measures
such as the coefficient of determination (R2), root mean square error (RMSE), and normalized root
mean square error (NRMSE) are used. R2 shows the relative errors of the model fitness and RMSE
shows the absolute error of the predicted model. In addition, the NRMSE gives the scale-free RMSE
result. The details of model accuracy are provided as follows.
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2.6.1. Coefficient of Determination (R2)

The R2 is a crucial measurement of model accuracy for regression analysis. It is expressed as the
proportion of the variance of the predicted dependent feature to the independent feature. R2 is defined
based on the sum of squares of residuals (SSres) and sum of squares total (SStot). SSres quantifies how far the
predicted values of the model are from the observed data, and SStot quantifies how far the observed
data are from the mean value. By changing the combinations of SStot and SSres values, the constructed
regression model can be effectively compared to the mean model. The equations for SStot and SSres are
given as:

SStot =
∑
i

(
yi − y

)2

SSres =
∑
i

(
yi − ŷi

)2 (9)

where yi is the observed data, y is the mean of the observed data, and ŷi is the predicted value of
the model.

The difference between SStot and SSres estimates the closeness of the regression model compared
to the mean model. Dividing their difference by SStot gives R2 which indicates the goodness of fit of
the model. The coefficient of determination defined as:

R2 = 1−
SSres

SStot
(10)

The scale of R2 ranges from 0 to 1; 0 indicates that the proposed model does not improve prediction
over the mean model, and 1 indicates perfect prediction.

2.6.2. Root mean square error (RMSE)

The RMSE is the square root of the variance of the individual differences called residual. It
indicates how close the values of the estimation model are with the observed data values. In general,
RMSE is an absolute measure of the fitness of a model, while R2 is a relative measure of fitness. A
lower value of RMSE denotes a better fit. If the developed model is for prediction purposes, RMSE is
an appropriate and accurate measure that can show how the responses are predicted. RMSE is defined
as follows:

RMSE =

√∑n
i=1(yi − ŷi)

2

n
(11)

where Xo represents the observed values and Xm represents the estimated model prediction values at
the ith data.

2.6.3. Normalized Root Mean Square Error (NRMSE)

NRMSE can be a better measure to evaluate model performance by normalizing the RMSE which
can be beneficial by making RMSE scale-free. For example, when converted to a percentage, it is easier
to determine the absolute fitness of the prediction model. The normalization of RMSE for a range of
observed data is defined as:

NRMSE =
RMSE

yi,max − yi,min
(12)

3. Model Development

3.1. Methodology Application

This section associates the data acquired from 14 tracks and 62 cargo ships and AIS data which
contain the dynamic and static data of the journey of the ship and noon-reports of marine weather
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data. Using the obtained data, this study aims to evaluate the performance of data-driven regression
models in the prediction of SOG.

For the transparency of the built-in studies which are shown in Figure 1, the particular procedure
followed to obtain the results was as follows:

1. The acquired dataset was loaded.
2. Unnecessary features such as static information in the AIS data were rejected.
3. Data where the ship is moored and anchored were identified and discarded.
4. Data where the ship has an SOG value of less than 5 knots were discarded.
5. The missed data were identified in the AIS data and discarded.
6. The outliers were discarded for some of the features based on the z-scores.
7. The key features were selected by applying feature selection methods such as a high

correlation filter.
8. The dataset was subjected to sampling (splitting) into a training and test set.
9. The models which can potentially estimate the target were listed down.
10. k-fold cross-validation was implemented for each model:

• Each model was trained using hyperparameter optimization by specifying the range of
the search space for each hyperparameter, Bayesian optimization was executed over the
specified search space, and the results were assessed.

• The model was trained using the whole training set after the optimal hyperparameters
were obtained.

• The results of the constructed model results were evaluated using a test set, and the
performance metrics were calculated.

11. The constructed models were evaluated using three accuracy measures (R2, RMSE, NRMSE) and
overall conclusions were drawn.

3.2. Results and Discussion

As explained in Section 2.3, 41 features were reduced to 13 major input features and one SOG
output feature, and the results of the descriptive statistics of the dataset after the pre-processing are
shown in Table 4.

To verify the validity of the potential models, regression analysis was carried out using the
full-scale ship operation data and the regression results using the training and testing dataset were
obtained. The classic approach splits the dataset into two randomized sets, those are, the training set
and the testing set. The split ratio for the two datasets is between 80/20 and 50/50, depending on how
large the dataset is. Here, the dataset was split 67% for training and 33% for testing data.

To clearly understand the relationship between the dependent and independent features, a Pearson
correlation analysis [34] was conducted using the training dataset. The correlation coefficient matrix
result of SOG to the other measured features is shown in Table 5. The correlation between SOG and the
other input factors is not high because the speed of the vessel is determined primarily by the torque
and rpm of the vessel; furthermore, other weather-related features have a relatively low correlation.
If data on the engines of the ships were collected, highly correlated features could have been included
as main features. However, AIS and weather data only are used because the shipping company did
not provide such engine data for security reasons, which often occurs in the shipping industry. Thus,
AIS and weather-related features are the only ones that can be used to predict the ship’s performance.
Although only weather and dynamic information are used, the SOG can be still accurately predicted
because engine rpm and torque are generally not volatile during the operation of vessels.
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Table 4. Descriptive statistics of dataset after pre-processing.

Features Mean Std. Min 25% 50% 75% Max

COG 172.652 98.804 0.0000 85.100 162.800 263.100 360.000
Total wave height 2.038 0.970 0.0002 1.421 1.964 2.573 6.759

Total wave direction 175.432 76.611 0.2243 122.246 181.793 224.441 359.720
Total wave period 8.371 2.293 0.8933 7.051 8.455 9.907 17.384

Pressure MSL 1016.53 7.08 980.06 1011.61 1016.41 1021.10 1044.42
Ambient temp 21.146 5.794 −8.0820 17.855 21.718 25.695 36.110

Sea surface salinity 35.034 1.148 28.7284 34.573 35.362 35.605 41.126
Wind speed 6.914 3.088 0.0874 4.693 6.747 8.820 22.836

Wind direction 157.916 93.067 0.3399 90.167 134.010 230.064 359.863
Current speed 0.318 0.225 0.0020 0.166 0.257 0.399 1.515

Current direction 160.511 89.145 0.8856 85.932 146.343 232.631 360.000
Maximum draught 12.747 5.278 0.0000 8.900 12.200 15.300 23.200

Gross tonnage 93137 67667 8231 38400 79560 199959 200679
SOG 12.107 1.882 5.000 11.000 12.100 13.200 22.200

Table 5. Correlation between input features and SOG.

Features Correlation Coefficient

Ambient temperature 0.218750
COG 0.206953

Gross tonnage 0.192829
Total wave height 0.161433

Maximum draught 0.161050
Total wave direction 0.124137

Wind speed 0.104488
Sea surface salinity 0.076264

Wind direction 0.062621
Total wave period 0.059107

Pressure MSL 0.042215
Current direction 0.039811

Current speed 0.002221

In addition, the result shows that current speed and direction have less effect compared to other
features, although the ship SOG is found to be influenced by the ocean current according to the
description in Section 2.1. This is because, as shown in Table 4, the maximum current speed in our
dataset is 1.515 knots and 75 % of the dataset has less than 0.399 knots, showing that our dataset does
not have a highly volatile range of current speed. Nevertheless, because it is known that ocean current
affects the performance of a ship, current speed and direction were included as input features to avoid
losing the effect of the ocean current.

Next, Bayesian optimization was performed to find the optimal hyperparameter values for each
model. The considered hyperparameters for each model and their range of values are given in Table 6
along with the optimal hyperparameter values. The training used a 10-fold cross-validation in order to
get a stable result.

To identify the optimal models and hyperparameters, R2 was assessed for each model produced
at each fold. To evaluate the post-training of the model, other accuracy measures were computed, as
explained in Section 2.6. The result of the model accuracy measurements was also compared with the
linear and 3rd order polynomial regression model using the same independent feature sets.

The overview of model accuracy is given in the plots of Figure 5. The three figures on the left
indicate the calculated R2 values through 10-fold cross validations using GBR, linear regression, and 3rd

order polynomials, respectively, and the figure on the right indicates the ones using XGBR, DTR, RFR,
and ETR. The line inside of the box shows the median or second quartile of the model at k-fold, the
top and bottom of the box show the first and third quartile, respectively. The whiskers indicated as
horizontal lines also show the lowest and the highest points of data within a 1.5 interquartile range of
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the lower and upper quartile, respectively. Consequently, data points beyond the whiskers are shown
individually as a hollow circle.

Table 6. Hyperparameters of models.

Model Hyperparameters Tuned Range Optimal Value

DTR

max_depth [1, 100] 60
min_samples_split [2, 10] 2
min_samples_leaf [1, 4] 1

max_features [1, 13] 6

RFR

n_estimators [1, 100] 89
max_depth [1, 100] 50

min_samples_split [2, 10] 2
min_samples_leaf [1, 4] 1

max_features [1, 13] 5

ETR

n_estimators [1, 100] 61
max_depth [1, 100] 39

min_samples_split [2, 10] 2
min_samples_leaf [1, 4] 1

max_features [1, 13] 8

GBR

n_estimators [1, 100] 50
learning_rate [0.01, 1] 0.1
max_depth [1, 50] 37

min_samples_split [2, 10] 2
min_samples_leaf [1, 4] 1

max_features [1, 13] 7

XGBR

n_estimators [1, 100] 57
learning_rate [0.01, 1] 0.2
max_depth [1, 50] 30
subsample [0.01, 0.8] 0.76

colsample_bytree [0.01, 0.8] 0.42
gamma [0, 20] 0.6
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Figure 5 shows that most of the machine learning models, except GBR, delivered a good result,
with a mean/median R2 of over 97%. The reason for the low accuracy of GBR is that it is very sensitive
to noise and hyperparameters compared to other methods, which results in its failure to generate a
generalized model for the test dataset by overfitting the actual training data with high nonlinearity.
ETR gave the most accurate result, closely followed by RFR. Table 7 shows the descriptive statistics of
the models with total computational time. From the four models, DTR had the least computational
time, showing that DTR-based ensemble models improve the accuracy of the single model. Relatively,
GBR, LR, and polynomial regression models had lower accuracies than other models. As for the
ensemble techniques, bagging provided a better result than boosting, but a single regressor (DTR) still
provided a better mean R2 with a slight increase in the variance. The DTR has an acceptable accuracy
with a low computational time, but it has larger variability in the performance of the estimated model
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than other boosting and bagging models. Accordingly, the DTR is not recommended for prediction of
the SOG.

Table 7. Descriptive statistics of model accuracy in 10-fold cross-validation.

LR Poly GBR XGBR DTR RFR ETR

Mean [%] 23.55 40.76 65.59 97.459 97.209 98.37 98.45
Std. [%] 0.102 0.202 0.2357 0.056 0.0866 0.055 0.057
Min [%] 23.38 40.45 65.07 97.37 97.10 98.26 98.36

Median [%] 23.55 40.72 65.70 97.46 97.19 98.38 98.44
Max [%] 23.70 40.99 65.78 97.53 97.37 98.45 98.54

Computational time [sec] 8 850 6880 1514 312 2804 1590

A further assessment of the performance of a model is through its achieved accuracies using the
testing dataset. From Table 8, it is observed that ETR performed slightly better than RFRs. In addition,
the computational time was almost half of that of the RFR. Furthermore, the R2 of XGBR and DTR
even increased to approximately 96.98% and 96.46%, respectively. Finally, it is important to note that
the investigation was executed using a computer with the following specifications: Windows 10 with
64-bit Operating System and x64-based processor, Intel(R) Xeon(R) CPU E3-123 v3 @3.30GHz processor,
and 32.0 GB installed memory (RAM). By far, the computational time of DTR is better than the others
after LR.

Table 8. Model performance for testing dataset.

Model R2 RMSE NRMSE Computational time [sec]

GBR 0.6858 1.0608 0.0617 908
XGBR 0.9698 0.3287 0.0191 257
DTR 0.9646 0.3559 0.0207 52
RFR 0.9831 0.2464 0.0143 489
ETR 0.9847 0.2340 0.0136 253
LR 0.2379 1.6522 0.0961 1

3rd order Polynomial 0.4008 1.4778 0.0859 120

In general, the ETR model has shown better accuracy than the other models. In addition,
its computational time is relatively acceptable. To validate the consistency of the ETR model for
different ship routes and ship types, it was tested by extracting different ship data as a testing dataset.
As shown in Table 9, the performance of the ETR model was consistent for two tankers and three cargo
ships with various ship routes, and thus, the ETR model is still valid for predicting the SOG for various
ship data.

Table 9. Extra trees regressor (ETR) models performance for a single route of different vessels.

Vessel Name Vessel Type Route R2 RMSE NRMSE Data Size

A Tanker Chiba, JP to Townsville, AUS 0.9845 0.0609 0.0077 2644
B Tanker Burnie, AUS to Yokkaichi, JP 0.9734 0.1506 0.0206 3351
C Cargo Shibushi to Vancouver, CAN 0.9827 0.1178 0.0127 4481
D Cargo Marsden PT. to Singapore 0.9881 0.0543 0.0106 3004

E Cargo Westshore CAN, to
Gwangyang. S. KOR 0.9821 0.1038 0.0127 3014

4. Conclusions

This study proposed a data-driven methodology for the prediction of the SOG of a ship while
sailing using the AIS data and noon-report marine weather data. The main findings of this study are
as follows: The developed models can accurately estimate the SOG of the ships sailing under different
weather conditions, load conditions, draughts, and sailing distance/direction; the results also showed
that linear regression and the polynomial model gives inaccurate prediction results for SOG because
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of the highly nonlinear tendency of SOG with time; using noon-report weather data and AIS data,
various ensemble models achieved model accuracies of more than 96% as given by the R2 value even
considering the random effects of SOG; applying hyperparameter optimization may also increase and
stabilize the accuracy of a model; and ETR, which is one of the bagging ensemble models, yielded high
accuracy with low computational time to predict the SOG.

The suggested methodology was used for the real data with different ship types and routes,
proving that this methodology can be applied to essentially for any types of vessel. In addition, while
the findings of this study are expected to be used for route optimization purposes, this methodology
can also be used to create models that will help the performance degradation of track vessels, and the
optimization of shipping operations.
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