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Abstract: This paper presents the design of a linear quadratic analog tracker (LQAT) based on
the observer–Kalman-filter identification (OKID) method and the design of a modified functional
observer-based equivalent input disturbance (EID) estimator for unknown square–non-square singular
analog systems with unknown input and output disturbances. First, an equivalent mathematical
model of the singular analog system is presented to simulate the time response of continuous-time
linear singular analog systems to arbitrary inputs via the model conversion method. Then, for the
unknown singular analog system, it constructs a linear quadratic analog tracker with state feedback and
feed-forward gains based on the off-line OKID method. Furthermore, it extends the design methodology
of the EID estimator for strictly proper regular systems with unknown matched–mismatched input and
output disturbances to proper regular systems. It is important to mention that the newly developed
modified functional observer for proper systems is used to estimate the unknown EID of singular
analog systems and that the constraints on the dimensions of unknown disturbances can be eliminated
by using the newly proposed EID estimation method. The contributions of this paper can be listed
as follows: (1) based on both the OKID method and the discrete-to-continuous model conversion,
the simulation of the time responses of the continuous-time linear singular models (which are not
feasible using existing MATLAB toolboxes) become feasible; (2) for effective control of the unknown
singular analog system, an off-line OKID method is proposed to design an LQAT with state feedback
and feed-forward gains; and (3) based on the newly developed modified functional observer for the
reduced-order proper regular system, the original EID estimator in the literature is newly extended
to estimate the EID from the unknown strictly proper singular analog system, without the original
dimensional constraints of the disturbances. It is important to mention that the disturbances of interest
can be unknown matched–mismatched input and output disturbances.

Keywords: singular systems; generalized Riccati equation; input–output direct feed-through term;
functional observer; observer–Kalman-filter identification; equivalent input disturbance (EID);
disturbance estimator
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1. Introduction

Singular analog system models naturally arise in describing large-scale (complex) systems, such
as interconnected power systems. In general, a large class of interconnected state-variable subsystems
is described as a singular system, even though the entitled state–space representation may not be
available. Practical singular systems usually comprise dynamic and non-dynamic subsystems, which
are mathematically represented by a combination of differential and algebraic equations. The complex
features of singular systems (also known as descriptor systems) often make it difficult to find numerical
and analytical solutions for such systems, especially for control tasks.

The numerically stable and computationally fast matrix sign function-based method has been
used to solve the regulator-based generalized algebraic Riccati equation for optimal control of a linear
continuous-time singular system [1]. A technique was developed in [2] to decompose the singular
system into a reduced-order regular subsystem and a non-dynamic subsystem. Then, an optimal
tracker was developed in [3] based on the equivalent model of the linear singular system. Nevertheless,
an approach for solving the tracker-based generalized algebraic Riccati equation for the singular system
has not yet been developed in the literature. It was proven in [4] that the tracker-based generalized
algebraic Riccati equation cannot be directly solved for a singular system, even with an impulsive
model-free and strictly proper transfer function. To overcome this issue, in [4] the singular system
is converted into an equivalent regular model with a direct transmission term from input to output.
Based on this equivalent proper model, the approach for solving the regulator-based generalized
algebraic Riccati equation can then be extended to solve the tracker-based generalized algebraic Riccati
equation. In other words, the optimal control methodology for finding the linear quadratic regulator
via the matrix sign function [1] can be directly extended to find the optimal tracker for singular systems.

The unknown input problem (UIO) involves the estimation of the state of a dynamic system subject
to unknown input excitations [5]. Many published works focus on the issue of simultaneously estimating
the system state and the unknown input vectors in the presence of unknown disturbances. Specifically,
UIOs are involved in practical engineering systems, such as diagnosis and fault detection [6,7], secure
communication [8,9], or systems where the measurement of the inputs is either practically impossible
or too expensive [10,11], while an equivalent input observer is often required to estimate the exerting
force or torque of a robotic system or the cutting force of a machine tool [11]. Other engineering
systems, such as industrial biological processes, wastewater treatment processes, and fuel cell stack
systems, can be found in [11] and references therein.

For a strictly proper system, different approaches are given in [5,12,13] to simultaneously estimate
the state and unknown input disturbances. However, they are restricted to particular assumptions.
For example, it is assumed in [5] that the number of independent signals l in the unknown input
disturbance d(t) must be no greater than the output dimension and that the matrix of unknown
inputs Gn×l (given as d(t)n×1 = Gn×ld(t)l×1) and some pre-specified rank conditions must be known.
Notice that it is more suitable to estimate the net equivalent input disturbance (EID) of the unknown
mismatched input disturbance than to estimate the disturbance itself, because the control input is
required to suppress the negative effects of the mismatched input disturbance. Regardless, whenever
the output number p < l or the input number m < l, it is impossible to separately estimate the unknown
mismatched input disturbance. As an alternative to separately estimating input or output disturbances,
as in most of the existing UIO design approaches presented recently, in this paper it is proposed to
estimate the net EID of the system.

Based on the proof of the existence of EID for strictly proper systems [14], an EID is developed
in Section 3 of this paper as an extension to the case of proper continuous-time systems. Given a
controllable and observable proper system with all stable zeros and unknown mismatched independent
input disturbances di(t) = Gidi(t) and output disturbances do(t) = Godo(t), an EID de(t) exists that
enters the plant through the control input channel B and the input–output direct feedthrough term D,
such that the two systems—one with {di(t) and do(t)} and the other with the matched disturbances
{Bde(t) and Dde(t)}—share the same outputs but differ in their states [15,16].
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The simultaneous estimation of the system state and the EID of a strictly proper regular system
subject to mismatch-dependent input and output disturbances was discussed in [11]. Based on the
advanced functional observer originally presented in [10] for strictly proper regular systems, a modified
functional observer for regular systems with an input–output direct feedthrough term is developed in
Section 4 to estimate the net EID under the effects of disturbances. The EID method in conjunction with
the modified functional observer can deal with proper systems with mismatch and independent input
and output disturbances, i.e., di(t) = Gidi(t) and do(t) = Godo(t), where Gi ∈ <

n×li and Go ∈ <
p×lo are

unknown and there is no additional constraint for p ≥ l = max(li, lo).
The main contributions of this paper can be briefly discussed as follows. Consider a practical

singular analog system in which the input and output are measurable. From a theoretical point
of view, no existing MATLAB toolbox can be used to simulate the states of the singular analog
system to construct the outputs, even if a mathematical model of the singular analog system
(Er, Ar, Br, Cr) is available, due to the singular matrix Er in the term Er

.
x(t). In addition, an approach

for directly solving the tracker-based generalized algebraic Riccati equation for the singular analog
system (Er, Ar, Br, Cr) has not yet been developed in the literature. Using the proposed equivalent
reduced-order proper regular model, these issues can be indirectly overcome, and also the controller
can be designed. Now, since no mathematical models exist for unknown singular analog systems,
the off-line observer–Kalman-filter identification (OKID) method [17] can be applied to construct the
aforementioned equivalent reduced-order proper regular model for the singular system. As a result, in
this paper, such a method is utilized to construct the newly developed modified functional observer
(using the system output to estimate the integrated control input and estimated EID) and the EID
estimator (to estimate the EID), such that the desired control input can consequently be determined.
The developed equivalent system can also be utilized to directly realize the observer, and the control
objective is then to estimate and feed the EID back through the control input channels to counteract the
negative effects induced by the input and output disturbances, without any of the aforementioned
constraints on the disturbances. This paper also provides more details on improving the disturbance
rejection performance based on a net EID estimation approach for a system with li unknown input
disturbances and lo output disturbances imposed simultaneously, where li, lo > p, with p representing
the number of outputs.

The rest of this paper is organized as follows. Preliminary findings of the optimal linear quadratic
tracker design for singular systems and the motivation of this paper are given in Section 2. The properties
of the EID associated with the proof for a proper continuous-time system with unknown input and
output disturbances are given in Section 3. Section 4 presents the modified linear functional observer
and the EID estimator, while Section 5 explains the design procedure for an OKID-based linear quadratic
analog tracker (LQAT) associated with the modified functional observer for unknown non-square
continuous-time singular systems. Illustrative examples are given in Section 6 to show the superiority
of the proposed method. Lastly, conclusions are presented in Section 7.

2. Preliminaries and Motivation

Model Conversion for Singular Systems

Consider a known linear continuous-time singular system described by

Er
.
xc(t) = Arxc(t) + Bruc(t), (1a)

yc(t) = Crxc(t), (1b)

where xc(t) ∈ <n, u(t) ∈ <m, and yc(t) ∈ <p are the state, control input, and measured output vectors
of the system, respectively; Ar ∈ <

n×n and Br ∈ <
n×m are real constant matrices; and Er ∈ <

n×n

is a singular matrix. For simplicity, it is assumed here that the system has no impulsive modes in
the fast state. For a singular system with impulsive modes in the fast state, the methodology for
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eliminating the impulsive modes can be found in [2]. Through a series of coordinate transforms, the
impulsive mode-free singular system can be decomposed into a reduced-order regular subsystem and
a non-dynamic subsystem [2], as[

Iξ 0
0 0

] .
x̂c,s(t).
x̂c, f (t)

 = [
Âs 0
0 In−ξ

][
x̂c,s(t)
x̂c, f (t)

]
+

[
B̂s

B̂ f

]
uc(t), (2a)

yc(t) =
[
Ĉs Ĉ f

][ x̂c,s(t)
x̂c, f (t)

]
, (2b)

where x̂c, f (t) = −B̂ f uc(t). Then, the corresponding reduced-order regular system with an input–output
feedthrough term can be described by

.
x̂c,s(t) = Âsx̂c,s(t) + B̂suc(t), (3a)

yc(t) = Ĉsx̂c,s(t) + (−Ĉ f B̂ f )uc(t) = Ĉsx̂c,s(t) + D̂suc(t), (3b)

where D̂s = −Ĉ f B̂ f , Âs ∈ <
ξ×ξ,B̂s ∈ <

ξ×m,Ĉs ∈ <
p×ξ, and D̂s ∈ <

p×m are the state, input, output, and
direct feedthrough matrices, respectively; x̂c,s(t) ∈ <ξ is the state vector, uc(t) ∈ <m is the control
input, and yc(t) ∈ <p is the measurable output of the system at time t.

For this equivalent model, let the associated cost function to be minimized be

J(yc(t), uc(t)) =
1
2

∫ t f

0

{
[yc(t) − r(t)]TQc[yc(t) − r(t)] + uc(t)

TRcuc(t)
}
dt, (4)

where Qc is a p × p positive definite or positive semi-definite real symmetric matrix, Rc is an m ×m
positive definite real symmetric matrix, the reference input r(t) denotes the pre-specified output
trajectory, and the final index is finite, i.e., t f < ∞. Solving Equation (4) yields the continuous-time
state feedback control law [18]

uc(t) = −Kcx̂c,s(t) −R
−1
c

[(
Ĉs − D̂sKc

)(
Âs − B̂sKc

)−1
B̂s + D̂s

]T
Qcr(t)

= −Kcx̂c,s(t) + Ecr(t),
(5)

where

Kc = R
−1
c

(
B̂T

s Ps + NT
s

)
, Ec = −R

−1
c

[(
Ĉs − D̂sKc

)(
Âs − B̂sKc

)−1
B̂s + D̂s

]T
Qc,

Rc = Rc + D̂T
s QcD̂s, Ns = ĈT

s QcD̂s,

and Ps > 0 satisfies the algebraic Riccati equation

ÂT
s Ps + PsÂs −

(
PsB̂s + Ns

)
R
−1
c

(
B̂T

s Ps + NT
s

)
+ ĈT

s QcĈs = 0. (6)

Our previous work [4] shows that theoretically, the tracker-design-oriented algebraic Riccati
equation (ARE) for a regular system can be directly generalized for (i) a singular system in terms
of (Er, Ar, Br, Cr) in Equations (1a) and (1b); (ii) its equivalent model in terms of (Ê, Â, B̂, Ĉ),
with a non-symmetric singular matrix Ê for the singular system with impulsive modes, where

Ê =

[
Iξ 0
0 Ê f

]
n×n

, Â =

[
Âs 0
0 In−ξ

]
n×n

, B̂ =

[
B̂s

B̂ f

]
n×m

, Ĉ =
[

Ĉs Ĉ f
]
p×n

; or (iii) its equivalent

model in terms of (Ê, Â, B̂, Ĉ), with a symmetric singular matrix Ê for the impulsive-mode-free

singular system, where Ê =

[
Iξ 0
0 0n−ξ

]
n×n

. It is worthwhile noting that if Ĉ f , 0, then the generalized

Riccati equation for a singular system might have no solution P ∈ <n×n, even if Qc ∈ <
p×p, and

Rc ∈ <
m×m are chosen as positive definite matrices.
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For the known linear continuous-time singular system described in Equations (1a) and (1b),
through a series of coordinate transforms, the impulsive-mode-free singular system can be decomposed
into a reduced-order regular subsystem with a direct input–output feedthrough term D̂s, described in
Equations (3a) and (3b). As a result, the corresponding Riccati equation in Equation (6) is solvable;
consequently, an optimal tracker for the singular system can be designed. As for the unknown linear
singular system, the aforementioned series of transforms are not available. To overcome this issue, we
are motivated to take the merits of the OKID method to directly identify the equivalent discrete-time
reduced-order regular subsystem with a direct input–output feedthrough term in the general coordinate
form for the impulsive mode-free singular system. Then, we obtain the corresponding continuous-time
model through the discrete-to-continuous model conversion. With this approach, the aforementioned
series of transforms can be avoided, even for the given linear continuous-time singular system.

For the unknown square–non-square singular sampled data systems subject to unknown input
and output disturbances, a new functional observer-based discrete equivalent input disturbance (EID)
estimator was presented in our previous work [4]. The main objective of this paper is to propose a new
functional observer-based EID estimator for the unknown square–non-square singular continuous-time
systems subject to unknown input and output disturbances.

3. Property of the EID Estimator

Consider a continuous-time controllable and observable system with stable zeros and unknown
disturbances, described by

.
xc(t) = Axc(t) + Buc(t) + Gidi(t), (7a)

yc(t) = Cxc(t) + Duc(t) + Godo(t), (7b)

where xc(t) ∈ <n, uc(t) ∈ <m, and yc(t) ∈ <p, respectively, represent the state, input, and output
vectors; A ∈ <n×n, B ∈ <n×m, C ∈ <p×n, and D ∈ <p×m are known matrices; di(t) ∈ <li and do(t) ∈ <lo

are the mismatched input and output disturbance vectors, respectively; Gi ∈ <
n×li and Go ∈ <

p×lo are
matrices. Here, Gi, Go, di(t) and do(t) are assumed unknown. Let matrices B and C be full column
and full row ranks, respectively, and rank(CB) = p ≤ m ≤ n. There is no constraint on the number of
unknown inputs in di(t), i.e., there may be more unknown inputs than control inputs and measured
outputs, and also the disturbances may be state-dependent. Section 9.5 in [19] presents a discussion
on the effects of state-dependent uncertainties appearing in the process model as either additive or
multiplicative disturbances (which can be included in a sensitivity analysis of combined estimation
and control) and the associated algorithms. Additionally, other robust control approaches concerning
state-dependent disturbances can be found in [11,20].

It is well-known that it is difficult or even impossible to estimate the components of di(t) and do(t)
in a precise manner. It is also known that in most disturbed servo systems, the unknown inputs are
estimated for disturbance rejection purposes to maintain the desired performance. An alternative is to
assume the existence of a net EID, de(t) ∈ Rm, of the unknown disturbances di(t) and do(t) entering the
plant through the control input channel B and the direct feedthrough term D, meaning Equations (7a)
and (7b) can be expressed as

.
xe(t) = Axe(t) + B[uc(t) + de(t)], (8a)

ye(t) = Cxe(t) + D[uc(t) + de(t)], (8b)

where xe(t) ∈ <n and ye(t) ∈ <p are the equivalent state and output vectors, respectively, with
xe(0) = xc(0). Notice that xe(t) , xc(t) for t > 0, because in general Bde(t) , Gidi(t), even for do(t) = 0.

Similar to the case of a strictly proper system (i.e., no Duc(t) term) [14], the definition of net
EID of an input–output feedthrough system with both mismatched input and output disturbances is
analogous to the definition given in [4].
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Definition 1. Let the control inputs of Equations (7a) and (7b), (8a) and (8b) be uc(t) = 0; let the output
of Equations (7a) and (7b) with mismatched disturbances Gidi(t) and Godo(t) be yc(t); and let the output of
Equations (8a) and (8b) with matched disturbance de(t) be ye(t). The disturbance de(t) is known as the net
equivalent input disturbance (EID) of the mismatched disturbances Gidi(t) and Godo(t) if ye(t) = yc(t), with
xe(0) = xc(0) for t ≥ 0.

It is important to remark that ye(t) = yc(t) does not imply that xe(t) = xc(t), because given yc(t)
and the output matrix C ∈ <p×n with p < n, yc(t) will be equal to Ccxc(t) for an infinite number of
xc(t). Now, since Equations (8a) and (8b) can be used as equivalents of Equations (7a) and (7b), the
disturbance rejection of the servo problem can be formulated as an estimate and can feed de(t) back to
the input terminal to cancel the negative effects of Gidi(t) and Godo(t).

On the other hand, the proof of the theoretical guarantee of the existence of the meaningful net
EID is analogous to the proof presented in [4], and hence it is omitted here.

4. Modified Functional Observer with Unknown Input

Considering an unknown non-square continuous-time impulsive-mode-free singular system with
more control input channels than output channels and all stable control zeros, it is desirable to propose
a high-performance optimal analog state estimate tracker with an EID estimator for the system, with
unknown matched and mismatched input and output disturbances, as shown in Figure 1. The newly
developed modified functional observer uses the system output to estimate the integrated control
input and estimated EID, while the EID estimator estimates the EID such that the desired control
input can be determined consequently. It is worthwhile noting that for effective determination of
the EID estimator in the conventional method, it is required to have the known control input vector
with unknown disturbances. To overcome this constraint problem, in this paper the conventional
EID estimator is extended for a system with both an unknown control input vector and unknown
disturbances. Then, the aforementioned mechanism can be implemented as depicted in Figure 1.

In Chapter 7 of [11], the system of interest has dependent input and output disturbances, where
the same disturbance d(t) appears in both input and output terminals, and has no direct feedthrough
term, as below

.
xc(t) = Axc(t) + Bu(t) + Gid(t), (9a)

yc(t) = Cxc(t) + God(t), (9b)

where xc(t) ∈ <n, yc(t) ∈ <p, and u(t) ∈ <m are the state, measured output, and input vectors,
respectively; and A ∈ <n×n, B ∈ <n×m, C ∈ <p×n, Gi ∈ <

n×l, Go ∈ <
p×l are known real constant

matrices. The unknown disturbance d(t) ∈ <l directly affects both the state and output of the system,
and it is also assumed that rank(C) = p and p ≥ l.

Based on the advanced functional observer originally presented for strictly proper systems, in
this section, a modified functional observer for a system with an input–output direct feedthrough
term is derived to estimate the EID, which can be used to deal with proper systems with mismatch
and independent input and output disturbances, i.e., di(t) = Gidi(t) and do(t) = Godo(t), where
Gi ∈ <

n×li and Go ∈ <
p×lo are assumed to be unknown and there is no more constraint for p ≥ l =

max(li, lo).

4.1. Problem Statement

Consider a linear proper system given as

.
xc(t) = Axc(t) + Bu f (t), (10a)

yc(t) = Cxc(t) + Du f (t), (10b)
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where A ∈ <n×n, B ∈ <n×m, C ∈ <p×n, and D ∈ <p×m are known matrices, and the vector u f (t) =
uc(t) + de(t) ∈ <m is the unknown input vector, which affects both the state and the output of the
system. It is assumed that rank(C) = p and p ≥ m. The objective of the reduced-order linear functional
observer is to estimate a linear combination of the state or the unknown input vector.

We define the augmented state vector ω(t) =
[

xT
e (t) uT

f (t)
]T
∈ <

(n+m) such that Equations
(10a) and (10b) can be expressed as

Eω
.
ω(t) = Aωω(t), (11a)

yc(t) = Cωω(t), (11b)

where Eω =

[
In×n 0n×m

0m×n 0m×m

]
∈ <

(n+m)×(n+m), Aω =

[
A B

0m×n 0m×m

]
∈ <

(n+m)×(n+m), and Cω =[
C D

]
∈ <

p×(n+m). We define the functional state vector z(t) ∈ <κ that must be reconstructed (or
estimated) as

z(t) = Fω(t) =
[

F1 0
0 F2

][
xe(t)
u f (t)

]
, (12)

where F1 ∈ <
(κ−m)×n, F2 ∈ <

m×m, and F ∈ <κ×(n+m) are given constant matrices that satisfy

rank(F) = κ and rank
[

Cω
F

]
= (p + κ) ≤ (n + m).

A reduced-order observer will be now proposed to estimate z(t). Consider the observer structure
of order κ

.
w(t) = Nw(t) + Jyc(t), (13a)

ẑ(t) = w(t) + Qyc(t), (13b)

for Equations (10a) and (10b), where w(t) ∈ <κ, ẑ(t) is the estimate of z(t), and matrices N, J and Q
should be determined, such that ẑ(t) converges asymptotically to z(t), i.e., ẑ(t)→ z(t) , as t→∞ .

With the linear functional state vector defined in Equation (12), the proposed observer in Equations
(14a) and (14b) offers great flexibility in estimating any linear combination of the state and the unknown
input of the system in Equations (10a) and (10b). For instance, a linear combination of only the
unknown input u f (t) or only the states to be estimated can be used, by setting F1 = 0(κ−m)×n or F2 = 0m,

respectively. In other words, it can be assumed that F =

[
F1 0
0 Im

]
, where rank(F1) = κ−m is used to

fulfill the rank restriction of F. Thus, a linear combination of the estimated state x̂e(t) and the estimated
unknown input û f (t) can be obtained simultaneously. Consequently

ẑ(t) = Fω̂(t) =
[

F1x̂e(t)
û f (t)

]
(14)

and
û f (t) = ûc(t) + d̂e(t) =

[
0m×(κ−m) Im

]
ẑ(t), (15)

which implies d̂e(t) =
[

0m×(κ−m) Im
]
ẑ(t) − ûc(t) =

[
0m×(κ−m) Im

]
ẑ(t) − uc(t).

It is worthwhile to notice that u f (t) = uc(t) + de(t) = −Kcx̂e(t) + Ecr(t), where Kc and Ec are
determined based on [18] and the system is fictitiously considered to be disturbance-free, since the
net EID de(t) of the unknown input and output disturbances as well as the tracking errors have been
theoretically merged to the control input terminal. To determine the control input uc(t), it is required
to first estimate the EID d̂e(t). However, to obtain the estimated EID d̂e(t), it is required to first obtain
the control input uc(t). To overcome this causality problem, we approximate the control input as
uc(t) � ûc(t) = û f (t)− d̂e(t), which implies d̂e(t) = û f (t)− uc(t) =

[
0m×(κ−m) Im

]
ẑ(t)− uc(t), where

û f (t) =
[

0m×(κ−m) Im
]
ẑ(t). The aforementioned causality mechanism can then be implemented as

depicted in Figure 1.
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Notice that the augmented state vectorω(t) = [ xT
e (t) dT(t) ]

T
∈ <

(n+l) in the original functional

observer [11] is now modified to ω(t) = [ xT
e (t) uT

f (t) ]
T
∈ <

(n+m) in this paper. This proposed
modified functional observer compensates for the system disturbance, even if Gi and Go are unknown.
Since in models of the real physical system Gi and Go are usually unknown, it is more realistic to
estimate the equivalent unknown input instead of the disturbances directly.

4.2. Existence Conditions

As the functions to be utilized have been defined, this section presents the reconstruction of a
linear function problem. Assuming that any unobservable state can be eliminated, by defining an
observer state vector of a lower dimension, the order κ of the observer defined in Equations (13a) and
(13b) should be less than or equal to the reduced-order state observer, i.e., κ ≤ n + m− p.

In Equation (13b), the output ẑ(t) provides an asymptotic estimate of Fω(t) if

lim
t→∞

[ẑ(t) − Fω(t)] = 0. (16)

Given a full-row rank matrix L ∈ <κ×(n+m), the two error vectors ε(t) ∈ <κ and e(t) ∈ <κ can be
described by

ε(t) = w(t) −LEωω(t), (17)

e(t) = ẑ(t) − z(t), (18)

where w(t) in Equation (13a) estimates a different linear combination of ω(t). Then,

.
ε(t) =

.
w(t) −LEω

.
ω(t) = (Nw(t) + Jyc(t)) −L

(
Aωω(t)

)
= Nw(t) −NLEωω(t) + NLEωω(t) + JCωω(t) −LAωω(t)
= Nε(t) + (NLEω + JCω −LAω)ω(t).

(19)

e(t) = ẑ(t) − z(t) = ẑ(t) − Fω(t) = (w(t) + Qyc(t)) − Fω(t)
= w(t) −LEωω(t) +LEωω(t) + QCωω(t) − Fω(t)
= ε(t) + (LEω + QCω − F)ω(t).

(20)

This introduces the following theorem.

Theorem 1. From Equations (19) and (20), ẑ(t) in (13b) is an asymptotic estimate of z(t) if matrixL ∈ <κ×(n+m)

exists, such that the following equations

NLEω + JCω −LAω = 0, N is Hurwitz (21)

and
LEω + QCω − F = 0 (22)

are satisfied [11]. Matrices N, J, and Q are shown in Equations (13a) and (13b); and Eω is given in Equation
(11a). Upon satisfaction of the conditions in Equations (21) and (22), the dynamic equation in Equation (19) can
be reduced to

.
ε(t) = Nε(t), which implies that ε(t)→ 0 as t→∞, and consequently e(t)→ 0 .

To derive the parameters of the linear functional observer (Equations (13a) and (13b)), it is
necessary to solve matrix Equations (21) and (22) for the unknown matrices N(Hurwitz), L, Q, and
J. The following theorem provides necessary and sufficient conditions for the solvability of matrix
Equations (21) and (22), while ensuring that matrix N is a Hurwitz matrix

Theorem 2. Matrix Equations (21) and (22) are completely solvable with, N being a Hurwitz matrix, only if
the following two conditions hold:
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Condition 1.

rank



FAω F
CωAω Cω

Cω 0
0 Eω
F 0


= rank


CωAω Cω

Cω 0
0 Eω
F 0

. (23)

Condition 2.

rank


sF− FAω −F

CωAω Cω
Cω 0
0 Eω

 = rank


CωAω Cω

Cω 0
0 Eω
F 0

 ∀s ∈ C, <(s) ≥ 0. (24)

Proof. The part of the proof related to the design procedure is now briefly summarized. The complete
proof is omitted here and can be obtained by appropriately modifying the ones in [11]. Through some
mathematical manipulations, Equations (21) and (22) induce

NF = FAω −
[

Q T L

]
CωAω

Cω
ẼAω

. (25)

More precisely, the proof can be obtained from Equation (21) by

(i) substituting Ẽ = Eω − I(n+m) into Equation (22) to get L = F−QCω −LẼ;

(ii) substituting Equation (22) into Equation (21) to get NLEω + JCω = N(F−QCω) + JCω = LAω
and NF = NQCω − JCω +LAω = (−T)Cω +LAω, where T = (J −NQ);

(iii) using (i) and (ii) yields NF = −TCω + (F−QCω −LẼ)Aω = FAω −
[

Q T L

]
CωAω

Cω
ẼAω

.
�

Since F is a known matrix, we define the full-row rank matrix

[ H1 E1 ] = [ F+ (In+m − F+F) ], (26)

where F+ is the Moore–Penrose inverse of F, where FH1 = Iκ and FE1 = 0κ×(n+m). Post-multiplying
both sides of Equation (25) by Equation (26) gives

N = FAωH1 −
[

Q T L

]
CωAωH1

CωH1

ẼAωH1

, (27)

where T = (J −NQ) and

FAωE1 =
[

Q T L

]
CωAωE1

CωE1

ẼAωE1

, (28)

In Equation (28), F, Aω, E1, Cω, and Ẽ are known matrices, while matrices Q, T, and L are
unknown and need to be determined to find matrix N in Equation (27).

Now, we augment Equation (28) with Equation (22) as

[ Q T L ]∆ = ψ, (29)
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where ∆ ∈ <(2p+n+m)×(2n+2m) and ψ ∈ <κ×(2n+2m) are known matrices defined by

∆ =


CωAωE1 Cω

CωE1 0
ẼAωE1 Eω

 (30a)

and
ψ =

[
FAωE1 F

]
. (30b)

A necessary and sufficient condition for the existence of a solution {Q, T, and L} can be derived
from Equation (29). Then, a necessary and sufficient condition for ensuring that matrix N is a Hurwitz
function can be derived by substituting Q, T, andL into Equation (27). At last, the matrix J is obtained
as J = T + NQ. As a result, the unknown matrices N,L, J, Q and F satisfy matrix Equations (21) and
(22) of Theorem 1.

Based on the general solution of the linear matrix equations [21], a solution to Equation (29) exists
only if

rank
[
ψ
∆

]
= rank(∆),

meaning that

rank


FAωE1 F

CωAωE1 Cω
CωE1 0

ẼAωE1 Eω

 = rank


CωAωE1 Cω

CωE1 0
ẼAωE1 Eω

. (31)

It can be proved that Condition 1 of Theorem 2 and Equation (31) are equivalent (see Appendix A.1)

by post-multiplying both sides of Equation (23) by the full-row rank matrix
[

H1 E1 0
0 0 In+m

]
.

Therefore, upon satisfaction of Condition 1 of Theorem 2 and using the generalized matrix inverse
approach [21], a solution to Equation (29) always exists and is given by

[ Q T L] = ψ∆+ + Z(I2p+n+m − ∆∆+) , (32)

where ∆+ is the generalized inverse of ∆, and Z ∈ <κ×(2p+n+m) is an arbitrary matrix, which will be
further utilized to establish the stability of matrix N.

Then, substituting Equation (32) into Equation (27) results in

N = Φ −ZΩ, (33)

where Φ ∈ <κ×κ and Ω ∈ <(2p+n+m)×κ are known matrices, which can be defined as

Φ = (FAωH1 −ψ∆+Θ̃), Ω = (I2p+n+m − ∆∆+)Θ̃, (34)

in which Θ̃ =


CωAωH1

CωH1

ẼAωH1

. In Equation (33), the matrix N is a Hurwitz function for matrix Z only if

the pair (Ω, Φ) is detectable, i.e.,

rank
[

sIκ −Φ
Ω

]
= κ, ∀s ∈ C, <(s) ≥ 0. (35)
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Now, it can be shown that Condition 2 of Theorem 2 is equivalent to Equation (35) by post-

multiplying both sides of Equation (24) by the full-row matrix
[

H1 E1 0
0 0 In+m

]
(see Appendix A.2),

therefore ensuring that matrix N is a Hurwitz function.

Remark 1. As in [4], the modified functional observer proposed here is only applicable for proper systems and
not for strictly proper systems, because if D = 0p×m, i.e., Cω = [ C 0 ], the column rank of the existing
condition (Equation (23)) drops under the assumption that the system is square and F is of full-row rank
(rank(F) = κ). An alternative method for strictly proper systems can be found in [14], however it does not apply
to proper systems. This remark can be proven, as shown in [4].

4.3. State–Space Structure of the Observer and the EID Estimator

To cancel the negative effects of the unknown inputs, the estimated EID d̂e(t) can be newly
constructed as

d̂e(t) = û f (t) − uc(t), (36)

where û f (t) is the estimate of the system input u f (t) = uc(t) + de(t). To achieve this goal, û f (t) and
d̂e(t) are first estimated using the aforementioned extended method. Then, the desired control input
uc(t) is obtained by filtering the estimated EID through a well-designed low-pass filter.

The accessorial variable d̃e(t) is updated in real-time by filtering d̂e(t) with the low-pass filter of
the order n f (≥ m), described by

.
x f (t) = A f x f (t) + B f d̂e(t), (37a)

d̃e(t) = C f x f (t), (37b)

where A f ∈ <
n f×n f , B f ∈ <

n f×m, and C f ∈ <
m×n f are the system, input, and output matrices,

respectively.
Notice that Equations (37a) and (37b) gives a general input–output form, in which x f (t) does not

have any direct physical implication and n f depends on the particular structure of this subsystem,
which depends on the application. Furthermore, it is necessary to take de(t) into account to estimate
the system state x̂e(t), and the state observer can be constructed as

.
x̂e(t) = Ax̂e(t) + Bu f (t) + Lc[yc(t) − ŷc(t)], (38a)

ŷc(t) = Cx̂e(t) + Du f (t), (38b)

where x̂e(t) ∈ <n and ŷc(t) ∈ <p are the estimated state and output vectors, respectively, and Lc ∈ <
n×p

is the estimation gain. With the estimated state x̂e(t), the control input in Equations (7a) and (7b) is
derived as

uc(t) = u f (t) − d̃e(t), (39)

with
u f (t) = −Kcx̂e(t) + Ecr(t), (40)

where Kc and Ec are determined using Equation (5) and by considering the system to be disturbance-free,
since the EID de(t) of the unknown input and output disturbances as well as tracking errors have
theoretically been merged to the control input terminal.

Lemma 1 ([22,23]). Let (A, B) be the pair for the given open-loop system, and let h ≥ 0 represent a prescribed

degree of relative stability. Then, the eigenvalues of the closed-loop system A− BR
−1
o

(
BP + NT

o

)
will lie to the

left of the vertical line −h, with the matrix P > 0 being the solution of the Riccati equation

(A + hIn)
TP + P(A + hIn) − (PB + No)R

−1
o

(
BTP + NT

o

)
+ Qo = 0, (41)
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where the matrix In is the identity matrix, while No = CTQoD, Ro = Ro + DTQoD, Ro > 0, and Qo ≥ 0 are
weighting matrices with appropriate dimensions for the corresponding optimal regulator design.

4.4. Stability Analysis in the Frequency Domain

Here, it is assumed that the only input to the system is the net EID. Therefore, from Equations
(13a), (13b), (14), (37a), (37b), (38a), (38b), and (40), one has

d̃e(s) = C f (sIn f −A f )
−1B f d̂e(s) ≡ Gdd(s)d̂e(s), (42)

x̂e(s) = (sIn −A + LcC)
−1Lcyc(s) + (sIn −A + LcC)

−1(B− LcD)uf(s), (43)

uf(s) = −Kcx̂e(s), (44)

ûf(s) =
[

0m×(κ−m) Im
][
(sIκ −N)−1 J + Q

]
yc(s) ≡ Gufo(s)yc(s), (45)

in the frequency domain, where d̃e(s), d̂e(s), ŷc(s), yc(s), uf(s), ûf(s), and x̂e(s) are the Laplace
transforms of d̃e(t), d̂e(t), ŷc(t), yc(t), u f (t), û f (t), and x̂e(t), respectively. Substituting Equation (44)
into Equation (43) yields

x̂e(s) = (sIn −A + LcC)
−1Lcyc(s) − (sIn −A + LcC)

−1(B− LcD)Kcx̂e(s),[
In + (sIn −A + LcC)

−1(B− LcD)Kc
]
x̂e(s) = (sIn −A + LcC)

−1Lcyc(s),

x̂e(s) =
[
In + (sIn −A + LcC)

−1(B− LcD)Kc
]−1

(sIn −A + LcC)
−1Lcyc(s) ≡ Gxy(s)yc(s),

uf(s) = −Kcx̂e(s) = −KcGxy(s)yc(s), (46)

where Gxy(s) =
[
In + (sIn −A + LcC)

−1(B− LcD)Kc
]−1

(sIn −A + LcC)
−1Lc.

Thus, from Equation (36) and Equation (39), the filtered disturbance estimate d̃e(t) can be chosen as

d̃e(t) = fd(t) ⊗ d̂e(t) = fd(t) ⊗ (û f (t) − uc(t)) = fd(t) ⊗ (û f (t) − u f (t) + d̃e(t)), (47)

where ⊗ denotes “convolution” and the Laplace transform of fd(t) is Gdd(s), such that

d̃e(s) = Gdd(s)ûf(s) −Gdd(s)uf(s) + Gdd(s)d̃e(s), (48)

d̃e(s) = (Im −Gdd(s))
−1Gdd(s)(ûf(s) − uf(s)). (49)

Substituting Equations (45) and (46) into Equation (49) yields

d̃e(s) = (Im −Gdd(s))
−1Gdd(s)

[
Gufo(s)yc(s) −

(
−KcGxy(s)yc(s)

)]
= (Im −Gdd(s))

−1Gdd(s)
(
Gufo(s) + KcGxy(s)

)
yc(s), (50)

and thus
yc(s) =

[
C(sIn −A)−1B + D

]
(uc(s) + de(s)) ≡ Gp(s)(uc(s) + de(s)),

yc(s) = Gp(s)
(
uf(s) − d̃e(s) + de(s)

)
, (51)

where Gp(s) = C(sIn −A)−1B + D. Substituting Equations (46) and (50) into Equation (51) yields

yc(s) = Gp(s)
[
−KcGxy(s)yc(s)

]
−Gp(s)

[
(Im −Gdd(s))

−1Gdd(s)
(
Gufo(s) + KcGxy(s)

)
yc(s)

]
+ Gp(s)de(s),{

Ip + Gp(s)
[
KcGyx(s) + (Im −Gdd(s))

−1Gdd(s)
(
Gufo(s) + KcGxy(s)

)]}
yc(s) = Gp(s)de(s), (52)
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which, from Equation (52), implies that

yc(s) =
{
Ip + Gp(s)

[
KcGxy(s) + (Im −Gdd(s))

−1Gdd(s)
(
Gufo(s) + KcGxy(s)

)]}−1
Gp(s)de(s)

=
[
Ip+Gp(s)K(s)

]−1
Gp(s)de(s)≡ Gyd(s)de(s),

(53)

where Gp(s) = C(sIn −A)−1B + D, K(s) = KcGxy(s) + (Im −Gdd(s))
−1Gdd(s)

(
Gufo(s) + KcGxy(s)

)
,

Gyd(s) =
[
Ip + Gp(s)K(s)

]−1
Gp(s) is the transfer function from the EID to the system output, and Im,

In, Ip, and In f are identity matrices of dimensions m×m, n× n, p× p, and n f × n f , respectively.
Note that Equation (53) is a multi-input-multi-output (MIMO) expression. To simplify the

discussion, we denote Gi j
yd(s) and Gi j

dd(s) as the elements in the ith rows and jth columns of Gyd(s)
and Gdd(s), respectively. From Equation (53), the effects of the unknown inputs can be effectively
suppressed by minimizing ‖Gi j

yd(s)‖∞
(i = 1, · · · , p; j = 1, · · · , m), and ‖Gi j

yd(s)‖∞
is sufficiently small

with appropriate design of Gdd(s). For this case, the effect of the disturbances can be alleviated, since
feedback into the system of the equivalent unknown inputs accurately estimated by the functional
observer can effectively counteract actual unknown inputs.

According to Equations (50), (51), and (53), if Gdd(s) ≈ Im can be appropriately designed and
the functional observer gives a good estimate of the EID, such that û f (t)→ u f (t) , then d̃e(t)→ de(t)
when t→∞ (see Equation (48)). Specifically, for any positive scalars ε1 << 1, ε2 << 1, ε3 << 1 and
assuming that the bounded Gufo(s) , 0 has been properly determined, if

1−
∣∣∣Gii

dd(s)
∣∣∣ ≤ ε1; (i = 1, . . . , m

)
(54)

and
m∑

j=1

∣∣∣∣Gi j
dd(s)

∣∣∣∣ ≤ ε2; (i; j = 1, . . . , m; j , i), (55)

then from Equations (51) and (53), we can obtain

‖Gi j
yd(s)‖∞

≤ ε3; (i = 1, . . . , p; j = 1, . . . , m), (56)

such that yc(t)→ 0 when t→∞.
In other words, let ∆yc(s) be defined as the error between the disturbed and undisturbed

outputs, then yc(t)→ 0 in Equation (53) implies that ∆yc

(
s) =

[
C(sIn −A)−1B + D

](
de(s) − d̂e(s)

)
, i.e.,

d̂e(s) ≈ de(s). According to Equations (37a) and (37b), it is true that d̃e(s) ≈ de(s) in steady state.
As previously mentioned, the design of Gdd(s) should honor Equations (54) and (56), i.e.,

Gdd(s) ≈ Im , to effectively estimate the EID and cancel the unknown disturbance. Nevertheless, it is
well-known that ‖Gyd(s)‖∞ in Equation (56) cannot be ideally minimized throughout the frequency
range ωc ∈ [0, ∞). Therefore, the natural frequency of the unknown low-frequency disturbances to
be suppressed is assumed to be below ωc, which is true for a wide class of servo systems. Thus, it is
suggested to design Gdd(s) as a low-pass-filter-type dynamic system, such that max

ω∈Ω
‖Gyd( jω)‖

∞
< 1,

where Ω ∈ [0, ωc) instead, to filter the higher frequency noise [24].
For simplicity, Gdd(s) is directly constructed as the diagonal matrix

Gdd( jω) = diag
{
G11

dd( jω11), G22
dd( jω22), . . . , Gmm

dd ( jωmm)
}
, (57)

with the 1st-order filter (with least phase lag and simple structure)

Gdd( jω) =
1

1
ωii

s + 1
=

1
τiis + 1

=
ωcii

s +ωcii
, (58)
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where ωii ∈ Ωii, with Ωii ⊆ Ω, i = 1, 2, · · · , m, ωcii as the cut-off frequency of the ith diagonal element,
and τii as the corresponding time constant. Its state–space representation (A f , B f , C f ) can be obtained
from Gdd(s) by an appropriate transformation. More details about selecting the low-pass filter from
Equations (37a) and (37b) can be found in [24].

As in [4], the proposed approach preserves some independence in the design of the state observer,
even though the dynamics of such an observer are associated with the EID estimator.

Theorem 3. For a well-designed optimal tracker (Equation (40)), the control law (to be shown in Equation (75))
guarantees the stability of the control system under the following conditions: (i)A− LcC is stable; (ii) if matrix
L ∈ <

κ×n exists, such that Theorem 1 holds for the functional observer presented in Equations (13a) and (13b);
and (iii) if the low-pass filter Gdd(s) ≈ Im, such that max

ω∈Ω
‖Gyd( jω)‖

∞
< 1, where Ω ≡ [0,ωc).

The proof of this theorem is similar to the proof of Theorem 4.4 in [4].

5. Design Procedure of the Unknown Input Linear Functional Observer for the Unknown
Perturbed Singular Systems

Considering the unknown minimum-phase non-square continuous-time singular system with
more control input channels than output channels, this section proposes a procedure for designing
a high-performance optimal analog state estimate tracker and an EID estimator for the system with
unknown mismatched input and output disturbances. First, we apply the off-line OKID method [17]
to determine the parameters (Gok, Hok, Cok, Dok, Lok) of the discrete-time mathematical model of
this unknown system. Then, we carry out the discrete-to-continuous model conversion to obtain the
continuous-time model that will be used to construct the analog unknown input functional observer
to estimate and compensate the net EID. Lastly, we determine the proposed robust observer-based
optimal LQAT for the unknown singular system. Three advanced techniques are now briefly described
to achieve this goal.

Part 1: Observer–Kalman-Filter Identification for the Unknown Singular System

We consider the continuous-time impulsive-mode-free singular system (Equations (1a) and(1b)), i.e.,

Er
.
xc(t) = Arxc(t) + Bruc(t), (59a)

yc(t) = Crxc(t), (59b)

where matrices Er, Ar, Br, and Cr are assumed to be unknown. In theory, the above singular system
can always be transformed into a corresponding low-order regular system with a direct transmission
term from input to output

.
x̂c,s(t) = Âsx̂c,s(t) + B̂suc(t), (60a)

yc(t) = Ĉsx̂c,s(t) + D̂suc(t). (60b)

Here, it is assumed that (Âs, B̂s, Ĉs, D̂s) are unknown system matrices of appropriate dimensions.
Step 1: Implement the off-line OKID method [17] to the singular system to determine the appropriate

(low-) order of the singular system and the corresponding system matrices, with the corresponding
sampling time Ts.

Step 2: Transform the discrete-time system–observer models obtained in Step 1 to the continuous-
time system–observer models. Based on the identified discrete-time model (Gok, Hok, Cok, Dok), the
corresponding continuous-time model (Aok, Bok, Cok, Dok) can be determined as

.
x(t) = Aokx(t) + Bokuc(t), (61a)

yc(t) = Cokx(t) + Dokuc(t), (61b)
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where x(t) ∈ <n is the state vector, uc(t) ∈ <m is the control input vector, yc(t) ∈ <p is the measurable
output vector, Aok =

1
Ts

ln Gok, Bok = Aok(Gok − In)
−1Hok, and Ts is the sampling time.

Part 2: Observer Design for Noisy Singular System

For servo control, it is required to have more control inputs than outputs. However, for EID
estimation, it is desirable to have more outputs than control inputs. Considering that the main purpose
of this paper is to propose a robust tracker for a system subject to unknown disturbances, it is naturally
assumed that the given system has more control inputs than outputs. To achieve this, the non-square
system with m > p is transformed into a square system with m = p using an “artificial” coordinate [14],
and finally transformed back to non-square and implemented in the original coordinate. These steps
are now briefly shown.

Step 1: Assume that the corresponding regular system (Equations (60a) and (60b)) of order n, with
m inputs and p outputs and subject to an unknown disturbance, is non-square (m > p), described by

.
x̂c,s(t) = Âsx̂c,s(t) + B̂suc(t) + di(t), (62a)

yc(t) = Ĉsx̂c,s(t) + D̂suc(t) + do(t), (62b)

where Âs ∈ <
n×n, B̂s ∈ <

n×m, Ĉs ∈ <
p×n, and D̂s ∈ <

p×m, are constant matrices. The mismatched
input–output disturbances are given as di(t) = Gidi(t) ∈ <n, do(t) = Godo(t) ∈ <p, respectively; with
li and lo representing the number of input and output disturbances, respectively; and Gi ∈ <

n×li ,
Go ∈ <

p×lo , di(t) ∈ <li , and do(t) ∈ <lo being unknown. Additionally, li and lo may be greater than
m and p and may even be no less than n. To fulfill the required assumptions for the linear functional
observer (see Part 3), the transformation matrix η ∈ <m×p is determined, such that the system described
in terms of

(
Âs, B̂a, Ĉs, D̂a

)
for the control input ua(t)

.
x̂c,s(t) = Âsx̂c,s(t) + B̂sηua(t) + di(t) = Âsx̂c,s(t) + B̂aua(t) + di(t), (63a)

yc(t) = Ĉsx̂c,s(t) + D̂sηua(t) + do(t) = Ĉsx̂c,s(t) + D̂aua(t) + do(t), (63b)

is square, controllable, and of the minimum phase, where B̂a = B̂sη ∈ <n×p, D̂a = D̂sη ∈ <p×p,
ua(t) ∈ <p, and

uc(t) = ηua(t) ∈ <m. (64)

Step 2: Represent the system (Equations (63a) and (63b)) with mismatched input and output
disturbances as a net EID, i.e.,

.
xe(t) = Âsxe(t) + B̂a[ua(t) + dea(t)], (65a)

yc(t) = Ĉsxe(t) + D̂a[ua(t) + dea(t)], (65b)

where dea(t) ∈ <p is the squared-down EID.
Step 3: Obtain the estimate d̂ea(t) of dea(t) in Part 3. To get d̃ea(t), construct the low-pass filter

.
x f (t) = A f x f (t) + B f ad̂ea(t), (66a)

d̃ea(t) = C f x f (t), (66b)

where d̂ea(t) is the input, d̃ea(t) ∈ <p is the output that estimates the equivalent unknown input,
xe(t) is the state of the Luenberger observer [25], A f ∈ <

n f×n f , B f a ∈ <
n f×p, and C f ∈ <

p×n f . In the
frequency domain, the closed-loop gain Gyd(s) from the disturbance dea(t) to the output yc(t) cannot
be minimized ideally through ω ∈ [0,∞). For this reason, it is assumed that the natural frequencies of
the unknown disturbances to be suppressed are below the cut-off frequency ωc.
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Step 4: Construct the Luenberger observer

.
x̂e(t) = Aokx̂e(t) + Bok,au f a(t) + Lc(yc(t) − ŷc(t)), (67a)

yc(t) = Cokx̂e(t) + Dok,au f a(t), (67b)

where x̂e(t) and ŷc(t) are the estimated state and output vectors, respectively. Here, Bok,a = Bokη,
Dok,a = Dokη, and Lc is the state observer gain. To further reduce the estimation errors, let A = A + hIn.
Then, apply Lemma 1 with appropriate (Qo, Ro) to determine

Lc = PoCT
okR−1

o . (68)

Part 3: Design of the Linear Functional Observer

We use the linear functional observer to estimate the Fω(t) in Equation (12). To achieve this goal
based on the concept of EID and OKID methods, Equations (65a) and (65b) are represented as

.
xe(t) = Aokxe(t) + Bok,a[ua(t) + dea(t)], (69a)

yc(t) = Cokxe(t) + Dok,a[ua(t) + dea(t)]. (69b)

Observe that (A, B, C, D) and u f (t) ∈ <m in Equations (10a) and (10b) are now replaced by
(Aok, Bok,a, Cok, Dok,a) and u f a(t) = [ua(t) + dea(t)] ∈ <p, respectively. Assumptions associated with
the linear functional observer [11] include that m ≤ p, and that the number of inputs of the equivalent
system is equal to the number of outputs of the system after transforming it to the square in part 2.
The procedure to construct the linear functional observer is now described in detail.

Step 1: Define the augmented state vector ω(t) = [ xT
e (t) uT

f a(t)
]T
∈ <

(n+p), such that the
system (Equation (69a) and (69b)) can be expressed as

Eω
.
ω(t) = Aωω(t), (70a)

yc(t) = Cωω(t), (70b)

where Eω =

[
In×n 0n×p

0p×n 0p×p

]
∈ <

(n+p)×(n+p), Aω =

[
Aok Bok,a
0p×n 0p×p

]
∈ <

(n+p)×(n+p), and Cω =

[ Cok D ok,a] ∈ <
p×(n+p). Define the functional state vector z(t) ∈ <κ that must be reconstructed (or

estimated) as

z(t) = Fω(t) =
[

F1 0
0 Ip

][
xe(t)

u f a(t)

]
=

[
F1xe(t)
u f a(t)

]
, (71)

where F1 ∈ <
(κ−p)×n, and F ∈ <κ×(n+p) is a given constant matrix, which satisfies rank(F) = κ and

rank
[

Cω
F

]
= (p + κ) ≤ (n + p). To estimate z(t), we construct the reduced-order functional observer

of order κ for the system (Equations (69a) and (69b))

.
w(t) = Nw(t) + Jyc(t), (72a)

ẑ(t) = w(t) + Qyc(t). (72b)

Therefore, the estimated unknown input vector becomes

û f a(t) = [ 0p×(κ−p) Ip ]ẑ(t) = [ 0p×(κ−p) Ip ]

[
F1x̂e(t)
û f a(t)

]
∈ <

p. (73)

Thus, the estimated EID d̂ea(t) = û f a(t) − ua(t) can be derived.
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Step 2: Check the existence of Condition 1 of Theorem 2 to see whether

rank



FAω F
CωAω Cω

Cω 0
0 Eω
F 0


= rank


CωAω Cω

Cω 0
0 Eω
F 0

 (74a)

is satisfied or not. If not, repeat Step 1 by choosing another F in terms of F1 in Equation (71).
Step 3: Systematically derive all observer parameters.

(i) Check the existence of Condition 2 of Theorem 2 to see whether

rank


sF− FAω −F

CωAω Cω
Cω 0
0 Eω

 = rank


CωAω Cω

Cω 0
0 Eω
F 0

 ∀s ∈ C, <(s) ≥ 0 (74b)

is satisfied or not. If yes, use Equation (34) to obtain Φ and Ω. If not, which implies the pair
(Φ, Ω) is not detectable, stop, since a stable observer does not exist;

(ii) Using Equation (33), derive Z, such that the matrix N is stable;
(iii) From Equation (32), obtain matrices Q, T, and L. Substitute Q, T, and L into Equation (27) and

check the necessary and sufficient condition to ensure that the matrix N is a Hurwitz function.
(iv) Finally, obtain matrix J from Equation (27), i.e., J = T + NQ. As a result, the unknown matrices

N, L, J, Q, are determined and the observer design is, thus, completed.

Step 4: Design the optimal linear quadratic tracker with an appropriate weighting matrix pair
Qc >> Rc to determine the OKID-based optimal control law [18] as

u f a(t) = −Kcx̂e(t) + Ecr(t), (75)

where Kc = R
−1
c

(
BT

ok,aP + NT
c

)
, Ec = −R

−1
c

[(
Cok −Dok,aKc

)(
Aok − Bok,aKc

)−1
Bok,a + Dok,a

]T
Qc, in which

Rc = Rc + DT
ok,aQcDok,a, and Nc = CT

ok,aQcDok,a, and P > 0 satisfies the algebraic Riccati equation

AT
okP + PAok −

(
PBok,a + Nc

)
R
−1
c

(
BT

ok,aP + NT
c

)
+ CT

okQcCok = 0. (76)

Then, implement the controller

uc(t) = ηua(t) = η
(
u f a(t) − d̃ea(t)

)
. (77)

The architecture of the compensation improvement OKID-based LQAT disturbance estimator with
a low-pass filter for the singular system is depicted in Figure 1. If the corresponding slow subsystem of
the given singular system (Aok, Bok, Cok, Dok) is square, then set η = Im in Equation (77) and Figure 1.

Remark 1 Consider a class of linear strictly proper regular systems with an uncertain time-varying
state delay and an unknown input vector (to be estimated). The system also has another unknown
disturbance vector, which might contain either the parameter uncertainties or non-linearities, and can
be treated as an additional unknown input vector to the system. As a result, two unknown input vectors
exist that act on the system. The method developed in [11] consists of designing reduced-order functional
observers to simultaneously estimate the states and the first unknown input vector (but not the unknown
disturbance vector, which represents uncertainties or non-linearities) of the aforementioned systems
(see Chapter 7 in [11]). As an alternative, in the approach proposed in this paper, the uncertainties or
state-dependent non-linear disturbances have been theoretically merged into the first unknown input
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vector, such that the combined unknown input vector is estimated. From the point of view of the design
methodology, it is important to point out that the proposed two-norm minimization approach performs
well for the system addressed in this paper, however not for general uncertain systems or non-linear
systems. Specifically, the H-infinity-norm minimization approach is suggested for uncertain systems
and will be considered as a future research topic.Appl. Sci. 2020, 10, x FOR PEER REVIEW 19 of 31 
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6. Illustrative Examples

This section presents two examples to illustrate the application of the proposed approach and to
show that it outperforms the traditional approach.

Example 1. Square MIMO System

Consider the continuous-time singular system without the impulsive mode described as

Er
.
x(t) = Arx(t) + Bruc(t) + dr(t), (78a)

yc(t) = Crx(t) + dro(t), (78b)

where

Er =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 −1 0 0 1
0 1 0 0 0 0
0 0 0 0 0 1


, Ar =



7 6 5 6 −9 5
−2 1 −1 3 0 4
−10 −7 −6 −4 10 4
−4 1 −7 −7 8 −4
7 −4 −5 −5 2 2
−4 4 3 4 5 2


,
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Br =



6 4
−10 6
−6 −4
10 3
6 −9
3 1


, Cr =

[
1 −6 10 2 −1 −3
7 9 −3 1 −3 −8

]
,

x(0) = [ 0.5 0.05 0 0.7862 1.2448 0.225 ]
T

.

The singular system can be transformed into the equivalent regular system with an input–output
direct feedthrough term

.
xs(t) = Âsxs(t) + B̂suc(t) + ds(t), (79a)

yc(t) = Ĉsxs(t) + D̂suc(t) + dso(t), (79b)

where xs(0) = [ 0.5 0.05 0 0.225 ]
T

,

Âs =


−4.4403 0.9627 −2.7015 2.7164
3.1940 −0.7463 −2.0299 3.3284
7.3284 −2.9552 1.6418 5.9403

15.0522 2.5299 4.7612 1.6269

, B̂s =


−3.0448 7.6940
−1.8955 −1.1194
11.2537 −14.4328
27.8358 −18.4552

,
Ĉs =

[
2.0373 −7.3358 8.6866 −3.5522
1.4552 7.9030 −5.2239 −8.5373

]
, D̂s =

[
2.5970 −2.7537
−5.7164 3.6045

]
,

with

ds(t) = Gids(t) =


−1 2 5
4 −5 3
3 3 4
5 4 −1

ds(t),

where

ds(t) =


0.1(20 sin(4πt) + cos(5πt) + sin(πt) + sin(5πt) − 1) + sin(xs1(t) + xs3(t))

0.1(20 sin(5πt) + cos(2πt) + sin(πt) + sin(2πt) − 1) + cos(xs2(t))
0.1(20 sin(3πt) + cos(4πt) + sin(3πt) + sin(2πt) − 1) + sin(xs4(t))

 ∈ <li

for t = 10 ∼ 30 sec, or ds(t) = 0li×1 otherwise

dso(t) = Godso(t) =
[
−4 7
3 −1

]
dso(t),

where dso(t) =
[

0.1(sin(πt) + sin(5πt)− 1)
0.1(sin(2πt)− 1)

]
∈ <

lo , for t = 10 ∼ 30 sec, or dso(t) = 0lo×1 otherwise. It is

assumed that Gi, Go, ds(t) and dso(t) are unknown. Additionally, there are more disturbances than outputs.
The eigenvalues and zeros of the open-loop singular system are {−9.1996,−3.4145, 3.6372, 7.0590}
and {−33.4278± 23.8397i, −2.0359 ± 2.0429i}, respectively. The desired output trajectory is given by
r(t) = [r1(t), r2(t)]

T, where

r1(t) =


0 , 9 < t sec

sin(0.1πt) + cos(0.2πt) − sin(0.5πt) × cos(0.3πt) , 9 ≤ t < 30 sec
−0.5 , t ≥ 30 sec

,

r2(t) =


1 , 9 < t sec

sin(0.2πt) + cos(0.1πt) + sin(0.5πt) × cos(0.5πt) , 9 ≤ t < 30 sec
2 , t ≥ 30 sec

.
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Figure 2 shows the significant time-varying features of ds1(t) without state-dependent disturbance
(bounded by ±13) and dso1(t) (bounded by ±2) when compared with the smooth desired output
trajectory r(t) (bounded by ±2), which makes this example more challenging.
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Figure 2. (a) Input disturbance ds1(t) (without state-dependent disturbance); (b) output disturbance
dso1(t).

Now, assume that the singular system is unknown. The objective of this paper is to design a
robust optimal OKID-based LQAT with a modified functional observer-based EID estimator, such that
the controlled square system has an improved tracking performance.

Step 1: Identification of the singular system.
It is suitable to assume that the unknown disturbances occur during some unexpected periods,

such that a set of disturbance-free input–output data of the open-loop system can be collected and an
appropriate-order (4 this example) open-loop model can be identified by applying the off-line OKID
method. As a consequence, the converted identified system matrices in the continuous-time domain
are given as

Aok =


224.4093 20.3493 −203.0721 −1.1996
−20.2149 189.8678 0.7314 −212.3123
203.0742 −1.3015 −181.2974 20.4771
0.4529 212.3102 −20.5253 −234.8976

, Bok =


−36.393 29.3443
26.0444 −15.3636
−36.9952 30.6218
26.8896 −16.8004

,
Cok =

[
−2.1609 −2.862 −1.9911 −2.6455
2.9487 −2.1395 2.7195 −1.9425

]
, Dok =

[
2.5973 −2.7555
−5.7322 3.6162

]
.

The eigenvalues and zeros of the open-loop OKID model are {−9.1909,−3.4346, 3.7011, 7.0066}
and {−33.3957± 23.7553i, −2.0351± 1.8661i}, respectively.

Step 2: Determination of the state observer.
Error equations are constructed by choosing the weighting matrix pairs { Qo, Ro } =

{
104I4, I2

}
for the determination of Lc with h = 50. This results in

Lc =


−115.3191 156.8902
−138.9246 −103.4300
−24.5142 32.8421
−35.1095 −25.3732

.
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The filter matrices
(
A f , B f a, C f

)
are chosen as A f =

[
−100 0

0 −100

]
, B f a =

[
8 0
0 8

]
, and C f =[

12.5 0
0 12.5

]
, so that C f

(
sI −A f

)−1
B f a ≈ Im for s = jω = 0. Note that the selected eigenvalues of A f

are sufficiently negative to filter out high-frequency disturbances.
Step 3: Design of the functional observer according to Section 4 to estimate the linear combination

of state and unknown input Fω(t) in Equation (71).

Choose F =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, such that the ranks of those matrices checked in Theorem 2

are all equal to 12 and the unknown input û f a(t) can be estimated. According to Section 4, the condition
given in this example implies that all theorems hold, thus the linear functional observer

.
w(t) = Nw(t) + Jyc(t),w(0) = 04×1, (80a)

.
w(t) = Nw(t) + Jyc(t),ẑ(t) = w(t) + Qyc(t) ≈ Fω(t), (80b)

is obtained, where

L =


1.0000 0.0000 0.0000 0.0000 0 0
0.0000 1.0000 0.0000 0.0000 0 0
0.0486 −2.5373 0.0458 −2.3302 0 0
−0.7384 −3.4302 −0.6794 −3.1565 0 0

 ∈ <κ×(n+m)

(mentioned in Theorem 1),

N =


444.673 19.807 −406.926 303.26
−20.905 421.012 110.864 −10.718
39.759 −2158.599 −508.808 14.632
−600.263 −2918.42 −82.242 −427.738


is a stable matrix,

J =


−5.7167 3.7585
−0.9552 −4.9763
2.1877 24.0545
12.389 26.9334

,
and

Q =


0 0
0 0

−0.5648 −0.4304
−0.8953 −0.4057

.
Step 4: Design of the linear-quadratic state feedback tracker integrated with the EID estimator.
In the LQAT design, the weighting matrix pair {Qc, Rc} =

{
104I2, I2

}
is chosen to obtain the optimal

control law uc(t) = −Kcx̂e(t) + Ecr(t) − d̃e(t), where

Kc =

[
−0.0501 2.5368 −0.0444 2.3302
0.7365 3.4298 0.6812 3.1562

]
and Ec =

[
−0.5648 −0.4303
−0.8952 −0.4056

]
.

Step 5: Simulation results.
First, to show the superiority of the proposed tracker, Figure 3 plots the input disturbance

ds1(t)(state-dependent disturbance inside) and the pure non-linear state-dependent disturbance. All of
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these disturbances (shown by parts) indicate a highly time-varying phenomenon. Figure 4a shows
the time response of the controlled system and Figure 4b shows the output tracking errors under the
control action of the traditional optimal OKID-based tracker without an EID estimator.
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Figure 4. (a) Time responses of the closed-loop noisy square singular system for the optimal OKID-based
LQAT without the EID estimator, (b) tracking errors of output e(t) = r(t) − yc(t).

Second, Figure 5 shows the input disturbance ds1(t) (state-dependent disturbance inside) and
the pure non-linear state-dependent disturbance. Here, ds1(t) is slightly different from the optimal
OKID-based LQAT without the EID estimator, because the differences between the two states xs(t) are
induced by different controllers. Next, the robustness of the optimal OKID-based LQAT integrated
with the functional observer-based EID estimator is shown in Figure 6a,b. Also, Figure 7 plots the
control inputs corresponding to the proposed approach. Notice that uc(t) = ua(t) for this square
system, where η = Ip. A comparison with Figure 4 shows that the proposed approach (Figure 6)
significantly improves the tracking errors of the noisy singular system.
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Example 2. Non-Square MIMO System

Consider the continuous-time non-square singular system without impulsive mode described by

Er
.
x(t) = Arx(t) + Bruc(t) + dr(t), (81a)

yc(t) = Crx(t) + dro(t), (81b)

where Er and Ar are given in Example 1,

Br =



8 −9 −4
2 −1 3
4 3 8
5 −4 7
−2 0 −6
−5 −5 −2


, Cr =

[
8 9 −7 3 −5 −5
−5 2 7 1 −9 −3

]
,

x(0) = [ 0.15 0.015 0 0.2661 0.3593 −0.0675 ]
T

.

The singular system can be converted into the equivalent regular system with an input–output
direct feedthrough term

.
xs(t) = Âsxs(t) + B̂suc(t) + ds(t),

yc(t) = Ĉsxs(t) + D̂suc(t) + dso(t), xs(0) = [ 0.15 0.015 0 −0.0675 ]
T

,

where

Âs =


−4.4403 0.9627 −2.7015 2.7164
3.1940 −0.7463 −2.0299 3.3284
7.3284 −2.9552 1.6418 5.9403

15.0522 2.5299 4.7612 1.6269

, B̂s =


12.3881 −3.6045 9.2313
−0.2388 −1.0896 −2.3731
−2.8657 −3.0746 −11.4776
−12.9104 −8.2164 −22.4851

,
Ĉs =

[
1.0672 6.3955 −11.1642 −6.194
−25.097 −0.1269 1.0149 −4.1642

]
, D̂s =

[
2.6866 3.0075 7.9478
8.1194 5.5448 22.1866

]
,

with the same mismatched input disturbances (but without state-dependent disturbances) and output
disturbances dso(t) described in Example 1,

ds(t) = Gids(t) =


−1 2 5
4 −5 3
3 3 4
5 4 −1

ds(t),

ds(t) =


0.1(20 sin(4πt) + cos(5πt) + sin(πt) + sin(5πt) − 1)
0.1(20 sin(5πt) + cos(2πt) + sin(πt) + sin(2πt) − 1)

0.1(20 sin(3πt) + cos(4πt) + sin(3πt) + sin(2πt) − 1)

 ∈ <l1 ,

for t = 10 ∼ 30 sec, or ds(t) = 0l1×1 otherwise.
Similarly, it is assumed that Gi, Go, ds(t) and dso(t) are unknown. Eigenvalues and “control

zeros” [26] of the open-loop singular system are {−9.1996,−3.4145, 3.6372, 7.0590} and
{
−3.4606× 105,

−30.9692, −1.5141± 1.8765i}, respectively. Also, the desired output trajectory r(t) is the same as in
Example 1.

Now, assume that the singular system is unknown. The objective is to design a robust optimal
OKID-based LQAT with a modified functional observer-based EID estimator, such that the tracking
performance of the controlled non-square system is improved.

Step 1: Identification of the singular system.
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Apply the off-line OKID method to determine the appropriate order as 4, and the converted
identified system matrices in the continuous-time domain are given as

Aok =


212.1358 −2.6065 −206.2029 1.861

2.526 202.0124 −1.9511 −208.864
206.2035 1.8947 −200.1689 −2.7866
−1.7579 208.8631 2.8165 −215.8972

, Bok =


10.5226 −19.5544 −14.9769
40.2286 −6.32 41.3521
10.7314 −19.3488 −14.6376
40.2016 −6.5768 40.5922

,
Cok =

[
−2.7742 2.3193 −2.5354 2.1565
−2.3362 −2.7567 −2.1735 −2.5158

]
, Dok =

[
2.6927 3.0112 7.9609
8.1064 5.5509 22.1791

]
.

Eigenvalues and “control zeros” of the open-loop OKID model are {−9.2013,−3.3976, 3.5768, 7.1041}
and

{
−3.4777× 105,−30.9407,− 1.512± 1.8739i

}
, respectively. Appropriately choose a transformation

matrix η such that the system (Aok, Bokη, Cok, Dokη) is square and of the minimum phase. Here, η

is chosen as η =


−8 −9
6 1
3 4

, while eigenvalues and “control zeros” of the transformed system are

{−9.2013,−3.3976, 3.5768, 7.1041} and {−265.2835, −15.646, −1.1069± 0.9538i}, respectively. Therefore,
Bok and Dok are replaced by

Bok,a = ηBok =


−246.4379 −174.1652
−235.6925 −202.9687
−245.8564 −174.4816
−239.2965 −206.022


and Dok,a = ηDok =

[
20.4077 10.6199
34.9912 21.3096

]
, respectively.

Step 2: Determination of the state observer.
Let the low-pass filter

(
A f , B f , C f

)
be the same as in Example 1. Also, based on the same parameters

specified in Step 2 of Example 1

Lc =


−142.854 120.2801
11.1893 −138.0508
−31.9198 −27.344
27.7948 −32.4321

.
Step 3: Design the modified functional observer according to Section 4 to estimate the linear

combination of the state and unknown input Fω(t) in Equation (71).

Choose F =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, such that the ranks of those matrices to be checked in Theorem

2 are all equal to 12 and the unknown input û f a(t) can be estimated. According to Section 4, all
theorems hold due to the condition given in this example, and thus in the linear functional observer

.
w(t) = Nw(t) + Jyc(t), (82a)

ẑ(t) = w(t) + Qyc(t) ≈ Fω(t), (82b)

where

L =


1.0000 0.0000 0.0000 0.0000 0 0
0.0000 1.0000 0.0000 0.0000 0 0
0.5422 −1.2437 0.4890 −1.1485 0 0
−0.7806 2.1716 −0.7010 2.0039 0 0

 ∈ <κ×(n+m)
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(mentioned in Theorem 1),

N =


436.085 −2.581 −2601.806 −1523.144

2.633 429.101 −1095.315 −799.863
448.212 −1041.115 −64.008 345.772
−645.445 1817.85 −708.615 −1084.321


is a stable matrix,

J =


13.319 −14.811
32.865 −25.904
−65.250 47.033
118.188 −86.838

,
and

Q =


0 0
0 0

0.3368 −0.1678
−0.553 0.3225

.
Step 4: Design the linear-quadratic state feedback tracker integrated with the EID estimator.
In the LQAT design, the weighting matrix pair {Qc, Rc} =

{
104I2, I2

}
is chosen to obtain the optimal

control law ua(t) = −Kcx̂e(t) + Ecr(t) − d̃e(t), where

Kc =

[
−0.5422 1.2438 −0.489 1.1484
0.7807 −2.1717 0.701 −2.0037

]
and Ec =

[
0.3368 −0.1678
−0.553 0.3225

]
.

Step 5: Simulation results.
First, Figure 8a plots the time responses of the non-square system and Figure 8b shows the output

tracking errors under the control action of the traditional optimal OKID-based tracker without an EID
estimator. It can be concluded that the proposed method gives significantly improved performance
compared to the traditional approach.
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Figure 8. (a) Time responses of the closed-loop noisy non-square singular system by the optimal
OKID-based LQAT without the EID estimator and (b) tracking errors of output e(t) = r(t) − yc(t).

Second, the robustness of the optimal OKID-based LQAT integrated with the modified functional
observer-based EID estimator is shown in Figure 9a,b. Additionally, Figure 10 plots the control inputs
corresponding to the proposed approach. Notice that uc(t) = ηua(t) for this non-square system.
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A comparison with Figure 8 shows that the tracking errors for the perturbed singular system are
significantly reduced.
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7. Conclusions

This paper presents the design of an OKID-based LQAT and the design of a functional observer
to estimate the EID for unknown continuous-time square–non-square singular analog systems with all
stable zeros and unknown matched–mismatched input and output disturbances. The proposed method
significantly improves the tracking performance for systems subject to high-frequency disturbances.
Additionally, an optimal OKID-based LQAT integrated with the modified functional observer-based
EID estimator is newly proposed for unknown continuous-time singular systems.

The advantages of the proposed method compared to other approaches are as follows: (i) it is
capable of rejecting any kind of unknown state-dependent disturbances with a natural frequency
smaller than the cut-off frequency; (ii) it does not require a priori information about the disturbances,
such as their input matrices at the input or output terminals, rank conditions, differentiation of the
measured outputs, or the number of independent signals in the unknown input or output disturbances;
(iii) performing the inverse dynamics of the plant is not required; (iv) the system of interest does not
need to be of square size; and (v) its implementation is quite simple, since it is a plug-in of an EID
estimator that is used to improve any existing controller for a square–non-square servo system.

For communication systems, delays might exist in the measurement outputs or control inputs,
since the information is obtained through a communication channel with limited bandwidth. Thus,
an extension of the proposed approach with control input constraints for some classes of unknown
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time-delay large-scale interconnected linear systems, networked control systems, or non-linear systems
will be considered as a future research topic.
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Appendix A. Some Proofs of the Functional Observer-Based EID

Appendix A.1. Proof of Equivalence Between Condition 1 of Theorem 2 and Condition (31)

Post-multiplying both sides of Equation (23) by the full-row rank matrix
[

H1 E1 0
0 0 In+m

]
yields

the left-hand side

rank



FAω F
CωAω Cω

Cω Cω 0
0 Eω
F 0


= rank





FAω F
CωAω Cω

Cω 0
0 Eω
F 0


[

H1 E1 0
0 0 In+m

]


= rank



FAωH1 FAωE1 F
CωAωH1 CωAωE1 Cω

CωH1 CωE1 0
0 0 Eω
Iκ 0 0


= κ+ rank


FAωE1 F

CωAωE1 Cω
CωE1 0

0 Eω

 = κ+ rank
[
ψ
∆

]
,

(A1)

where FH1 = FF+ = Iκ and FE1 = F(In+m − F+F) = 0 have been used therein, along with the
right-hand side

rank


CωAω Cω

Cω 0
0 Eω
F 0

 = rank




CωAω Cω
Cω 0
0 Eω
F 0


[

H1 E1 0
0 0 In+m

]
= rank


CωAωH1 CωAωE1 Cω

CωH1 CωE1 0
0 0 Eω
Iκ 0 0

 = κ+ rank


CωAωE1 Cω

CωE1 0
0 Eω

 = κ+ rank (∆).

(A2)

Equations (A1) and (A2) show that rank



FAω F
CωAω Cω

Cω 0
0 Eω
F 0


= rank


CωAω Cω

Cω 0
0 Eω
F 0

.
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Appendix A.2. Proof of Equivalence Between Condition 2 of Theorem 2 and Condition (35)

Post-multiplying the RHS of Equation (24) by the full-row matrix
[

H1 E1 0
0 0 In+m

]
gives

rank


CωAω Cω

Cω 0
0 Eω
F 0

 = rank




CωAω Cω
Cω 0
0 Eω
F 0


[

H1 E1 0
0 0 In+m

] = κ+ rank(∆). (A3)

Now, the LHS of Equation (24) is the same as

rank


sF− FAω −F

CωAω Cω
Cω 0
0 Eω

 = rank




sF− FAω −F
CωAω Cω

Cω 0
0 Eω


[

H1 E1 0
0 0 In+m

]
= rank

 sIκ − FAωH1 −ψ

Θ̃ ∆

 = rank




Iκ ψ∆+

0 (In+2p − ∆∆+)

0 ∆∆+


 sIκ − FAωH1 −ψ

Θ̃ ∆




= rank


sIκ −Φ 0

Ω 0
∆∆+Θ̃ ∆

 = rank




sIκ −Φ 0
Ω 0

∆∆+Θ̃ ∆


[

Iκ 0
−∆+Θ̃ I2n+2m

]
= rank

[
sIκ −Φ

Ω

]
+ rank(∆), ∀s ∈ C, <(s) ≥ 0.

(A4)

It is clear from Equations (A3) and (A4) that Condition 2 of Theorem 2 is equivalent to Equation (35).

References

1. Huang, C.C.; Tsai, J.S.H.; Guo, S.M.; Sun, Y.J.; Shieh, L.S. Solving algebraic Riccati equation for singular
system based on matrix sign function. Int. J. Innov. Comput. Inform. Control. 2013, 9, 2771–2788.

2. Tsai, J.S.H.; Wang, C.T.; Shieh, L.S. Model conversion and digital redesign of singular systems. J. Frankl. Inst.
1993, 330, 1063–1086. [CrossRef]

3. Tsai, J.S.H.; Chen, C.H.; Lin, M.J.; Guo, S.M.; Shieh, L.S. Novel quadratic tracker and observer for the
equivalent model of the sampled-data linear singular system. Appl. Math. Sci. 2012, 6, 3381–3409.

4. Tsai, J.S.H.; Chang, C.Y.; Chen, Y.F.; Guo, S.M.; Shieh, L.S.; Canelon, J.I. A modified functional observer-based
EID estimator for unknown sampled-data singular systems. Int. J. Syst. Sci. 2019, 50, 1976–2001. [CrossRef]

5. Chen, M.S.; Chen, C.C. Unknown input observer for linear non-minimum phase systems. J. Frankl. Inst.
2010, 347, 577–588. [CrossRef]

6. Chen, J.; Patton, R.J.; Zhang, H.Y. Design of unknown input observers and robust fault detection filters. Int. J.
Control 1996, 63, 85–105. [CrossRef]

7. Gao, Z.; Ho, D.W. State/noise estimator for descriptor systems with application to sensor fault diagnosis.
IEEE Trans. Signal Process. 2006, 54, 1316–1326.

8. Cherrier, E.; Boutayeb, M.; Ragot, J. Observers-based synchronization and input recovery for a class of
nonlinear chaotic models. IEEE Trans. Circuits Syst I Regul. Pap. 2006, 53, 1977–1988. [CrossRef]

9. Liao, T.L.; Huang, N.S. An observer-based approach for chaotic synchronization with applications to secure
communications. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1999, 46, 1144–1150. [CrossRef]

10. Corless, M.; Tu, J. State and input estimation for a class of uncertain systems. Automatica 1998, 34, 757–764.
[CrossRef]

11. Trinh, H.; Fernando, T. Functional Observers for Dynamical Systems; Springer: Berlin, Germany, 2011.
12. Radke, A.; Gao, Z. A survey of state and disturbance observers for practitioners. In Proceedings of the IEEE

2006 American Control Conference, Minneapolis, MN, USA, 14–16 June 2006.

http://dx.doi.org/10.1016/0016-0032(93)90065-3
http://dx.doi.org/10.1080/00207721.2019.1645919
http://dx.doi.org/10.1016/j.jfranklin.2009.12.002
http://dx.doi.org/10.1080/00207179608921833
http://dx.doi.org/10.1109/TCSI.2006.882817
http://dx.doi.org/10.1109/81.788817
http://dx.doi.org/10.1016/S0005-1098(98)00013-2


Appl. Sci. 2020, 10, 2316 30 of 30

13. Termehchy, A.; Afshar, A. A novel design of unknown input observer for fault diagnosis in non-minimum
phase systems. IFAC Proc. Vol. 2014, 47, 8552–8557. [CrossRef]

14. Tsai, J.S.H.; Wang, H.H.; Guo, S.M.; Shieh, L.S.; Canelon, J.I. A case study on the universal
compensation-improvement mechanism: A robust PID filter-shaped optimal PI tracker for systems
with/without disturbances. J. Frankl. Inst. 2018, 355, 3583–3618.

15. She, J.H.; Fang, M.; Ohyama, Y.; Hashimoto, H.; Wu, M. Improving disturbance-rejection performance based
on an equivalent-input-disturbance approach. IEEE Trans. Ind. Electr. 2008, 55, 380–389. [CrossRef]

16. Liu, R.J.; Liu, G.P.; Wu, M.; Nie, Z.-Y. Disturbance rejection for time-delay systems based on the
equivalent-input-disturbance approach. J. Frankl. Inst. 2014, 351, 3364–3377. [CrossRef]

17. Juang, J.N. Applied System Identification; Prentice Hall: Upper Saddle River, NJ, USA, 1994.
18. Anderson, B.D.; Moore, J.B. Optimal Control: Linear Quadratic Methods; Courier Corporation: Chelmsford,

MA, USA, 2007.
19. Sage, A.P.; White, C.C. Optimum Systems Control, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1977.
20. Zhou, K.; Doyle, J.C.; Glover, K. Robust and Optimal Control; Prentice Hall: Upper Saddle River, NJ, USA, 1996.
21. Rao, C.R.; Mitra, S.K. Generalized inverse of a matrix and its applications. In Proceedings of the Sixth Berkeley

Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics; University of California
Press: Berkeley, CA, USA, 1972.

22. Moore, J. Linear Optimal Control, Englewood Cliffs; Prentice Hall: Upper Saddle River, NJ, USA, 1971.
23. Shieh, S.L.; Dib, M.H.; Sekar, G. Continuous-time quadratic regulators and pseudo-continuous-time quadratic

regulators with pole placement in a specific region. IEEE Proc. D 1987, 134, 338–346. [CrossRef]
24. Tang, D.; Chen, L.; Hu, E. A novel unknown-input estimator for disturbance estimation and compensation.

In Proceedings of the Australasian Conference on Robotics and Automation, Melbourne, Australia, 2–4
December 2014.

25. Luenberger, D. An introduction to observers. IEEE Trans. Autom. Control 1971, 16, 596–602. [CrossRef]
26. Ebrahimzadeh, F.; Tsai, J.S.H.; Lin, Y.Y.; Chung, M.C.; Guo, S.M.; Shieh, L.S.; Wang, L. A generalized optimal

linear quadratic tracker with universal applications—Part 1: Continuous-time systems. Int. J. Syst. Sci. 2017,
48, 376–396. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3182/20140824-6-ZA-1003.02104
http://dx.doi.org/10.1109/TIE.2007.905976
http://dx.doi.org/10.1016/j.jfranklin.2014.02.015
http://dx.doi.org/10.1049/ip-d.1987.0056
http://dx.doi.org/10.1109/TAC.1971.1099826
http://dx.doi.org/10.1080/00207721.2016.1186239
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Preliminaries and Motivation 
	Property of the EID Estimator 
	Modified Functional Observer with Unknown Input 
	Problem Statement 
	Existence Conditions 
	State–Space Structure of the Observer and the EID Estimator 
	Stability Analysis in the Frequency Domain 

	Design Procedure of the Unknown Input Linear Functional Observer for the Unknown Perturbed Singular Systems 
	Illustrative Examples 
	Conclusions 
	Some Proofs of the Functional Observer-Based EID 
	Proof of Equivalence Between Condition 1 of Theorem 2 and Condition (31) 
	Proof of Equivalence Between Condition 2 of Theorem 2 and Condition (35) 

	References

